Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 05 — Single-Source Shortest Paths (Chapter 24)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

Types of Shortest Path Problems

Given G as described earlier,
» Single-Source Shortest Paths: Find shortest paths from source node
s to every other node
» Single-Destination Shortest Paths: Find shortest paths from every
node to destination t
> Can solve with SSSP solution. How?

» Single-Pair Shortest Path: Find shortest path from specific node u to
specific node v

» Can solve via SSSP; no asymptotically faster algorithm known

» All-Pairs Shortest Paths: Find shortest paths between every pair of
nodes

» Can solve via repeated application of SSSP, but can do better

Negative-Weight Edges (1)

» What happens if the graph G has edges with negative weights?

» Dijkstra’s algorithm cannot handle this, Bellman-Ford can, under the
right circumstances (which circumstances?)

Introduction

> Given a weighted, directed graph G = (V, E) with weight function
w:E—R
» The weight of path p = (vp, v1, ..., vk) is the sum of the weights of its

edges:
k

w(p) = w(vi1,v)

i=1
» Then the shortest-path weight from v to v is

5(u,v) = min{w(p): u% v} if there is a path from u to v
’ S otherwise

v

A shortest path from u to v is any path p with weight w(p) = é(u, v)

» Applications: Network routing, driving directions

Optimal Substructure of a Shortest Path

The shortest paths problem has the optimal substructure property: If

p={vo,v1,..., V) is a SP from vy to v, then for 0 < i <j <k,

pij = (Vi, Vit1,...,Vvj) is a SP from v; to v;

Proof: Let p= vy el Vi 2 vj % vk with weight
w(p) = w(po;) + w(pyj) + w(pj). If there exists a path pj; from v; to v;
. . . ;P

with w(pﬁj) < w(pj), then p is not a SP since vo Ry 8 vj % vk has
less weight than p O

Negative-Weight Edges (2)

Cycles

» What kinds of cycles might appear in a shortest path?
> Negative-weight cycle
» Zero-weight cycle
> Positive-weight cycle

Initialize-Single-Source(G, s)

1 for each vertex v € V do
2 dv] = o0

3 m[v] = NIL

4 end

5 d[s] =0

Relaxation Example

<
[\S)
(@~

) : ‘RELAX(M VW)
u ; v
(b)

Numbers in nodes are values of d

Relaxation

» Given weighted graph G = (V/, E) with source node s € V and other
node v € V (v # s), we'll maintain d[v], which is upper bound on
o(s,v)

» Relaxation of an edge (u, v) is the process of testing whether we can
decrease d[v], yielding a tighter upper bound

Relax(u, v, w)

1 if d[v] > d[u] + w(u, v) then
2 | dlv] = d[u] + w(u,v)
3 nlv]=u

How do we know that we can tighten d[v] like this?

Bellman-Ford Algorithm

» Works with negative-weight edges and detects if there is a
negative-weight cycle
» Makes |V/| — 1 passes over all edges, relaxing each edge during each pass
> No cycles implies all shortest paths have < |V/| — 1 edges, so that number
of relaxations is sufficient

Bellman-Ford(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 fori=1to|V|—1do

3 for each edge (u,v) € E do

4 | RELAX(u, v, w)

5 end

6 end

7 for each edge (u,v) € E do

8 if d[v] > d[u] + w(u, v) then

9 return FALSE // G has a negative-wt cycle

11 end
12 return TRUE // G has no neg-wt cycle reachable frm s

Bellman-Ford Algorithm Example (2)

Within each pass, edges relaxed in this order:
(t,x), (t,y), (1, 2), (x, 1), (¥, x), (¥, 2), (2, X), (2,5), (5, 1), (5, ¥)

Correctness of Bellman-Ford: Finds SP Lengths

> Assume no negative-weight cycles
> Since no cycles appear in SPs, every SP has at most |V/| — 1 edges
> Then define sets So, S1, ... Sjv|-1:

