
Computer Science & Engineering 423/823
Design and Analysis of Algorithms
Lecture 08 — NP-Completeness (Chapter 34)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

Introduction

I So far, we have focused on problems with “e�cient” algorithms
I I.e., problems with algorithms that run in polynomial time: O(nc) for

some constant c � 1
I Side note: We call it e�cient even if c is large, since it is likely that

another, even more e�cient, algorithm exists
I Side note 2: Need to be careful to speak of polynomial in size of the

input, e.g., size of a single integer k is log k , so time linear in k is
exponential in size (number of bits) of input

I But, for some problems, the fastest known algorithms require time that
is superpolynomial

I Includes sub-exponential time (e.g., 2n
1/3
), exponential time (e.g., 2n),

doubly exponential time (e.g., 22
n

), etc.
I There are even problems that cannot be solved in any amount of time

(e.g., the “halting problem”)

P vs. NP

I Our focus will be on the complexity classes called P and NP
I Centers on the notion of a Turing machine (TM), which is a finite state

machine with an infinitely long tape for storage
I Anything a computer can do, a TM can do, and vice-versa
I More on this in CSCE 428/828 and CSCE 424/824

I P = “deterministic polynomial time” = the set of problems that can be
solved by a deterministic TM (deterministic algorithm) in polynomial
time

I NP = “nondeterministic polynomial time” = the set of problems that
can be solved by a nondeterministic TM in polynomial time

I Can loosely think of a nondeterministic TM as one that can explore many,
many possible paths of computation at once

I Equivalently, NP is the set of problems whose solutions, if given, can be
verified in polynomial time

P vs. NP Example

I Problem HAM-CYCLE: Does a graph G = (V ,E) contain a hamiltonian

cycle, i.e., a simple cycle that visits every vertex in V exactly once?
I This problem is in NP, since if we were given a specific G plus the answer

to the question plus a certificate, we can verify a “yes” answer in
polynomial time using the certificate

I What would be an appropriate certificate?
I Not known if HAM-CYCLE 2 P

P vs. NP Example (2)

I Problem EULER: Does a directed graph G = (V ,E) contain an Euler

tour, i.e., a cycle that visits every edge in E exactly once and can visit
vertices multiple times?

I This problem is in P, since we can answer the question in polynomial time
by checking if each vertex’s in-degree equals its out-degree

I Does that mean that the problem is also in NP? If so, what is the
certificate?

NP-Completeness

I Any problem in P is also in NP, since if we can e�cently solve the
problem, we get the poly-time verification for free
) P ✓ NP

I Not known if P ⇢ NP, i.e., unknown if there a problem in NP that’s not
in P

I A subset of the problems in NP is the set of NP-complete (NPC)
problems

I Every problem in NPC is at least as hard as all others in NP
I These problems are believed to be intractable (no e�cient algorithm), but

not yet proven to be so
I If any NPC problem is in P, then P = NP and life is glorious

..
^

Proving NP-Completeness

I Thus, if we prove that a problem is NPC, we can tell our boss that we
cannot find an e�cient algorithm and should take a di↵erent approach

I E.g. Approximation algorithm, heuristic approach

I How do we prove that a problem A is NPC?
1. Prove that A 2 NP by finding certificate
2. Show that A is as hard as any other NP problem by showing that if we can

e�ciently solve A then we can e�ciently solve all problems in NP

I First step is usually easy, but second looks di�cult

I Fortunately, part of the work has been done for us ...

Reductions

I We will use the idea of a reduction of one problem to another to prove
how hard it is

I A reduction takes an instance of one problem A and transforms it to an
instance of another problem B in such a way that a solution to the
instance of B yields a solution to the instance of A

I Example 1: How did we solve the bipartite matching problem?

I Example 2: How did we solve the topological sort problem?

I Example 3: How did we prove lower bounds on convex hull and BST
problems?

I Time complexity of reduction-based algorithm for A is the time for the
reduction to B plus the time to solve the instance of B

Decision Problems

I Before we go further into reductions, we simplify our lives by focusing on
decision problems

I In a decision problem, the only output of an algorithm is an answer
“yes” or “no”

I I.e., we’re not asked for a shortest path or a hamiltonian cycle, etc.

