Introduction

Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 06 — Dynamic Programming (Chapter 15)

Stephen Scott (Adapted from Vinodchandran N. Variyam) > Dynamic programming is a technique for solving optimization problems

- Key element: Decompose a problem into subproblems, solve them recursively, and then combine the solutions into a final (optimal) solution
 Important component: There are typically an exponential number of
- subproblems to solve, but many of them overlap ⇒ Can re-use the solutions rather than re-solving them
- Number of distinct subproblems is polynomial

sscott@cse.unl.edu

・ロ・・西・・ミ・・ヨ・ ヨー うんぐ

1000 E 1000 1000 1000 1000 1000

(ロ) (西) (言) (言) (言) うべで

Rod Cutting (1)

Rod Cutting (2)

p;

- A company has a rod of length n and wants to cut it into smaller rods to maximize profit
- Have a table telling how much they get for rods of various lengths: A rod of length *i* has price p_i
- ▶ The cuts themselves are free, so profit is based solely on the prices charged for of the rods
- ► If cuts only occur at integral boundaries 1, 2, ..., n − 1, then can make or not make a cut at each of n − 1 positions, so total number of possible solutions is 2^{n−1}

9	1 8	5 5	
()))))) (a)	(b)	()(c)	
1 1 5 () () () () (e)	1 5 1 () () () () () (f)		

1 5 8 9 10 17 17 20 24 30

8 9 10

1 2 3 4 5 6 7

Rod Cutting (3)

► Given a rod of length n, want to find a set of cuts into lengths i₁,..., i_k (where i₁ + ··· + i_k = n) and revenue r_n = p_i + ··· + p_{ik} is maximized

▶ For a specific value of n, can either make no cuts (revenue = p_n) or make a cut at some position i, then optimally solve the problem for lengths i and n − i:

 $r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_i + r_{n-i}, \dots, r_{n-1} + r_1)$

- Notice that this problem has the **optimal substructure property**, in that an optimal solution is made up of optimal solutions to subproblems
 Can find optimal solution if we consider all possible subproblems
- ► Alternative formulation: Don't further cut the first segment:

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

(ロ)・(書)・(当)・(当)・(ロ)・

Cut-Rod(p, n)

1 if n == 0 then 2 | return 0 3 $q = -\infty$ 4 for i = 1 to n do 5 | $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$ 6 end 7 return q

Time Complexity

- Let T(n) be number of calls to CUT-ROD
- Thus T(0) = 1 and, based on the **for** loop,

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n$$

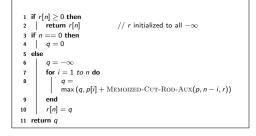
- Why exponential? CUT-ROD exploits the optimal substructure property, but repeats work on these subproblems
- E.g., if the first call is for n = 4, then there will be:
 - ▶ 1 call to CUT-ROD(4)
 - ▶ 1 call to CUT-ROD(3)
 - 2 calls to CUT-ROD(2)
 - ► 4 calls to CUT-ROD(1)
 - ▶ 8 calls to CUT-ROD(0)

Memoized-Cut-Rod-Aux(p, n, r)

Time Complexity (2)

- Can save time dramatically by remembering results from prior calls
- Two general approaches:
 - 1. **Top-down with memoization:** Run the recursive algorithm as defined earlier, but before recursive call, check to see if the calculation has already been done and **memoized**
 - 2. Bottom-up: Fill in results for "small" subproblems first, then use these to fill in table for "larger" ones
- Typically have the same asymptotic running time

1000 E (E)(E)(E)(E)(E)



Recursion Tree for n = 4

3

(1)

(0)

4

2

0

(0)

0

Bottom-Up-Cut-Rod(p, n)

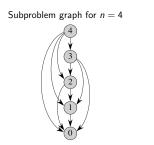
1 Allocate r[0...n]2 r[0] = 03 for j = 1 to n do 4 $q = -\infty$ 5 for i = 1 to j do 6 $| q = \max(q, p[i] + r[j - i])$ 7 end 8 r[j] = q9 end 10 return r[n]

First solves for n = 0, then for n = 1 in terms of r[0], then for n = 2 in terms of r[0] and r[1], etc.

