Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 08 — NP-Completeness (Chapter 34)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

Introduction

- ► So far, we have focused on problems with "efficient" algorithms
- ▶ I.e., problems with algorithms that run in polynomial time: $O(n^c)$ for some constant $c \ge 1$
 - ▶ Side note: We call it efficient even if c is large, since it is likely that another, even more efficient, algorithm exists
 - Side note 2: Need to be careful to speak of polynomial in size of the input, e.g., size of a single integer k is log k, so time linear in k is exponential in size (number of bits) of input
- But, for some problems, the fastest known algorithms require time that is superpolynomial
 - ► Includes sub-exponential time (e.g., 2^{n^{1/3}}), exponential time (e.g., 2ⁿ), doubly exponential time (e.g., 2^{2°}), etc.
 - There are even problems that cannot be solved in any amount of time (e.g., the "halting problem")

P vs. NP

- Our focus will be on the complexity classes called P and NP
- Centers on the notion of a Turing machine (TM), which is a finite state machine with an infinitely long tape for storage
 - Anything a computer can do, a TM can do, and vice-versa
 More on this in CSCE 428/828 and CSCE 424/824
- P = "deterministic polynomial time" = the set of problems that can be solved by a deterministic TM (deterministic algorithm) in polynomial time
- ▶ NP = "nondeterministic polynomial time" = the set of problems that can be solved by a nondeterministic TM in polynomial time
 - Can loosely think of a nondeterministic TM as one that can explore many, many possible paths of computation at once
 - Equivalently, NP is the set of problems whose solutions, if given, can be verified in polynomial time

1000 E (E)(E)(E)(E)

P vs. NP Example

- Problem HAM-CYCLE: Does a graph G = (V, E) contain a hamiltonian cycle, i.e., a simple cycle that visits every vertex in V exactly once?
 - This problem is in NP, since if we were given a specific G plus the answer to the question plus a certificate, we can verify a "yes" answer in polynomial time using the certificate
 - What would be an appropriate certificate?
 - Not known if HAM-CYCLE \in P

P vs. NP Example (2)

- Problem EULER: Does a directed graph G = (V, E) contain an Euler tour, i.e., a cycle that visits every edge in E exactly once and can visit vertices multiple times?
 - This problem is in P, since we can answer the question in polynomial time by checking if each vertex's in-degree equals its out-degree
 - Does that mean that the problem is also in NP? If so, what is the certificate?

NP-Completeness

- ► Any problem in P is also in NP, since if we can efficiently solve the problem, we get the poly-time verification for free \Rightarrow P \subseteq NP
- \blacktriangleright Not known if $\mathsf{P}\subset\mathsf{NP},$ i.e., unknown if there a problem in NP that's not in P
- A subset of the problems in NP is the set of NP-complete (NPC) problems
 - Every problem in NPC is at least as hard as all others in NP
 - These problems are believed to be intractable (no efficient algorithm), but not yet proven to be so
 - \blacktriangleright If any NPC problem is in P, then P = NP and life is glorious $\ \ddot{-}$

Proving NP-Completeness

- Thus, if we prove that a problem is NPC, we can tell our boss that we cannot find an efficient algorithm and should take a different approach
 E.g. Approximation algorithm, heuristic approach
- How do we prove that a problem A is NPC?
 - 1. Prove that $A \in \mathsf{NP}$ by finding certificate
 - 2. Show that A is as hard as any other NP problem by showing that if we can efficiently solve A then we can efficiently solve all problems in NP
- First step is usually easy, but second looks difficult
- Fortunately, part of the work has been done for us ...

Reductions

- ▶ We will use the idea of a **reduction** of one problem to another to prove how hard it is
- A reduction takes an instance of one problem A and transforms it to an instance of another problem B in such a way that a solution to the instance of B yields a solution to the instance of A
- Example 1: How did we solve the bipartite matching problem?
- Example 2: How did we solve the topological sort problem?
- Example 3: How did we prove lower bounds on convex hull and BST problems?
- Time complexity of reduction-based algorithm for A is the time for the reduction to B plus the time to solve the instance of B

