
Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 01 — Shall We Play A Game?

Stephen Scott

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu

Introduction

I In this course, I assume that you have learned several fundamental
concepts on basic data structures and algorithms

I Let’s confirm this

I What do I mean ...

... when I say: “Asymptotic Notation”

I A convenient means to succinctly express the growth of functions
I Big-O
I Big-Ω
I Big-Θ
I Little-o
I Little-ω

I Important distinctions between these (not interchangeable)

Asymptotic Notation
... when I say: “Big-O”

Asymptotic upper bound

O(g(n)) = {f (n) : ∃c , n0 > 0 s.t. ∀n ≥ n0, 0 ≤ f (n) ≤ c g(n)}

Can very loosely and informally think of this as a “≤” relation between
functions

Asymptotic Notation
... when I say: “Big-Ω”

Asymptotic lower bound

Ω(g(n)) = {f (n) : ∃c , n0 > 0 s.t. ∀n ≥ n0, 0 ≤ c g(n) ≤ f (n)}

Can very loosely and informally think of this as a “≥” relation between
functions

Asymptotic Notation
... when I say: “Big-Θ”

Asymptotic tight bound

Θ(g(n)) = {f (n) : ∃c1, c2, n0 > 0 s.t. ∀n ≥ n0, 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n)}

Can very loosely and informally think of this as a “=” relation between
functions

Asymptotic Notation
... when I say: “Little-o”

Upper bound, not asymptotically tight

o(g(n)) = {f (n) : ∀c > 0,∃n0 > 0 s.t. ∀n ≥ n0, 0 ≤ f (n) < c g(n)}

Upper inequality strict, and holds for all c > 0
Can very loosely and informally think of this as a “<” relation between
functions

Asymptotic Notation
... when I say: “Little-ω”

Lower bound, not asymptotically tight

ω(g(n)) = {f (n) : ∀c > 0,∃n0 > 0 s.t. ∀n ≥ n0, 0 ≤ c g(n) < f (n)}

f (n) ∈ ω(g(n))⇔ g(n) ∈ o(f (n))
Can very loosely and informally think of this as a “>” relation between
functions

... when I say: “Upper and Lower Bounds”

I Most often, we analyze algorithms and problems in terms of time
complexity (number of operations)

I Sometimes we analyze in terms of space complexity (amount of
memory)

I Can think of upper and lower bounds of time/space for a specific
algorithm or a general problem

Upper and Lower Bounds
... when I say: “Upper Bound of an Algorithm”

I The most common form of analysis

I An algorithm A has an upper bound of f (n) for input of size n if there
exists no input of size n such that A requires more than f (n) time

I E.g., we know from prior courses that Quicksort and Bubblesort take no
more time than O(n2), while Mergesort has an upper bound of
O(n log n)

I (But why is Quicksort used more in practice?)

I Aside: An algorithm’s lower bound (not typically as interesting) is like a
best-case result

Upper and Lower Bounds
... when I say: “Upper Bound of a Problem”

I A problem has an upper bound of f (n) if there exists at least one
algorithm that has an upper bound of f (n)

I I.e., there exists an algorithm with time/space complexity of at most f (n)
on all inputs of size n

I E.g., since Mergesort has worst-case time complexity of O(n log n), the
problem of sorting has an upper bound of O(n log n)

Upper and Lower Bounds
... when I say: “Lower Bound of a Problem”

I A problem has a lower bound of f (n) if, for any algorithm A to solve
the problem, there exists at least one input of size n that forces A to
take at least f (n) time/space

I This pathological input depends on the specific algorithm A

I E.g., there is an input of size n (reverse order) that forces Bubblesort to
take Ω(n2) steps

I Also e.g., there is a different input of size n that forces Mergesort to
take Ω(n log n) steps, but none exists forcing ω(n log n) steps

I Since every sorting algorithm has an input of size n forcing Ω(n log n)
steps, the sorting problem has a time complexity lower bound of
Ω(n log n)

⇒ Mergesort is asymptotically optimal

Upper and Lower Bounds
... when I say: “Lower Bound of a Problem” (2)

I To argue a lower bound for a problem, can use an adversarial argument:
An algorithm that simulates arbitrary algorithm A to build a
pathological input

I Needs to be in some general (algorithmic) form since the nature of the
pathological input depends on the specific algorithm A

I Can also reduce one problem to another to establish lower bounds
I Spoiler Alert: This semester we will show that if we can compute convex

hull in o(n log n) time, then we can also sort in time o(n log n); this
cannot be true, so convex hull takes time Ω(n log n)

... when I say: “Efficiency”

I We say that an algorithm is time- or space-efficient if its worst-case
time (space) complexity is O(nc) for constant c for input size n

I I.e., polynomial in the size of the input
I Note on input size: We measure the size of the input in terms of the

number of bits needed to represent it
I E.g., a graph of n nodes takes O(n log n) bits to represent the nodes and

O(n2 log n) bits to represent the edges
I Thus, an algorithm that runs in time O(nc) is efficient

I In contrast, a problem that includes as an input a numeric parameter k
(e.g., threshold) only needs O(log k) bits to represent

I In this case, an efficient algorithm for this problem must run in time
O(logc k)

I If instead polynomial in k, sometimes call this pseudopolynomial

... when I say: “Recurrence Relations”

I We know how to analyze non-recursive algorithms to get asymptotic
bounds on run time, but what about recursive ones like Mergesort and
Quicksort?