Example

j = 2 $i = 1$ $i = 2$ $j = 3$ $i = 1$ $i = 2$	$j = 4$ $p_1 + r_0 = 1 = r_1$ $i = 1$ $p_1 + r_3 = 1 + 8 = 9$ $i = 2$ $p_2 + r_2 = 5 + 5 = 10 = r_4$ $i = 3$ $p_3 + r_1 + 8 + 1 = 9$ $i = 4$ $p_4 + r_0 = 9 + 0 = 9$ $p_1 + r_2 = 1 + 5 = 6$ $p_2 + r_1 = 5 + 1 = 6$ $p_3 + r_0 = 8 + 0 = 8 = r_3$

Time Complexity



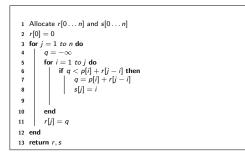
Both algorithms take linear time to solve for each value of n, so total time complexity is $\Theta(n^2)$

・ロト 4番ト 4目ト 目 のQの

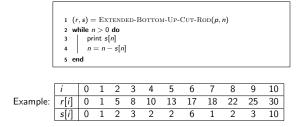
Reconstructing a Solution

- If interested in the set of cuts for an optimal solution as well as the revenue it generates, just keep track of the choice made to optimize each subproblem
- ▶ Will add a second array *s*, which keeps track of the optimal size of the first piece cut in each subproblem

Extended-Bottom-Up-Cut-Rod(p, n)



Print-Cut-Rod-Solution(p, n)



If n = 10, optimal solution is no cut; if n = 7, then cut once to get segments of sizes 1 and 6

Matrix-Chain Multiplication (1)

- \blacktriangleright Given a chain of matrices $\langle A_1,\ldots,A_n\rangle,$ goal is to compute their product $A_1\cdots A_n$
- This operation is associative, so can sequence the multiplications in multiple ways and get the same result
- > Can cause dramatic changes in number of operations required
- Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires pqr steps and yields a $p \times r$ matrix for future multiplications
- E.g., Let A_1 be 10×100 , A_2 be 100×5 , and A_3 be 5×50
 - 1. Computing $((A_1A_2)A_3)$ requires $10\cdot100\cdot5=5000$ steps to compute (A_1A_2) (yielding a 10×5), and then $10\cdot5\cdot50=2500$ steps to finish, for a total of 7500
 - 2. Computing $(A_1(A_2A_3))$ requires $100 \cdot 5 \cdot 50 = 25000$ steps to compute (A_2A_3) (yielding a 100×50), and then $10 \cdot 100 \cdot 50 = 50000$ steps to finish, for a total of 75000

Matrix-Chain Multiplication (2)

- The matrix-chain multiplication problem is to take a chain $\langle A_1, \ldots, A_n \rangle$ of *n* matrices, where matrix *i* has dimension $p_{i-1} \times p_i$, and fully parenthesize the product $A_1 \cdots A_n$ so that the number of scalar multiplications is minimized
- Brute force solution is infeasible, since its time complexity is $\Omega\left(4^n/n^{3/2}\right)$
- Will follow 4-step procedure for dynamic programming:
 - 1. Characterize the structure of an optimal solution
 - 2. Recursively define the value of an optimal solution
 - 3. Compute the value of an optimal solution
 - 4. Construct an optimal solution from computed information