I Not as restrictive as it may seem: Rather than asking for the weight of a
shortest path from i to j , just ask if there exists a path from i to j with
weight at most k

I Such decision versions of optimization problems are no harder than the
original optimization problem, so if we show the decision version is hard,
then so is the optimization version

I Decision versions are especially convenient when thinking in terms of
languages and the Turing machines that accept/reject them

Reductions (2)

I What is a reduction in the NPC sense?

I Start with two problems A and B , and we want to show that problem B
is at least as hard as A

I Will reduce A to B via a polynomial-time reduction by transforming
any instance ↵ of A to some instance � of B such that
1. The transformation must take polynomial time (since we’re talking about

hardness in the sense of e�cient vs. ine�cient algorithms)
2. The answer for ↵ is “yes” if and only if the answer for � is “yes”

I If such a reduction exists, then B is at least as hard as A since if an
e�cient algorithm exists for B , we can solve any instance of A in
polynomial time

I Notation: A P B , which reads as “A is no harder to solve than B ,
modulo polynomial time reductions”

Reductions (3) Reductions (4)

I But if we want to prove that a problem B is NPC, do we have to reduce
to it every problem in NP?

I No we don’t:
I If another problem A is known to be NPC, then we know that any problem

in NP reduces to it
I If we reduce A to B , then any problem in NP can reduce to B via its

reduction to A followed by A’s reduction to B
I We then can call B an NP-hard problem, which is NPC if it is also in NP
I Still need our first NPC problem to use as a basis for our reductions

CIRCUIT-SAT

I Our first NPC problem: CIRCUIT-SAT

I An instance is a boolean combinational circuit (no feedback, no memory)

I Question: Is there a satisfying assignment, i.e., an assignment of
inputs to the circuit that satisfies it (makes its output 1)?

CIRCUIT-SAT (2)

Satisfiable Unsatisfiable

CIRCUIT-SAT (3)

I To prove CIRCUIT-SAT to be NPC, need to show:
1. CIRCUIT-SAT 2 NP; what is its certificate that we can confirm in

polynomial time?
2. That any problem in NP reduces to CIRCUIT-SAT

I We’ll skip the NP-hardness proof, save to say that it leverages the
existence of an algorithm that verifies certificates for some NP problem

Other NPC Problems

I We’ll use the fact that CIRCUIT-SAT is NPC to prove that these other
problems are as well:

I SAT: Does boolean formula � have a satisfying assignment?
I 3-CNF-SAT: Does 3-CNF formula � have a satisfying assignment?
I CLIQUE: Does graph G have a clique (complete subgraph) of k vertices?
I VERTEX-COVER: Does graph G have a vertex cover (set of vertices that

touches all edges) of k vertices?
I HAM-CYCLE: Does graph G have a hamiltonian cycle?
I TSP: Does complete, weighted graph G have a hamiltonian cycle of total

weight  k?
I SUBSET-SUM: Is there a subset S 0 of finite set S of integers that sum to

exactly a specific target value t?

I Many more in Garey & Johnson’s book, with proofs

Other NPC Problems (2)

(Note di↵erent types of problems reducing to each other)

NPC Problem: Formula Satisfiability (SAT)

I Given: A boolean formula � consisting of
1. n boolean variables x1, . . . , xn
2. m boolean connectives from ^, _, ¬, !, and $
3. Parentheses

I Question: Is there an assignment of boolean values to x1, . . . , xn to make
� evaluate to 1?

I E.g.: � = ((x1 ! x2) _ ¬((¬x1 $ x3) _ x4)) ^ ¬x2 has satisfying
assignment x1 = 0, x2 = 0, x3 = 1, x4 = 1 since

� = ((0 ! 0) _ ¬((¬0 $ 1) _ 1)) ^ ¬0
= (1 _ ¬((1 $ 1) _ 1)) ^ 1

= (1 _ ¬(1 _ 1)) ^ 1

= (1 _ 0) ^ 1

= 1

SAT is NPC

I SAT is in NP: �’s satisfying assignment certifies that the answer is “yes”
and this can be easily checked in poly time

I SAT is NP-hard: Will show CIRCUIT-SAT P SAT by reducing from
CIRCUIT-SAT to SAT

