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Introduction

e Given a weighted, directed graph G = (V, E) with weight function
w:FE—R

e The weight of path p = (vg,v1,...,vx) is the sum of the weights of
its edges:

k
w(p) =Y w(vi-1,v:)
i=1
@ Then the shortest-path weight from v to v is

5(u, v) = min{w(p) : u ~> v} if there is a path from u to v
’ 00 otherwise

@ A shortest path from u to v is any path p with weight
w(p) = 6(u,v)
e Applications: Network routing, driving directions
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Given GG as described earlier,

'tctiO" @ Single-Source Shortest Paths: Find shortest paths from source
S of node s to every other node

gsétwg't e Single-Destination Shortest Paths: Find shortest paths from every
o node to destination ¢

Zeg”onr‘i:;;f‘”d o Can solve with SSSP solution. How?

SRS o Single-Pair Shortest Path: Find shortest path from specific node u
piis to specific node v

Dijkstra's e Can solve via SSSP; no asymptotically faster algorithm known

A'?"'”'"“ @ All-Pairs Shortest Paths: Find shortest paths between every pair of
Consuaines nodes

and Shortest o Can solve via repeated application of SSSP, but can do better
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Introduction

@ The shortest paths problem has the optimal substructure property:

Optimal

Sloastoar If p= (vo,v1,...,v5) is a SP from vy to vy, then for 0 < i < j <Kk,
e Dij = (Vi Vig1,...,0j) is a SP from v; to v,

Cycles i i

Relaxation Proof: Let p = vy Rog V; A v w v with we|ght

e w(p) = w(pg)i) + w(pi;) + w(pjk)_. If there exi;ts a path p;; from v; to
csspe v; with w(pzj) < w(pij), then p is not a SP since

Directed Poi p”

Acyclic Graphs Vo o V; ~ ’Uj V‘-) Vi has less Welght than p

e @ This property helps us to use a greedy algorithm for this problem
Difference

Constraints
and Shortest
Paths
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Negative-Weight Edges (1)

@ What happens if the graph G has edges with negative weights?

@ Dijkstra’s algorithm cannot handle this, Bellman-Ford can, under the
right circumstances (which circumstances?)
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@ What kinds of cycles might appear in a shortest path?
o Negative-weight cycle
o Zero-weight cycle
o Positive-weight cycle
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Relaxation

e Given weighted graph G = (V, E') with source node s € V' and other
node v € V (v # s), we'll maintain d[v], which is upper bound on
d(s,v)

o Relaxation of an edge (u,v) is the process of testing whether we
can decrease d[v], yielding a tighter upper bound
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Introduction

Optimal

i for each vertexv € V do
a Shortest Path
d[v] = o0

Negative-Weight
Edges
m[v] = NIL

Cycles
Relaxation

Bellman-Ford
Algorithm

SSSPs in
Directed
Acyclic Graphs

S OW N =
]
=
(=1

Dijkstra's
Algorithm
How is the invariant maintained?

Difference
Constraints
and Shortest
Paths
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Relax(u, v, w)

if d[v] > d[u] + w(u,v) then
1 d[v] = du] + w(u,v)
2 ] =u

How do we know that we can tighten d[v] like this?
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I/l2V MZV
&—0® &—®

Optimal
Substructure of
a Shortest Path
Negative-Weight
Edges

Cycles
Relaxation

RELAX(u V,W) RELAX(u VW)

Bellman-Ford u
Algorithm

SSSPs in M
Directed

Acyclic Graphs

Dijkstra's (a) (b)

Algorithm
Diffaranes Numbers in nodes are values of d

Constraints
and Shortest
Paths

<
<
<

Z
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Bellman-Ford

Algorithm o Greedy algorithm

Introduction

e @ Works with negative-weight edges and detects if there is a

Aol negative-weight cycle

SSSPs in . .