Characterizing the Structure of an Optimal Solution

- Let $A_{i...j}$ be the matrix from the product $A_i A_{i+1} \cdots A_j$
- ► To compute A_{i...j}, must split the product and compute A_{i...k} and A_{k+1...j} for some integer k, then multiply the two together
- Cost is the cost of computing each subproduct plus cost of multiplying the two results
- \blacktriangleright Say that in an optimal parenthesization, the optimal split for $A_i A_{i+1} \cdots A_j$ is at k
- ► Then in an optimal solution for A_iA_{i+1} ··· A_j, the parenthisization of A_i ··· A_k is itself optimal for the subchain A_i ··· A_k (if not, then we could do better for the larger chain)
- Similar argument for $A_{k+1} \cdots A_j$
- ► Thus if we make the right choice for *k* and then optimally solve the subproblems recursively, we'll end up with an optimal solution
- ▶ Since we don't know optimal k, we'll try them all

Recursively Defining the Value of an Optimal Solution

- ▶ Define m[i, j] as minimum number of scalar multiplications needed to compute A_{i...j}
- (What entry in the m table will be our final answer?)
- Computing m[i, j]:
 - 1. If i = j, then no operations needed and m[i, i] = 0 for all i
 - If i < j and we split at k, then optimal number of operations needed is the optimal number for computing A_{i...k} and A_{k+1...j}, plus the number to multiply them:

 $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$

3. Since we don't know k, we'll try all possible values:

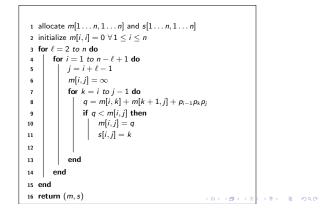
$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$$

► To track the optimal solution itself, define s[i, j] to be the value of k used at each split

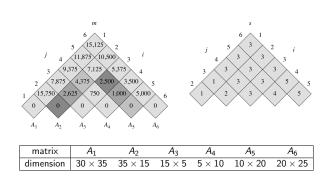
Computing the Value of an Optimal Solution

- As with the rod cutting problem, many of the subproblems we've defined will overlap
- Exploiting overlap allows us to solve only Θ(n²) problems (one problem for each (i, j) pair), as opposed to exponential
- We'll do a bottom-up implementation, based on chain length
- Chains of length 1 are trivially solved (m[i, i] = 0 for all i)
- ▶ Then solve chains of length 2, 3, etc., up to length n
- \blacktriangleright Linear time to solve each problem, quadratic number of problems, yields $O(n^3)$ total time

Matrix-Chain-Order(p, n)



Example

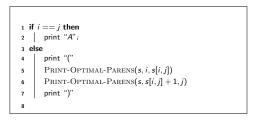


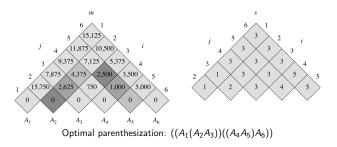
Constructing an Optimal Solution from Computed Information

- ▶ Cost of optimal parenthesization is stored in m[1, n]
- First split in optimal parenthesization is between s[1, n] and s[1, n] + 1
- Descending recursively, next splits are between s[1, s[1, n]] and s[1, s[1, n]] + 1 for left side and between s[s[1, n] + 1, n] and s[s[1, n] + 1, n] + 1 for right side
- and so on...

Print-Optimal-Parens(s, i, j)