I In reduction, need to map any instance (circuit) C of CIRCUIT-SAT to
some instance (formula) � of SAT such that C has a satisfying
assignment if and only if � does

I Further, the time to do the mapping must be polynomial in the size of
the circuit (number of gates and wires), implying that �’s representation
must be polynomially sized

SAT is NPC (2)

Define a variable in � for each wire in C :

SAT is NPC (3)

I Then define a clause of � for each gate that defines the function for that
gate:

� = x10 ^ (x4 $ ¬x3)
^ (x5 $ (x1 _ x2))

^ (x6 $ ¬x4)
^ (x7 $ (x1 ^ x2 ^ x4))

^ (x8 $ (x5 _ x6))

^ (x9 $ (x6 _ x7))

^ (x10 $ (x7 ^ x8 ^ x9))

SAT is NPC (4)

I Size of � is polynomial in size of C (number of gates and wires)

) If C has a satisfying assignment, then the final output of the circuit is 1
and the value on each internal wire matches the output of the gate that
feeds it

I Thus, � evaluates to 1

(If � has a satisfying assignment, then each of �’s clauses is satisfied,
which means that each of C ’s gate’s output matches its function applied
to its inputs, and the final output is 1

I Since satisfying assignment for C) satisfying assignment for � and
vice-versa, we get C has a satisfying assignment if and only if � does

NPC Problem: 3-CNF Satisfiability (3-CNF-SAT)

I Given: A boolean formula that is in 3-conjunctive normal form (3-CNF),
which is a conjunction of clauses, each a disjunction of 3 literals, e.g.

(x1 _ ¬x1 _ ¬x2) ^ (x3 _ x2 _ x4) ^ (¬x1 _ ¬x3 _ ¬x4) ^ (x4 _ x5 _ x1)

I Question: Is there an assignment of boolean values to x1, . . . , xn to make
the formula evaluate to 1?

3-CNF-SAT is NPC

I 3-CNF-SAT is in NP: The satisfying assignment certifies that the answer
is “yes” and this can be easily checked in poly time

I 3-CNF-SAT is NP-hard: Will show SAT P 3-CNF-SAT

I Again, need to map any instance � of SAT to some instance �000 of
3-CNF-SAT
1. Parenthesize � and build its parse tree, which can be viewed as a circuit
2. Assign variables to wires in this circuit, as with previous reduction, yielding

�0, a conjunction of clauses
3. Use the truth table of each clause �0

i

to get its DNF, then convert it to
CNF �00

i

4. Add auxillary variables to each �00
i

to get three literals in it, yielding �000
i

5. Final CNF formula is �000 =
V

i

�000
i

Building the Parse Tree

� = ((x1 ! x2) _ ¬((¬x1 $ x3) _ x4)) ^ ¬x2

Might need to parenthesize � to put at most two children per node

Assign Variables to wires

�0 = y1 ^ (y1 $ (y2 ^ ¬x2)) ^ (y2 $ (y3 _ y4))^
(y3 $ (x1 ! x2)) ^ (y4 $ ¬y5) ^ (y5 $ (y6 _ x4)) ^ (y6 $ (¬x1 $ x3))

Convert Each Clause to CNF

I Consider first clause �0
1 = (y1 $ (y2 ^ ¬x2))

I Truth table:
y1 y2 x2 (y1 $ (y2 ^ ¬x2))
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

I Can now directly read o↵ DNF of negation:

¬�0
1 = (y1^y2^x2)_ (y1^¬y2^x2)_ (y1^¬y2^¬x2)_ (¬y1^y2^¬x2)

I And use DeMorgan’s Law to convert it to CNF:

�00
1 = (¬y1_¬y2_¬x2)^(¬y1_y2_¬x2)^(¬y1_y2_x2)^(y1_¬y2_x2)

Add Auxillary Variables

I Based on our construction, � = �00 =
V

i

�00
i

, where each �00
i

is a CNF
formula each with at most three literals per clause

I But we need to have exactly three per clause!
I Simple fix: For each clause C

i

of �00,
1. If C

i

has three distinct literals, add it as a clause in �000

2. If C
i

= (`1 _ `2) for distinct literals `1 and `2, then add to �000

(`1 _ `2 _ p) ^ (`1 _ `2 _ ¬p)
3. If C

i

= (`), then add to �000

(` _ p _ q) ^ (` _ p _ ¬q) ^ (` _ ¬p _ q) ^ (` _ ¬p _ ¬q)
I p and q are auxillary variables, and the combinations in which they’re

added result in a logically equivalent expression to that of the original
clause, regardless of the values of p and q

