
Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 03 — Greedy Algorithms (Chapter 16)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

Introduction

I Greedy methods: A technique for solving optimization problems

I Choose a solution to a problem that is best per an objective function

I Similar to dynamic programming (covered later) in that we examine
subproblems, exploiting optimal substructure property

I Key di↵erence: In dynamic programming we considered all possible
subproblems

I In contrast, a greedy algorithm at each step commits to just one
subproblem, which results in its greedy choice (locally optimal choice)

I Examples: Minimum spanning tree, single-source shortest paths

Activity Selection (1)

I Consider the problem of scheduling classes in a classroom

I Many courses are candidates to be scheduled in that room, but not all
can have it (can’t hold two courses at once)

I Want to maximize utilization of the room
I This is an example of the activity selection problem:

I Given: Set S = {a1, a2, . . . , an} of n proposed activities that wish to use a
resource that can serve only one activity at a time

I ai has a start time si and a finish time fi , 0  si < fi < 1
I If ai is scheduled to use the resource, it occupies it during the interval

[si , fi)) can schedule both ai and aj i↵ si � fj or sj � fi (if this happens,
then we say that ai and aj are compatible)

I Goal is to find a largest subset S 0 ✓ S such that all activities in S 0 are
pairwise compatible

I Assume that activities are sorted by finish time:

f1  f2  · · ·  fn

Activity Selection (2)

i 1 2 3 4 5 6 7 8 9 10 11
si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 9 9 10 11 12 14 16

Sets of mutually compatible activities: {a3, a9, a11}, {a1, a4, a8, a11},
{a2, a4, a9, a11}

Optimal Substructure of Activity Selection

I Let Sij be set of activities that start after ai finishes and that finish
before aj starts

I Let Aij ✓ Sij be a largest set of activities that are mutually compatible

I If activity ak 2 Aij , then we get two subproblems: Sik and Skj
I If we extract from Aij its set of activities from Sik , we get

Aik = Aij \ Sik , which is an optimal solution to Sik
I If it weren’t, then we could take the better solution to Sik (call it A0

ik) and
plug its tasks into Aij and get a better solution

I Thus if we pick an activity ak to be in an optimal solution and then
solve the subproblems, our optimal solution is Aij = Aik [{ak} [Akj ,
which is of size |Aik |+ |Akj |+ 1

Recursive Definition

I Let c[i , j] be the size of an optimal solution to Sij

c[i , j] =

⇢
0 if Sij = ;
maxak2Sij{c[i , k] + c[k , j] + 1} if Sij 6= ;

I We try all ak since we don’t know which one is the best choice...

I ...or do we?

Greedy Choice

I What if, instead of trying all activities ak , we simply chose the one with
the earliest finish time of all those still compatible with the scheduled
ones?

I This is a greedy choice in that it maximizes the amount of time left
over to schedule other activities

I Let Sk = {ai 2 S : si � fk} be set of activities that start after ak finishes

I If we greedily choose a1 first (with earliest finish time), then S1 is the
only subproblem to solve

Greedy Choice (2)

I
Theorem: Consider any nonempty subproblem Sk and let am be an
activity in Sk with earliest finish time. Then am is in some maximum-size
subset of mutually compatible activities of Sk

I
Proof:

I Let Ak be an optimal solution to Sk and let aj have earliest finish time of
all in Ak

I If aj = am, we’re done
I If aj 6= am, then define A0

k = Ak \ {aj} [{am}
I Activities in A0 are mutually compatible since those in A are mutually

compatible and fm  fj
I Since |A0

k | = |Ak |, we get that A0
k is a maximum-size subset of mutually

compatible activities of Sk that includes am

I What this means is that there is an optimal solution that uses the greedy
choice

Recursive-Activity-Selector(s, f , k , n)

1 m = k + 1

2 while m  n and s[m] < f [k] do
3 m = m + 1

4 end

5 if m  n then

6 return {am}[
Recursive-Activity-Selector(s, f ,m, n)

7 else return ;

Recursive Algorithm Example

Greedy-Activity-Selector(s, f , n)

1 A = {a1}
2 k = 1

3 for m = 2 to n do

4 if s[m] � f [k] then
5 A = A [{am}
6 k = m

7

8 end

9 return A

What is the time complexity?

Greedy vs Dynamic Programming (1)

I When can we get away with a greedy algorithm instead of DP?