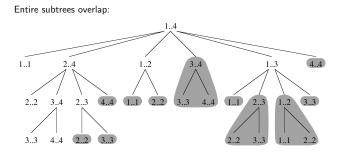
Example





ロ> (四> (日)(H)(H

Example of How Subproblems Overlap



See Section 15.3 for more on optimal substructure and overlapping subproblems

Longest Common Subsequence

- Sequence $Z = \langle z_1, z_2, \ldots, z_k \rangle$ is a **subsequence** of another sequence $X = \langle x_1, x_2, \ldots, x_m \rangle$ if there is a strictly increasing sequence $\langle i_1, \ldots, i_k \rangle$ of indices of X such that for all $j = 1, \ldots, k$, $x_{i_j} = z_j$
- I.e., as one reads through Z, one can find a match to each symbol of Z in X, in order (though not necessarily contiguous)
- E.g., $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B, C, B, D, A, B \rangle$ since $z_1 = x_2$, $z_2 = x_3$, $z_3 = x_5$, and $z_4 = x_7$
- ► *Z* is a **common subsequence** of *X* and *Y* if it is a subsequence of both
- ► The goal of the longest common subsequence problem is to find a maximum-length common subsequence (LCS) of sequences X = ⟨x₁, x₂,..., x_m⟩ and Y = ⟨y₁, y₂,..., y_n⟩

Characterizing the Structure of an Optimal Solution

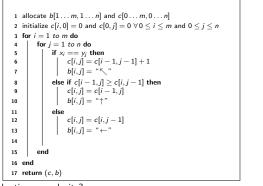
- Given sequence $X = \langle x_1, \dots, x_m \rangle$, the *i*th **prefix** of X is $X_i = \langle x_1, \dots, x_i \rangle$
- **Theorem** If $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$ have LCS
- $Z = \langle z_1, \dots, z_k \rangle$, then 1. $x_m = y_n \Rightarrow z_k = x_m = y_n$ and Z_{k-1} is LCS of X_{m-1} and Y_{n-1}
 - $If z_k ≠ x_m, can lengthen Z, ⇒ contradiction$
 - ▶ If Z_{k-1} not LCS of X_{m-1} and Y_{n-1} , then a longer CS of X_{m-1} and Y_{n-1} could have x_m appended to it to get CS of X and Y that is longer than Z, \Rightarrow contradiction
 - 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y If $z_k \neq x_m$, then Z is a CS of X_{m-1} and Y. Any CS of X_{m-1} and Y that is
 - longer than Z would also be a longer CS for X and Y, \Rightarrow contradiction 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1}
 - Similar argument to (2)

Recursively Defining the Value of an Optimal Solution

- ▶ The theorem implies the kinds of subproblems that we'll investigate to find LCS of $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_m \rangle$
- If $x_m = y_n$, then find LCS of X_{m-1} and Y_{n-1} and append x_m (= y_n) to it
- If $x_m \neq y_n$, then find LCS of X and Y_{n-1} and find LCS of X_{m-1} and Y and identify the longest one
- Let c[i, j] =length of LCS of X_i and Y_i

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ c[i-1,j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j\\ \max(c[i,j-1], c[i-1,j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

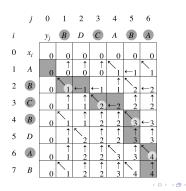
LCS-Length(X, Y, m, n)



What is the time complexity?

Example

 $X = \langle A, B, C, B, D, A, B \rangle, \ Y = \langle B, D, C, A, B, A \rangle$

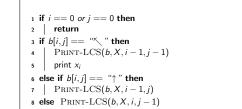


12+12+ 2 940

Constructing an Optimal Solution from Computed Information

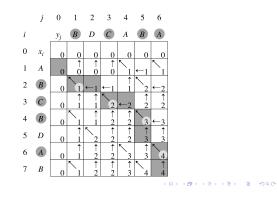
Print-LCS(b, X, i, j)

- ▶ Length of LCS is stored in *c*[*m*, *n*]
- ▶ To print LCS, start at *b*[*m*, *n*] and follow arrows until in row or column 0
- If in cell (i, j) on this path, when x_i = y_j (i.e., when arrow is "↖"), print x_i as part of the LCS
- This will print LCS backwards



Example

 $X = \langle A, B, C, B, D, A, B \rangle$, $Y = \langle B, D, C, A, B, A \rangle$, prints "BCBA"