Proof of Correctness of Reduction

I � has a satisfying assignment i↵ �000 does
1. CIRCUIT-SAT reduction to SAT implies satisfiability preserved from � to

�0

2. Use of truth tables and DeMorgan’s Law ensures �00 equivalent to �0

3. Addition of auxillary variables ensures �000 equivalent to �00

I Constructing �000 from � takes polynomial time
1. �0 gets variables from �, plus at most one variable and one clause per

operator in �
2. Each clause in �0 has at most 3 variables, so each truth table has at most

8 rows, so each clause in �0 yields at most 8 clauses in �00

3. Since there are only two auxillary variables, each clause in �00 yields at
most 4 in �000

4. Thus size of �000 is polynomial in size of �, and each step easily done in
polynomial time

NPC Problem: Clique Finding (CLIQUE)

I Given: An undirected graph G = (V ,E) and value k

I Question: Does G contain a clique (complete subgraph) of size k?

Has a clique of size k = 6, but not of size 7

CLIQUE is NPC

I CLIQUE is in NP: A list of vertices in the clique certifies that the answer
is “yes” and this can be easily checked in poly time

I CLIQUE is NP-hard: Will show 3-CNF-SAT P CLIQUE by mapping
any instance � of 3-CNF-SAT to some instance hG , ki of CLIQUE

I Seems strange to reduce a boolean formula to a graph, but we will show
that � has a satisfying assignment i↵ G has a clique of size k

I Caveat: the reduction merely preserves the i↵ relationship; it does not try
to directly solve either problem, nor does it assume it knows what the
answer is

The Reduction

I Let � = C1 ^ · · · ^ C
k

be a 3-CNF formula with k clauses

I For each clause C
r

= (`r1 _ `r2 _ `r3) put vertices v
r

1 , v
r

2 , and v r3 into V
I Add edge (v r

i

, v s
j

) to E if:
1. r 6= s, i.e., v r

i

and v s

j

are in separate triples
2. `r

i

is not the negation of `s
j

I Obviously can be done in polynomial time

The Reduction (2)

� = (x1 _ ¬x2 _ ¬x3) ^ (¬x1 _ x2 _ x3) ^ (x1 _ x2 _ x3)
Satisfied by x2 = 0, x3 = 1

The Reduction (3)

) If � has a satisfying assignment, then at least one literal in each clause is
true

I Picking corresponding vertex from a true literal from each clause yields a
set V 0 of k vertices, each in a distinct triple

I Since each vertex in V 0 is in a distinct triple and literals that are
negations of each other cannot both be true in a satisfying assignment,
there is an edge between each pair of vertices in V 0

I V 0 is a clique of size k

(If G has a size-k clique V 0, can assign 1 to corresponding literal of each
vertex in V 0

I Each vertex in its own triple, so each clause has a literal set to 1

I Will not try to set both a literal and its negation to 1

I Get a satisfying assignment

NPC Problem: Vertex Cover Finding (VERTEX-COVER)

I A vertex in a graph is said to cover all edges incident to it

I A vertex cover of a graph is a set of vertices that covers all edges in the
graph

I Given: An undirected graph G = (V ,E) and value k

I Question: Does G contain a vertex cover of size k?

Has a vertex cover of size k = 2, but not of size 1

VERTEX-COVER is NPC

I VERTEX-COVER is in NP: A list of vertices in the vertex cover certifies
that the answer is “yes” and this can be easily checked in poly time

I VERTEX-COVER is NP-hard: Will show CLIQUE P VERTEX-COVER
by mapping any instance hG , ki of CLIQUE to some instance hG 0, k 0i of
VERTEX-COVER

I Reduction is simple: Given instance hG = (V ,E), ki of CLIQUE,
instance of VERTEX-COVER is hG , |V |� ki, where G = (V ,E) is G ’s
complement:

E = {(u, v) : u, v 2 V , u 6= v , (u, v) 62 E}

I Easily done in polynomial time

VERTEX-COVER is NPC (2)