・ロト (雪) (言) (言) 言) しんの

Decision Problems

- Before we go further into reductions, we simplify our lives by focusing on decision problems
- In a decision problem, the only output of an algorithm is an answer "yes" or "no"
- ▶ I.e., we're not asked for a shortest path or a hamiltonian cycle, etc.
- Not as restrictive as it may seem: Rather than asking for the weight of a shortest path from i to j, just ask if there exists a path from i to j with weight at most k
- Such decision versions of optimization problems are no harder than the original optimization problem, so if we show the decision version is hard, then so is the optimization version
- Decision versions are especially convenient when thinking in terms of languages and the Turing machines that accept/reject them

・ロト・(型ト・ミト・ミト ヨー・のへの)

Reductions (2)

- What is a reduction in the NPC sense?
- Start with two problems A and B, and we want to show that problem B is at least as hard as A
- Will reduce A to B via a polynomial-time reduction by transforming any instance α of A to some instance β of B such that
 - 1. The transformation must take polynomial time (since we're talking about hardness in the sense of efficient vs. inefficient algorithms)
 - 2. The answer for α is "yes" if and only if the answer for β is "yes"
- If such a reduction exists, then B is at least as hard as A since if an efficient algorithm exists for B, we can solve any instance of A in polynomial time
- Notation: A ≤p B, which reads as "A is no harder to solve than B, modulo polynomial time reductions"

Reductions (3)

$\frac{\text{instance }\alpha}{\text{of }A}$	$\rightarrow \begin{array}{c} \text{polynomial-time} & \text{instance } \beta & \text{polynomial-time} \\ \text{reduction algorithm} & \text{of } B & \text{algorithm to decide } B \\ \hline no & \rightarrow \end{array}$	► yes ► no						
	polynomial-time algorithm to decide A							

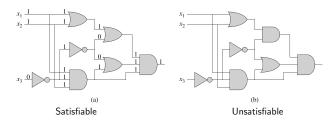
Reductions (4)

- But if we want to prove that a problem B is NPC, do we have to reduce to it *every* problem in NP?
- ► No we don't:
 - If another problem A is known to be NPC, then we know that any problem in NP reduces to it
 - If we reduce A to B, then any problem in NP can reduce to B via its
 - reduction to A followed by A's reduction to B
 - ▶ We then can call *B* an **NP-hard** problem, which is NPC if it is also in NP
 - Still need our first NPC problem to use as a basis for our reductions

CIRCUIT-SAT

CIRCUIT-SAT (2)

- ► Our first NPC problem: CIRCUIT-SAT
- An instance is a boolean combinational circuit (no feedback, no memory)
- Question: Is there a satisfying assignment, i.e., an assignment of inputs to the circuit that satisfies it (makes its output 1)?



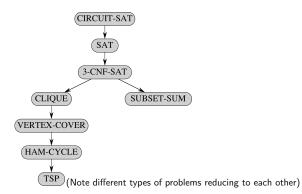
CIRCUIT-SAT (3)

- ► To prove CIRCUIT-SAT to be NPC, need to show:
 - 1. CIRCUIT-SAT \in NP; what is its certificate that we can confirm in polynomial time?
 - 2. That any problem in NP reduces to CIRCUIT-SAT
- ► We'll skip the NP-hardness proof, save to say that it leverages the
- existence of an algorithm that verifies certificates for some NP problem

Other NPC Problems

- We'll use the fact that CIRCUIT-SAT is NPC to prove that these other problems are as well:
 - SAT: Does boolean formula ϕ have a satisfying assignment?
 - ▶ 3-CNF-SAT: Does 3-CNF formula ϕ have a satisfying assignment?
 - CLIQUE: Does graph G have a clique (complete subgraph) of k vertices?
 VERTEX-COVER: Does graph G have a vertex cover (set of vertices that
 - touches all edges) of k vertices?
 - ► HAM-CYCLE: Does graph G have a hamiltonian cycle?
 - ► TSP: Does complete, weighted graph G have a hamiltonian cycle of total weight ≤ k?
 - SUBSET-SUM: Is there a subset S' of finite set S of integers that sum to exactly a specific target value t?
- ▶ Many more in Garey & Johnson's book, with proofs

Other NPC Problems (2)



NPC Problem: Formula Satisfiability (SAT)