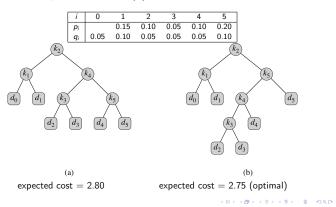
Optimal Binary Search Trees

- Goal is to construct binary search trees such that most frequently sought values are near the root, thus minimizing expected search time
- \blacktriangleright Given a sequence $\mathcal{K}=\langle k_1,\ldots,k_n\rangle$ of n distinct keys in sorted order
- Key k_i has probability p_i that it will be sought on a particular search
- ▶ To handle searches for values not in K, have n + 1 dummy keys d_0, d_1, \ldots, d_n to serve as the tree's leaves
- Dummy key d_i will be reached with probability q_i
- ► If depth_T(k_i) is distance from root of k_i in tree T, then expected search cost of T is

$$1 + \sum_{i=1}^{n} p_i \operatorname{depth}_T(k_i) + \sum_{i=0}^{n} q_i \operatorname{depth}_T(d_i)$$

An optimal binary search tree is one with minimum expected search cost

Optimal Binary Search Trees (2)



Characterizing the Structure of an Optimal Solution

- ▶ Observation: Since K is sorted and dummy keys interspersed in order, any subtree of a BST must contain keys in a contiguous range k_i,..., k_j and have leaves d_{i-1},..., d_j
- Thus, if an optimal BST T has a subtree T' over keys k_i,..., k_j, then T' is optimal for the subproblem consisting of only the keys k_i,..., k_j
 If T' weren't optimal, then a lower-cost subtree could replace T' in T, ⇒
- Given keys k_i, \ldots, k_j , say that its optimal BST roots at k_r for some $i \le r \le j$
- ▶ Thus if we make right choice for k_r and optimally solve the problem for k_j, \ldots, k_{r-1} (with dummy keys d_{i-1}, \ldots, d_{r-1}) and the problem for k_{r+1}, \ldots, k_j (with dummy keys d_r, \ldots, d_j), we'll end up with an optimal solution
- Since we don't know optimal k_r, we'll try them all

contradiction

+□+ +₫+ +∃+ +∃+ -∃ - 900

Recursively Defining the Value of an Optimal Solution

- \blacktriangleright Define e[i,j] as the expected cost of searching an optimal BST built on keys k_i,\ldots,k_j
- ▶ If j = i 1, then there is only the dummy key d_{i-1} , so $e[i, i 1] = q_{i-1}$
- ▶ If $j \ge i$, then choose root k_r from k_i, \ldots, k_j and optimally solve subproblems k_i, \ldots, k_{r-1} and k_{r+1}, \ldots, k_j
- When combining the optimal trees from subproblems and making them children of k_r, we increase their depth by 1, which increases the cost of each by the sum of the probabilities of its nodes
- Define $w(i,j) = \sum_{\ell=i}^{j} p_{\ell} + \sum_{\ell=i-1}^{j} q_{\ell}$ as the sum of probabilities of the nodes in the subtree built on k_i, \ldots, k_j , and get

 $e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$

Recursively Defining the Value of an Optimal Solution (2)

Note that

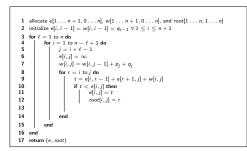
$$w(i,j) = w(i,r-1) + p_r + w(r+1,j)$$

- ► Thus we can condense the equation to e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)
- Finally, since we don't know what k_r should be, we try them all:

$$\mathbf{e}[i,j] = \left\{ \begin{array}{ll} q_{i-1} & \text{if } j = i-1 \\ \min_{i \leq r \leq j} \{\mathbf{e}[i,r-1] + \mathbf{e}[r+1,j] + w(i,j)\} & \text{if } i \leq j \end{array} \right.$$

▶ Will also maintain table root[i, j] = index r for which k_r is root of an optimal BST on keys k_i,..., k_j

Optimal-BST(p, q, n)



What is the time complexity?

うりん 一回 一人回り 人口 マイロー

Example