Directed @ Makes |V| — 1 passes over all edges, relaxing each edge during each
cyclic Graphs

Dijkstra's pass

Algorithm

Difference

Constraints
and Shortest
Paths
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INITIALIZE-SINGLE-SOURCE(G, s)

Introduction 1 fori=1to |V| —1do

e B 2 for each edge (u,v) € E do

Algorithm 3 ‘ RELAX (u, v, w)

Introduction

The Algorithm 4 end

Example

Analysis 5 end

SSSPs in 6 for each edge (u,v) € E do

Directed .

Al Geplis 7 if dv] > d[u] + w(u,v) then

Dijstra’s 8 ‘ return FALSE // G has a negative-wt cycle

Algorithm 9

Difference d

Constraints 10 en

and Shortest 11 return TRUE // G has no neg-wt cycle reachable frm
s
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Dijk: g . . . .
AIIJgoitiEIams\ Within each pass, edges relaxed in this order:

g(l)f:es;:ﬁis (t’ :E)a (ta y)v (ta Z)a ($a t)? (ya .T), (ya Z)a (Za $)7 (Zv 5)7 (Sa t)? (57 y)

and Shortest
Paths
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Analysis
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Dijkstra's (d)

Algorithm

Difference

B Within each pass, edges relaxed in this order:
piial (1. 7), (t,y), (1, 2), (2,1), (v, %), (y,2), (2,2), (2, 9), (5, 1), (5,9)
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Bellman-Ford

Algorithm @ INITIALIZE-SINGLE-SOURCE takes how much time?

Introduction .

The Algorithm @ RELAX takes how much time?

Example

—— e What is time complexity of relaxation steps (nested loops)?

SSSPs in

Directed 1 1 1 H _ 1 ?
e e aphe @ What is time complexity of steps to check for negative-weight cycles®
Dijkstra’s @ What is total time complexity?

Algorithm

Difference

Constraints
and Shortest
Paths
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@ Assume no negative-weight cycles
introduction @ Since no cycles appear in SPs, every SP has at most |V| — 1 edges
Bellman-Ford
Algorithm @ Then define sets So, S1,. .. Sjy|-1:
Introduction
T;e A\g;ithm
Example
Analsi Sp={veV:3sL st d(s,v) =w(p) and |p| < k}
SSSPs in
Dir d . . . . . . .
Acyelc Graphs e Loop invariant: After ith iteration of outer relaxation loop (Line 2),
Dijkstra's for all v € S;, we have d[v] = (s, v)
Aleorithm e Can prove via induction
Difference
Constraints e Implies that, after |V| — 1 iterations, d[v] = (s, v) for all
Paths v e V — S|V|—1
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e Let ¢ = (vg,v1,...,vr = vo) be neg-weight cycle reachable from s:

k
Introduction E w U?, 17U1 0
Bellman-Ford i=1
Algorithm
Inroduction e If algorithm incorrectly returns TRUE, then (due to Line 8) for all
e Algorithm . .
g nodes in the cycle (i = 1,2,...,k),
nalysis
SSSPs i . . . .
Directsezl:ln d[vl] S d[vl—l] + ’LU(’UZ_]_, UZ)

Acyclic Graphs .
@ By summing, we get
Dijkstra's

Algorithm k

k
Diff . .
o E dvg] <) dvia] + ) w(vio1,v)
=1 =1 =1

and Shortest
Paths

Since vg = vg, SoF_ d[vi] = S dJvi 1)
This implies that 0 < Zle w(vi—1,v;), a contradiction

18/36
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e Why did Bellman-Ford have to run |V| — 1 iterations of edge
relaxations?
Introduction @ To confirm that SP information fully propagated to all nodes

Bellman-Ford
Algorithm

SSSPs in
Directed
Acyclic Graphs
Introduction
The Algorithm
Example
Analysis
Dijkstra's
Algorithm

Difference

Constraints @ What if we knew that, after we relaxed an edge just once, we would

and Shortest

Paths be completely done with it?

e Can do this if G a dag and we relax edges in correct order (what

?
- order?)
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Introduction topologically sort the vertices of G

Bellman-Ford

e 1 INITIALIZE-SINGLE-SOURCE(G, 5)

Doopen 2 for each vertex u € V/, taken in topo sorted

AlcycLic Grapl1s order do
The Algorithm for each v € Adj [U] do
RELAX(u, v, w)

Example
Analysis
Dijkstra's

Algorithm end

[~ IS B

Difference
Constraints
and Shortest
Paths

end
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Time Complexity of SSSP in dag

@ Topological sort takes how much time?