- \blacktriangleright Given: A boolean formula ϕ consisting of
 - 1. *n* boolean variables x_1, \ldots, x_n 2. *m* boolean connectives from \land , \lor , \neg , \rightarrow , and \leftrightarrow
 - 2. *m* boolean connectives from \land , \lor , \neg , \rightarrow , and \cdot 3. Parentheses
- Question: Is there an assignment of boolean values to x_1, \ldots, x_n to make ϕ evaluate to 1?
- ▶ E.g.: $\phi = ((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$ has satisfying assignment $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$ since

$$\phi = ((0 \rightarrow 0) \lor \neg ((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0$$
$$= (1 \lor \neg ((1 \leftrightarrow 1) \lor 1)) \land 1$$

$$= (1 \lor \neg (1 \lor 1)) \land 1$$

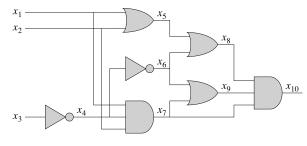
$$= (1 \lor 0) \land 1$$

SAT is NPC

SAT is NPC (2)

- > SAT is in NP: ϕ 's satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time
- ▶ SAT is NP-hard: Will show CIRCUIT-SAT \leq_P SAT by reducing from CIRCUIT-SAT to SAT
- ▶ In reduction, need to map any instance (circuit) C of CIRCUIT-SAT to some instance (formula) ϕ of SAT such that C has a satisfying assignment if and only if ϕ does
- Further, the time to do the mapping must be polynomial in the size of the circuit (number of gates and wires), implying that ϕ 's representation must be polynomially sized

Define a variable in ϕ for each wire in C:



10 - 10 - 12 - 12 - 10 000

SAT is NPC (3)

• Then define a clause of ϕ for each gate that defines the function for that gate:

$$\phi = x_{10} \land (x_4 \leftrightarrow \neg x_3)$$

- $\land (x_5 \leftrightarrow (x_1 \lor x_2))$
 - $\land (x_6 \leftrightarrow \neg x_4)$
 - $\land (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$
 - $\land (x_8 \leftrightarrow (x_5 \lor x_6))$
 - $\land (x_9 \leftrightarrow (x_6 \lor x_7))$
 - $\land (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9))$

SAT is NPC (4)

- Size of ϕ is polynomial in size of C (number of gates and wires)
- \Rightarrow If C has a satisfying assignment, then the final output of the circuit is 1 and the value on each internal wire matches the output of the gate that feeds it
 - $\blacktriangleright\,$ Thus, ϕ evaluates to 1
- \leftarrow If ϕ has a satisfying assignment, then each of ϕ 's clauses is satisfied, which means that each of C's gate's output matches its function applied to its inputs, and the final output is 1
- Since satisfying assignment for $C \Rightarrow$ satisfying assignment for ϕ and vice-versa, we get C has a satisfying assignment if and only if ϕ does

NPC Problem: 3-CNF Satisfiability (3-CNF-SAT)

▶ Given: A boolean formula that is in 3-conjunctive normal form (3-CNF), which is a conjunction of clauses, each a disjunction of 3 literals, e.g.

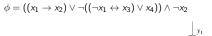
$$(x_1 \lor \neg x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4) \land (x_4 \lor x_5 \lor x_1)$$

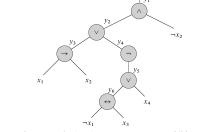
• Question: Is there an assignment of boolean values to x_1, \ldots, x_n to make the formula evaluate to 1?

3-CNF-SAT is NPC

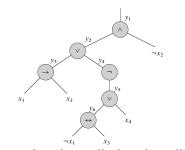
- ▶ 3-CNF-SAT is in NP: The satisfying assignment certifies that the answer is "yes" and this can be easily checked in poly time
- ▶ 3-CNF-SAT is NP-hard: Will show SAT ≤_P 3-CNF-SAT
- Again, need to map *any* instance ϕ of SAT to *some* instance ϕ''' of 3-CNF-SAT
 - 1. Parenthesize ϕ and build its *parse tree*, which can be viewed as a circuit 2. Assign variables to wires in this circuit, as with previous reduction, yielding
 - ϕ' , a conjunction of clauses
 - 3. Use the truth table of each clause ϕ'_i to get its DNF, then convert it to CNF ϕ''_i
 - 4. Add auxillary variables to each ϕ_i'' to get three literals in it, yielding ϕ_i''' 5. Final CNF formula is $\phi''' = \bigwedge_i \phi_i'''$