Sk={veV:3sLvst d(s,v)=w(p)and |p| < k}

> Loop invariant: After ith iteration of outer relaxation loop (Line 2), for
all v € S, we have d[v] = (s, v)
> aka path-relaxation property (Lemma 24.15)
» Can prove via induction on i
> Obvious for i =0
> If holds for v € S;_1, then definition of relaxation and optimal substructure
= holds for v € §;
Implies that, after |V/| — 1 iterations, d[v] = (s, v) for all
vevV= 5‘v|,1

v

Bellman-Ford Algorithm Example (1)

Within each pass, edges relaxed in this order:
(t, %), (t,¥): (£, 2), (x, 1), (v, %), (v, 2), (2, %), (2, 5), (5, 1), (5, ¥)

Time Complexity of Bellman-Ford Algorithm

» INITIALIZE-SINGLE-SOURCE takes how much time?

» RELAX takes how much time?

> What is time complexity of relaxation steps (nested loops)?

» What is time complexity of steps to check for negative-weight cycles?

» What is total time complexity?

Correctness of Bellman-Ford: Detects Negative-Weight Cycles
> Let ¢ = (v, v1,..., vk = V) be neg-weight cycle reachable from s:

k

Z w(vi-1,vj) <0

i=1

v

If algorithm incorrectly returns TRUE, then (due to Line 8) for all nodes
in the cycle (i =1,2,...,k),

d[vi] < d[vi-1] + w(vi-1,v)

> By summing, we get

k k k
Z dlvi] < Z dlvi_1] + Z w(vi_1,v;)
i=1 i=1 i=1

> Since vo = vk, Y5, d[vi] = YK, dlvi_1]
This implies that 0 < Zf‘(:l w(vi_1, v;), a contradiction O

v

SSSPs in Directed Acyclic Graphs Dag-Shortest-Paths(G, w, s)

» Why did Bellman-Ford have to run |V| —1 iterations of edge relaxations?

» To confirm that SP information fully propagated to all nodes
(path-relaxation property) 1 topologically sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE(G, s)

3 for each vertex u € V, taken in topo sorted order

do
4 for each v € Adj[u] do
5 | RELAX(u,v,w)
) 6 end
> What if we knew that, after we relaxed an edge just once, we would be 7 end
completely done with it?
> Can do this if G a dag and we relax edges in correct order (what order?)
SSSP dag Example (1) SSSP dag Example (2)

Analysis Dijkstra’s Algorithm
» Correctness follows from path-relaxation property similar to > Greedy algorithm
Bellman-Ford, except that relaxing edges in topologically sorted order > Faster than Bellman-Ford
implies we relax the edges of a shortest path in order O » Requires all edge weights to be nonnegative

» Topological sort takes how much time?

v

Maintains set S of vertices whose final shortest path weights from s have
» INITIALIZE-SINGLE-SOURCE takes how much time? been determined
> Repeatedly select v € V'\ S with minimum SP estimate, add u to S, and

» How many calls to RELAX?]
relax all edges leaving u

> What is total time complexity? > Uses min-priority queue to repeatedly make greedy choice

Dijkstra(G, w, s)

INITIALIZE-SINGLE-SOURCE(G, s)
S=90
Q=V
while Q # () do
u = EXTRACT-MIN(Q)
S=5Su{u}
for each v € Adj[u] do
‘ RELAX(u, v, w)
end

© ® N O A W N =

10 end

Dijkstra's Algorithm Example (2)

Correctness of Dijkstra’s Algorithm

> Invariant: At the start of each iteration of the while loop, d[v] = (s, v)
forallves$S
> Proof: Let u be first node added to S where d[u] # (s, u)
> Let p=5s x— y % ubeSP to uand y first node on pin V —§
> Since y’s predecessor x € S, d[y] = d(s, y) due to relaxation of (x, y)

> Since y precedes u in p and edge wts
non-negative:
dly] = d(s,y) < o(s, u) < d[u]

> Since u was chosen before y in line 5, d[u] < d[y], so
dly] = d(s,y) = d(s, u) = d[u], a contradiction

Since all vertices eventually end up in S, get correctness of the algorithm [

Dijkstra's Algorithm Example (1)

Time Complexity of Dijkstra's Algorithm

» Using array to implement priority queue,
> INITIALIZE-SINGLE-SOURCE takes how much time?
» What is time complexity to create Q?
> How many calls to EXTRACT-MIN?
> What is time complexity of EXTRACT-MIN?
» How many calls to RELAX?
» What is time complexity of RELAX?
» What is total time complexity?
» Using heap to implement priority queue, what are the answers to the
above questions?