G G

Proof of Correctness

) Assume G has a size-k clique V 0 ✓ V

I Consider edge (u, v) 2 E

I If it’s in E , then (u, v) 62 E , so at least one of u and v (which cover
(u, v)) is not in V 0, so at least one of them is in V \ V 0

I This holds for each edge in E , so V \ V 0 is a vertex cover of G of size
|V |� k

(Assume G has a size-(|V |� k) vertex cover V 0

I For each (u, v) 2 E , at least one of u and v is in V 0

I By contrapositive, if u, v 62 V 0, then (u, v) 2 E

I Since every pair of nodes in V \ V 0 has an edge between them, V \ V 0 is
a clique of size |V |� |V 0| = k

NPC Problem: Subset Sum (SUBSET-SUM)

I Given: A finite set S of positive integers and a positive integer target t

I Question: Is there a subset S 0 ✓ S whose elements sum to t?

I E.g. S =
{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993}
and t = 138457 has a solution
S 0 = {1, 2, 7, 98, 343, 686, 2409, 17206, 117705}

SUBSET-SUM is NPC

I SUBSET-SUM is in NP: The subset S 0 certifies that the answer is “yes”
and this can be easily checked in poly time

I SUBSET-SUM is NP-hard: Will show 3-CNF-SAT P SUBSET-SUM by
mapping any instance � of 3-CNF-SAT to some instance hS , ti of
SUBSET-SUM

I Make two reasonable assumptions about �:
1. No clause contains both a variable and its negation
2. Each variable appears in at least one clause

The Reduction

I Let � have k clauses C1, . . . ,Ck

over n variables x1, . . . , xn
I Reduction creates two numbers in S for each variable x

i

and two
numbers for each clause C

j

I Each number has n + k digits, the most significant n tied to variables
and least significant k tied to clauses
1. Target t has a 1 in each digit tied to a variable and a 4 in each digit tied

to a clause
2. For each x

i

, S contains integers v
i

and v 0
i

, each with a 1 in x
i

’s digit and 0
for other variables. Put a 1 in C

j

’s digit for v
i

if x
i

in C
j

, and a 1 in C
j

’s
digit for v 0

i

if ¬x
i

in C
j

3. For each C
j

, S contains integers s
j

and s 0
j

, where s
j

has a 1 in C
j

’s digit
and 0 elsewhere, and s 0

j

has a 2 in C
j

’s digit and 0 elsewhere

I Greatest sum of any digit is 6, so no carries when summing integers

I Can be done in polynomial time

The Reduction (2)

C1 = (x1 _ ¬x2 _ ¬x3), C2 = (¬x1 _ ¬x2 _ ¬x3), C3 = (¬x1 _ ¬x2 _ x3),
C4 = (x1 _ x2 _ x3)

x1 = 0, x2 = 0, x3 = 1

Proof of Correctness

) If x
i

= 1 in �’s satisfying assignment, SUBSET-SUM solution S 0 will
have v

i

, otherwise v 0
i

I For each variable-based digit, the sum of the elements of S 0 is 1

I Since each clause is satisfied, each clause contains at least one literal
with the value 1, so each clause-based digit sums to 1, 2, or 3

I To match each clause-based digit in t, add in the appropriate subset of
slack variables s

i

and s 0
i

Proof of Correctness (2)

(In SUBSET-SUM solution S 0, for each i = 1, . . . , n, exactly one of v
i

and v 0
i

must be in S 0, or sum won’t match t

I If v
i

2 S 0, set x
i

= 1 in satisfying assignment, otherwise we have v 0
i

2 S 0

and set x
i

= 0

I To get a sum of 4 in clause-based digit C
j

, S 0 must include a v
i

or v 0
i

value that is 1 in that digit (since slack variables sum to at most 3)

I Thus, if v
i

2 S 0 has a 1 in C
j

’s position, then x
i

is in C
j

and we set
x
i

= 1, so C
j

is satisfied (similar argument for v 0
i

2 S 0 and setting x
i

= 0)

I This holds for all clauses, so � is satisfied

In-Class Exercise

I OK, everything perfectly clear?

I Want a shot at extra credit?

I Put away your books (keep your notes), split into groups, and get ready
for an in-class exercise!