Building the Parse Tree





Might need to parenthesize ϕ to put at most two children per node



 $\phi' = y_1 \land (y_1 \leftrightarrow (y_2 \land \neg x_2)) \land (y_2 \leftrightarrow (y_3 \lor y_4)) \land$ $(y_3 \leftrightarrow (x_1 \rightarrow x_2)) \land (y_4 \leftrightarrow \neg y_5) \land (y_5 \leftrightarrow (y_6 \lor x_4)) \land (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$

Convert Each Clause to CNF

- Consider first clause $\phi'_1 = (y_1 \leftrightarrow (y_2 \land \neg x_2))$
- Truth table:

<i>y</i> 1	<i>y</i> 2	<i>x</i> ₂	$(y_1 \leftrightarrow (y_2 \land \neg x_2))$
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

Can now directly read off DNF of negation:

 $\neg \phi_1' = (y_1 \land y_2 \land x_2) \lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land \neg y_2 \land \neg x_2) \lor (\neg y_1 \land y_2 \land \neg x_2)$

And use DeMorgan's Law to convert it to CNF:

 $\phi_1'' = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor \neg y_2 \lor x_2)$

Add Auxillary Variables

- ▶ Based on our construction, $\phi = \phi'' = \bigwedge_i \phi''_i$, where each ϕ''_i is a CNF formula each with at most three literals per clause
- But we need to have exactly three per clause!
- Simple fix: For each clause C_i of ϕ'' ,
 - 1. If ${\it C}_i$ has three distinct literals, add it as a clause in $\phi^{\prime\prime\prime}$
 - If C_i = (ℓ₁ ∨ ℓ₂) for distinct literals ℓ₁ and ℓ₂, then add to φ^{'''} (ℓ₁ ∨ ℓ₂ ∨ p) ∧ (ℓ₁ ∨ ℓ₂ ∨ ¬p)
 If C_i = (ℓ), then add to φ^{'''}

3. If
$$C_i = (\ell)$$
, then add to

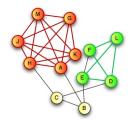
- $(\ell \lor p \lor q) \land (\ell \lor p \lor \neg q) \land (\ell \lor \neg p \lor q) \land (\ell \lor \neg p \lor \neg q)$
- > p and q are **auxillary variables**, and the combinations in which they're added result in a logically equivalent expression to that of the original clause, regardless of the values of p and q

Proof of Correctness of Reduction

- $\blacktriangleright \phi$ has a satisfying assignment iff $\phi^{\prime\prime\prime}$ does
 - 1. CIRCUIT-SAT reduction to SAT implies satisfiability preserved from ϕ to ϕ'
 - 2. Use of truth tables and DeMorgan's Law ensures ϕ'' equivalent to ϕ' 3. Addition of auxillary variables ensures ϕ''' equivalent to ϕ''
- Constructing ϕ''' from ϕ takes polynomial time
 - $1.~\phi^\prime$ gets variables from $\phi_{\rm r}$ plus at most one variable and one clause per operator in ϕ
 - 2. Each clause in ϕ^\prime has at most 3 variables, so each truth table has at most 8 rows, so each clause in ϕ' yields at most 8 clauses in ϕ''
 - 3. Since there are only two auxillary variables, each clause in $\phi^{\prime\prime}$ yields at most 4 in $\phi^{\prime\prime\prime}$
 - 4. Thus size of $\phi^{\prime\prime\prime}$ is polynomial in size of $\phi,$ and each step easily done in polynomial time

NPC Problem: Clique Finding (CLIQUE)

- Given: An undirected graph G = (V, E) and value k
- ▶ Question: Does G contain a clique (complete subgraph) of size k?



Has a clique of size k = 6, but not of size 7

・ロン・1日・1日・1日・1日・1日・ ののの

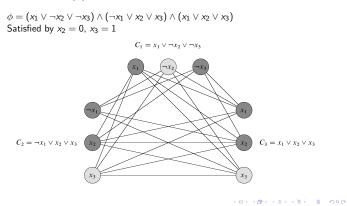
CLIQUE is NPC

The Reduction

- CLIQUE is in NP: A list of vertices in the clique certifies that the answer is "yes" and this can be easily checked in poly time
- CLIQUE is NP-hard: Will show 3-CNF-SAT ≤_P CLIQUE by mapping any instance φ of 3-CNF-SAT to some instance ⟨G, k⟩ of CLIQUE
 - Seems strange to reduce a boolean formula to a graph, but we will show that ϕ has a satisfying assignment iff *G* has a clique of size *k*
 - Caveat: the reduction merely preserves the iff relationship; it does not try to directly solve either problem, nor does it assume it knows what the answer is