» When might you choose one queue implementation over another?

Linear Programming

> Given an m x n matrix A and a size-m vector b and a size-n vector c, find
a vector x of n elements that maximizes 27:1 cix; subject to Ax < b

1 1 22
»Eg,c=[2 -3],A=| 1 2|, b=| 4 | implies:
-1 0 -8
maximize 2x; — 3x; subject to
x1tx <22
X1 — 2X2 S
X1 =

» Solution: x; =16, x, =6

Difference Constraints and Feasibility Difference Constraints and Feasibility (2)

» Decision version of this problem: No objective function to maximize;

simply want to know if there exists a feasible solution, i.e., an x that 1 -1 0 0 O 0
satisfies Ax < b 1 0 0 0 -1 -1

» Special case is when each row of A has exactly one 1 and one —1, 0 1 0 0 -1 1
resulting in a set of difference constraints of the form A= -1 0 10 0 and b = 5
-1 0 0 1 o0 4

xj — x; < by o 0 -1 1 0 -1

0o 0 -1 0 1 -3

» Applications: Any application in which a certain amount of time must o 0 0 -1 1 -3

pass between events (x variables represent times of events)

Difference Constraints and Feasibility (3) Constraint Graphs
Is there a setting for xq, ..., x5 satisfying:
» Can represent instances of this problem in a constraint graph
X1 — X2 S 0
G=(V,E)
x1—xs < —1 X . .
» Define a vertex for each variable, plus one more: If variables are
x—xs < 1 X1y-o oy Xn, get V = {vo,v1,...,Vs}
x3—x1 <5 » Add a directed edge for each constraint, plus an edge from vy to each
x4 —x1 < 4 other vertex:
x—x3 < -1 . .
E = {(vi,vj):x —x; < by is a constraint}
X5 — X3 S -3 U
5 —xa < -3 {(vo, v1), (vo, v2), - -, (vo, va)}
> Weight of edge (v;, v;) is by, weight of (v, v¢) is O for all £ # 0
One solution: x = (—5,—-3,0,—1,—4)
Constraint Graph Example Solving Feasibility with Bellman-Ford

Theorem: Let G be constraint graph for system of difference constraints. If
G has a negative-weight cycle, then there is no feasible solution. If G has no

a-—x = 0 negative-weight cycle, then a feasible solution is
x1—x5 < -1
xo—x5 < 1 x = [6(vo, v1),6(vo, v2), . - ., 6(vo, va)]
x3—x1 < 5 > Proof: For any edge (v;, vj) € E, triangle inequality says
xa—x1 < 4 (v, v;) < 3(vo, vi) + w(vi, vj), so 3(vo, vj) — d(vo, vj) < w(vi, v))
x—x3 < -1 = x;i = (vo, v;) and x; = (vo, v;) satisfies constraint x; — x; < w(v;, vj)
x5 —x3 < —3 > |f there is a negative-weight cycle ¢ = (vj, Vi41,..., vk = v;), then there
x5 —xa < —3 is a system of inequalities x;+1 — x; < w(v;, vit1),
Xiy2 = Xip1 < W(Vig1, Viga), - Xk — Xk—1 < W(Vk_1, Vk). Summing
both sides gives 0 < w(c) < 0, implying that a negative-weight cycle
(-5,-3,0,—1,—4) indicates no solution O

Can solve with Bellman-Ford in time O(n? 4 nm)