I When we can argue that the greedy choice is part of an optimal solution,
implying that we need not explore all subproblems

I Example: The knapsack problem

I There are n items that a thief can steal, item i weighing wi pounds and
worth vi dollars

I The thief’s goal is to steal a set of items weighing at most W pounds and
maximizes total value

I In the 0-1 knapsack problem, each item must be taken in its entirety
(e.g., gold bars)

I In the fractional knapsack problem, the thief can take part of an item
and get a proportional amount of its value (e.g., gold dust)

Greedy vs Dynamic Programming (2)

I There’s a greedy algorithm for the fractional knapsack problem
I Sort the items by vi/wi and choose the items in descending order
I Has greedy choice property, since any optimal solution lacking the greedy

choice can have the greedy choice swapped in
I

Works because one can always completely fill the knapsack at the last step

I Greedy strategy does not work for 0-1 knapsack, but do have
O(nW)-time dynamic programming algorithm

I Note that time complexity is pseudopolynomial
I Decision problem is NP-complete

Greedy vs Dynamic Programming (3)

Problem instance 0-1 (greedy is suboptimal) Fractional

Hu↵man Coding

I Interested in encoding a file of symbols from some alphabet

I Want to minimize the size of the file, based on the frequencies of the
symbols

I A fixed-length code uses dlog2 ne bits per symbol, where n is the size
of the alphabet C

I A variable-length code uses fewer bits for more frequent symbols

a b c d e f

Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Fixed-length code uses 300k bits, variable-length uses 224k bits

Hu↵man Coding (2)
Can represent any encoding as a binary tree

If c .freq = frequency of codeword and dT (c) = depth, cost of tree T is

B(T) =
X

c2C
c .freq · dT (c)

Algorithm for Optimal Codes

I Can get an optimal code by finding an appropriate prefix code, where
no codeword is a prefix of another

I Optimal code also corresponds to a full binary tree

I Hu↵man’s algorithm builds an optimal code by greedily building its tree

I Given alphabet C (which corresponds to leaves), find the two least
frequent ones, merge them into a subtree

I Frequency of new subtree is the sum of the frequencies of its children

I Then add the subtree back into the set for future consideration

Hu↵man(C)

1 n = |C |
2 Q = C // min-priority queue

3 for i = 1 to n � 1 do

4 allocate node z

5 z .left = x = Extract-Min(Q)

6 z .right = y = Extract-Min(Q)

7 z .freq = x .freq + y .freq

8 Insert(Q, z)

9 end

10 return Extract-Min(Q) // return root

Time complexity: n � 1 iterations, O(log n) time per iteration, total O(n log n)

Hu↵man Example Optimal Coding Has Greedy Choice Property (1)

I
Lemma: Let C be an alphabet in which symbol c 2 C has frequency
c .freq and let x , y 2 C have lowest frequencies. Then there exists an
optimal prefix code for C in which codewords for x and y have same
length and di↵er only in the last bit.

I
Proof: Let T be a tree representing an arbitrary optimal prefix code,
and let a and b be siblings of maximum depth in T

I Assume, w.l.o.g., that x .freq  y .freq and a.freq  b.freq

I Since x and y are the two least frequent nodes, we get x .freq  a.freq
and y .freq  b.freq

I Convert T to T 0 by exchanging a and x , then convert to T 00 by
exchanging b and y

I In T 00, x and y are siblings of maximum depth

Optimal Coding Has Greedy Choice Property (2) Optimal Coding Has Greedy Choice Property (3)

Cost di↵erence between T and T 0 is B(T)� B(T 0):

=
X

c2C
c .freq · dT (c)�

X

c2C
c .freq · dT 0(c)

= x .freq · dT (x) + a.freq · dT (a)� x .freq · dT 0(x)� a.freq · dT 0(a)

= x .freq · dT (x) + a.freq · dT (a)� x .freq · dT (a)� x .freq · dT (x)
= (a.freq � x .freq)(dT (a)� dT (x)) � 0

since a.freq � x .freq and dT (a) � dT (x)
Similarly, B(T 0)� B(T 00) � 0, so B(T 00)  B(T), so T 00 is optimal

Optimal Coding Has Optimal Substructure Property (1)

I
Lemma: Let C be an alphabet in which symbol c 2 C has frequency
c .freq and let x , y 2 C have lowest frequencies. Let
C 0 = C \ {x , y} [{z} and z .freq = x .freq + y .freq. Let T 0 be any tree
representing an optimal prefix code for C 0. Then T , which is T 0 with
leaf z replaced by internal node with children x and y , represents an
optimal prefix code for C

I
Proof: Since dT (x) = dT (y) = dT 0(z) + 1,

x .freq · dT (x) + y .freq · dT (y) = (x .freq + y .freq)(dT 0(z) + 1)

= z .freq · dT 0(z) + (x .freq + y .freq)

Also, since dT (c) = dT 0(c) for all c 2 C \ {x , y},
B(T) = B(T 0) + x .freq + y .freq and B(T 0) = B(T)� x .freq � y .freq

Optimal Coding Has Optimal Substructure Property (2)

I Assume that T is not optimal, i.e., B(T 00) < B(T) for some T 00

I Assume w.l.o.g. (based on previous lemma) that x and y are siblings in
T 00

I In T 00, replace x , y , and their parent with z such that
z .freq = x .freq + y .freq, to get T 000:

B(T 000) = B(T 00)� x .freq � y .freq (from prev. slide)

< B(T)� x .freq � y .freq (from T suboptimal assumption)

= B(T 0) (from prev. slide)

I This contradicts assumption that T 0 is optimal for C 0