- Let $\phi = C_1 \land \cdots \land C_k$ be a 3-CNF formula with k clauses
- For each clause $C_r = (\ell_1^r \vee \ell_2^r \vee \ell_3^r)$ put vertices v_1^r , v_2^r , and v_3^r into V
- Add edge (v^r_i, v^s_j) to E if:
 1. r ≠ s, i.e., v^r_i and v^s_j are in separate triples
 2. ℓ^r_i is not the negation of ℓ^s_j
- Obviously can be done in polynomial time

The Reduction (2)

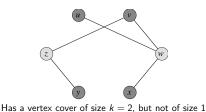


The Reduction (3)

- \Rightarrow If ϕ has a satisfying assignment, then at least one literal in each clause is true
- Picking corresponding vertex from a true literal from each clause yields a set V' of k vertices, each in a distinct triple
- Since each vertex in V' is in a distinct triple and literals that are negations of each other cannot both be true in a satisfying assignment, there is an edge between each pair of vertices in V'
- V' is a clique of size k
- \Leftarrow If G has a size-k clique V', can assign 1 to corresponding literal of each vertex in V'
- Each vertex in its own triple, so each clause has a literal set to 1
- Will not try to set both a literal and its negation to 1
- Get a satisfying assignment

NPC Problem: Vertex Cover Finding (VERTEX-COVER)

- A vertex in a graph is said to **cover** all edges incident to it
- A vertex cover of a graph is a set of vertices that covers all edges in the graph
- Given: An undirected graph G = (V, E) and value k
- Question: Does G contain a vertex cover of size k?



VERTEX-COVER is NPC

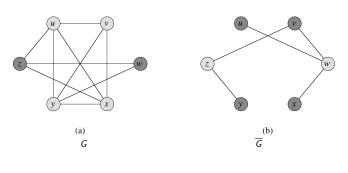
- VERTEX-COVER is in NP: A list of vertices in the vertex cover certifies that the answer is "yes" and this can be easily checked in poly time
- ▶ VERTEX-COVER is NP-hard: Will show CLIQUE \leq_P VERTEX-COVER by mapping *any* instance $\langle G, k \rangle$ of CLIQUE to *some* instance $\langle G', k' \rangle$ of VERTEX-COVER
- ► Reduction is simple: Given instance (G = (V, E), k) of CLIQUE, instance of VERTEX-COVER is (G, |V| k), where G = (V, E) is G's complement:

$$\overline{E} = \{(u, v) : u, v \in V, u \neq v, (u, v) \notin E\}$$

Easily done in polynomial time

101 (B) (E) (E) (E) (O)

VERTEX-COVER is NPC (2)



- 日下 (雪下 (日下 (日下)) 日 (今)()

Proof of Correctness

- \Rightarrow Assume G has a size-k clique $V' \subseteq V$
- ▶ Consider edge $(u, v) \in \overline{E}$
- ▶ If it's in \overline{E} , then $(u, v) \notin E$, so at least one of u and v (which cover (u, v)) is not in V', so at least one of them is in $V \setminus V'$
- ▶ This holds for each edge in \overline{E} , so $V \setminus V'$ is a vertex cover of \overline{G} of size |V| - k
- \leftarrow Assume \overline{G} has a size-(|V| k) vertex cover V'
- For each $(u, v) \in \overline{E}$, at least one of u and v is in V'
- ▶ By contrapositive, if $u, v \notin V'$, then $(u, v) \in E$
- Since every pair of nodes in $V \setminus V'$ has an edge between them, $V \setminus V'$ is a clique of size |V| - |V'| = k

10) (B) (E) (E) (E) (B) (C)

NPC Problem: Subset Sum (SUBSET-SUM)

- Given: A finite set S of positive integers and a positive integer target t
- Question: Is there a subset $S' \subseteq S$ whose elements sum to t?
- ► E.g. S =
- {1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993} and t = 138457 has a solution $S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$