I We use a recurrence relation to capture the time complexity and then
bound the relation asymptotically

I E.g., Mergesort splits the input array of size n into two sub-arrays,
recursively sorts each, and then merges the two sorted lists into a single,
sorted one

I If T (n) is time for Mergesort on n elements,

T (n) = 2T (n/2) + O(n)

I Still need to get an asymptotic bound on T (n)

Recurrence Relations
... when I say: “Master Theorem” or “Master Method”

I Theorem: Let a ≥ 1 and b > 1 be constants, let f (n) be a function,
and let T (n) be defined as T (n) = aT (n/b) + f (n). Then T (n) is
bounded as follows:

1. If f (n) = O(nlogb a−ε) for constant ε > 0, then T (n) = Θ(nlogb a)
2. If f (n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n)
3. If f (n) = Ω(nlogb a+ε) for constant ε > 0, and if af (n/b) ≤ cf (n) for

constant c < 1 and sufficiently large n, then T (n) = Θ(f (n))

I E.g., for Mergesort, can apply theorem with a = b = 2, use case 2, and
get T (n) = Θ

(
nlog2 2 log n

)
= Θ (n log n)

Recurrence Relations
Other Approaches

Theorem: For recurrences of the form T (αn) + T (βn) + O(n) for α + β < 1,
T (n) = O(n)

Proof: Top T (n) takes O(n) time (= cn for some constant c). Then calls to T (αn)

and T (βn), which take a total of (α + β)cn time, and so on

Summing these infinitely yields (since α + β < 1)

cn(1 + (α + β) + (α + β)2 + · · ·) =
cn

1− (α + β)
= c ′n = O(n)

Recurrence Relations
Still Other Approaches

Previous theorem special case of recursion-tree method: (e.g., T (n) = 3T (n/4) + O(n2))

Another approach is substitution method (guess and prove via induction)

Graphs
... when I say: “(Undirected) Graph”

A (simple, or undirected) graph G = (V ,E) consists of V , a nonempty set
of vertices and E a set of unordered pairs of distinct vertices called edges

B

D E

CA

V={A,B,C,D,E}
E={ (A,D),(A,E),(B,D),
 (B,E),(C,D),(C,E)}

Graphs
... when I say: “Directed Graph”

A directed graph (digraph) G = (V ,E) consists of V , a nonempty set of
vertices and E a set of ordered pairs of distinct vertices called edges

Graphs
... when I say: “Weighted Graph”

A weighted graph is an undirected or directed graph with the additional
property that each edge e has associated with it a real number w(e) called
its weight

7
0

4
3

-6

3

12

Graphs
... when I say: “Representations of Graphs”

I Two common ways of representing a graph: Adjacency list and
adjacency matrix

I Let G = (V ,E) be a graph with n vertices and m edges

Graphs
... when I say: “Adjacency List”

I For each vertex v ∈ V , store a list of vertices adjacent to v

I For weighted graphs, add information to each node

I How much is space required for storage?

a

e

b c d
a e
a d c
a c e
b c d

d

b

d e

c

a
b
c

Graphs
... when I say: “Adjacency Matrix”

I Use an n× n matrix M, where M(i , j) = 1 if (i , j) is an edge, 0 otherwise

I If G weighted, store weights in the matrix, using ∞ for non-edges

I How much is space required for storage?

c

ed

ba

d
c
b
a

a b c d e

e 0 1 1 1 0
1 0 1 0 1
1 0 0 1 1
1 0 0 0 1
0 1 1 1 0

Algorithmic Techniques
... when I say: “Dynamic Programming”

I Dynamic programming is a technique for solving optimization
problems, where we need to choose a “best” solution, as evaluated by
an objective function

I Key element: Decompose a problem into subproblems, optimally solve
them recursively, and then combine the solutions into a final (optimal)
solution

I Important component: There are typically an exponential number of
subproblems to solve, but many of them overlap

⇒ Can re-use the solutions rather than re-solving them

I Number of distinct subproblems is polynomial
I Works for problems that have the optimal substructure property, in

that an optimal solution is made up of optimal solutions to subproblems
I Can find optimal solution if we consider all possible subproblems

I Example: All-pairs shortest paths

Algorithmic Techniques
... when I say: “Greedy Algorithms”

I Another optimization technique

I Similar to dynamic programming in that we examine subproblems,
exploiting optimial substructure property

I Key difference: In dynamic programming we considered all possible
subproblems

I In contrast, a greedy algorithm at each step commits to just one
subproblem, which results in its greedy choice (locally optimal choice)

I Examples: Minimum spanning tree, single-source shortest paths

Algorithmic Techniques
... when I say: “Divide and Conquer”

I An algorithmic approach (not limited to optimization) that splits a
problem into sub-problems, solves each sub-problem recursively, and then
combines the solutions into a final solution

I E.g., Mergesort splits input array of size n into two arrays of sizes dn/2e
and bn/2c, sorts them, and merges the two sorted lists into a single
sorted list in O(n) time

I Recursion bottoms out for n = 1

I Such algorithms often analyzed via recurrence relations

Conclusion

I This was a deliberately brief overview of concepts you should already
know

I I expect you to understand it well during lectures, homeworks, and exams

I It is all covered in depth in the textbook!

	Introduction
	What Do I Mean?
	Asymptotic Notation
	Upper and Lower Bounds
	Efficiency
	Recurrence Relations
	Graphs
	Techniques

	Conclusion