SUBSET-SUM is NPC

- SUBSET-SUM is in NP: The subset S' certifies that the answer is "yes" and this can be easily checked in poly time
- ▶ SUBSET-SUM is NP-hard: Will show 3-CNF-SAT \leq_P SUBSET-SUM by mapping any instance ϕ of 3-CNF-SAT to some instance $\langle S, t \rangle$ of SUBSET-SUM
- Make two reasonable assumptions about φ:
 - 1. No clause contains both a variable and its negation
 - 2. Each variable appears in at least one clause

The Reduction

- Let ϕ have k clauses C_1, \ldots, C_k over n variables x_1, \ldots, x_n
- Reduction creates two numbers in S for each variable x_i and two numbers for each clause C_i
- Each number has n + k digits, the most significant n tied to variables and least significant k tied to clauses
 - 1. Target t has a 1 in each digit tied to a variable and a 4 in each digit tied to a clause
 - 2. For each x_i , S contains integers v_i and v'_i , each with a 1 in x_i 's digit and 0 for other variables. Put a 1 in C_i 's digit for v_i if x_i in C_j , and a 1 in C_i 's digit for v'_i if $\neg x_i$ in C_j
 - 3. For each C_j , S contains integers s_j and s'_j , where s_j has a 1 in C_j 's digit and 0 elsewhere, and s'_i has a 2 in C_j 's digit and 0 elsewhere
- Greatest sum of any digit is 6, so no carries when summing integers
- Can be done in polynomial time

The Reduction (2)

$C_1 = ($	x_1	v –	×2	v -	1x3)	, C	2 =	- (-	<i>x</i> 1	$\vee \neg x_2 \vee \neg x_3), \ C_3 = (\neg x_1 \vee \neg x_2 \vee x_3),$
										$1 \lor x_2 \lor x_3$)
			x_1	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	C_3	C_4	
	v_1	=	1	0	0	1	0	0	1	
	ν'_1	=	1	0	0	0	1	1	0	
	ν_2	=	0	1	0	0	0	0	1	
	ν'_2	=	0	1	0	1	1	1	0	
	ν_3	=	0	0	1	0	0	1	1	
	ν'_3	=	0	0	1	1	1	0	- 0	
	s_1	=	0	0	0	1	0	0	0	
	s'_1	=	0	0	0	2	0	0	0	
	S_2	=	0	0	0	0	1	0	0	
	s'_2	=	0	0	0	0	2	0	0	
	\$3	=	0	0	0	0	0	1	0	
	s'_3	=	0	0	0	0	0	2	0	
	s_4	=	0	0	0	0	0	0	1	
	s'_4	=	0	0	0	0	0	0	2	
	t	=	1	1	1	4	4	4	4	$x_1 = 0, x_2 = 0, x_3 = 1$

Proof of Correctness

- \Rightarrow If $x_i = 1$ in ϕ 's satisfying assignment, SUBSET-SUM solution S' will have v_i , otherwise v'_i
- ▶ For each variable-based digit, the sum of the elements of S' is 1
- Since each clause is satisfied, each clause contains at least one literal with the value 1, so each clause-based digit sums to 1, 2, or 3
- To match each clause-based digit in t, add in the appropriate subset of slack variables s_i and s'_i

Proof of Correctness (2)

- $\leftarrow \text{ In SUBSET-SUM solution } S', \text{ for each } i = 1, \dots, n, \text{ exactly one of } v_i \\ \text{ and } v_i' \text{ must be in } S', \text{ or sum won't match } t \\ \end{cases}$
- \blacktriangleright If $v_i \in S',$ set $x_i = 1$ in satisfying assignment, otherwise we have $v_i' \in S'$ and set $x_i = 0$
- ► To get a sum of 4 in clause-based digit C_i, S' must include a v_i or v'_i value that is 1 in that digit (since slack variables sum to at most 3)
- ▶ Thus, if $v_i \in S'$ has a 1 in C_j 's position, then x_i is in C_j and we set $x_i = 1$, so C_j is satisfied (similar argument for $v'_i \in S'$ and setting $x_i = 0$)
- \blacktriangleright This holds for all clauses, so ϕ is satisfied

□>

・ロト (雪) (言) (言) (言) (言) (の)の

In-Class Exercise

- ► OK, everything perfectly clear?
- Want a shot at extra credit?
- Put away your books (keep your notes), split into groups, and get ready for an in-class exercise!