@ INITIALIZE-SINGLE-SOURCE takes how much time?
@ How many calls to RELAX?

@ What is total time complexity?
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Dijkstra’s Algorithm

Faster than Bellman-Ford

Requires all edge weights to be nonnegative

Maintains set S of vertices whose final shortest path weights from s
have been determined

o Repeatedly select u € V'\ S with minimum SP estimate, add u to S,
and relax all edges leaving u

Uses min-priority queue
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INITIALIZE-SINGLE-SOURCE(G, s)
Introduction 1 S — @
Bellman-Ford
Algorithm 2 Q — V
SSSPs in .
3 while Q # ) do
Acvelic Graphs 4 u = EXTRACT-MIN(Q)
Dijkstra's
Algorithm 5 S=5U {u}
Introduction
i 6 for each v € Adj[u] do
Al 7 | RELAX(u, v, w)
Difference
Constraints 8 end
and Shortest
Paths 9 end
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@ Using array to implement priority queue,
o INITIALIZE-SINGLE-SOURCE takes how much time?

Introduction

Bellman-Ford

Algorithm o What is time complexity to create Q7

o e How many calls to EXTRACT-MIN?

gicrveccltd&aphs o What is time complexity of EXTRACT-MIN?

it e How many calls to RE.LAX?

Algorithm o What is time complexity of RELAX?

R o What is total time complexity?

e @ Using heap to implement priority queue, what are the answers to the
Difference above questions?

and Shortest @ When might you choose one queue implementation over another?

28/36
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Introduction

Bellman-Ford

A e Invariant: At the start of each iteration of the while loop,
SSSPs in d[’l}] = 5(371)) forallvesS

Directed e

Acyclic Graphs e Prove by contradiction (p. 660)

Dijkstra’ i . .

A;Jgosrti{f]:\ @ Since all vertices eventually end up in .S, get correctness of the
Introduction -

Tiie Al a IgOI’Ith m

Example

Analysis

Difference

Constraints
and Shortest
Paths
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Linear Programming

@ Given an m x n matrix A and a size-m vector b and a size-n vector
¢, find a vector z of n elements that maximizes ) ;" | ¢;x; subject to

Ax <b
1 1 22
e Eg. c= [ 2 -3 ] A= 1 -2 1|,b= 4 implies:
-1 0 —8

maximize 2x; — 3xy subject to

1 +xo <22

Tr1 — 21’2

A

v

I

@ Solution: 21 =16, 9 =6
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e e Decision version of this problem: No objective function to
Eeltromm ot maximize; simply want to know if there exists a feasible solution,
Algorithm i.e. an x that satisfies Ax < b

SSSPs in

Pl @ Special case is when each row of A has exactly one 1 and one —1,
cyclic Graphs

Dikstra’s resulting in a set of difference constraints of the form

Algorithm

Difference rj—x; < b
Constraints

and Shortest

PL“"S @ Applications: Any application in which a certain amount of time
e must pass between events (x variables represent times of events)
Feasmiiy

Constraint

Graphs

Solving

Feasibility with
Bejndraford
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Introduction

Eellfmered 1 -1 0 0 0 7 0
Algorithm 1 0 0 0 1 1
B 0o 1 0 0 -1 1
Acyclic Graphs 1 0 1 0 0 5
Dijorss A=1_4 o o 1 o |@b=1
Difference 0 0o -1 1 0 -1

o S 0 0 -1 0 1 _3
e L0 0 0 -1 1 | | 3 |

Programming
Difference
Constraints and
Feasibility
Constraint
Graphs

Solving
Feasibility with
Befmargford
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Is there a setting for x1, ..., x5 satisfying:

1 — a9 <
Introduction 1 2 = 0
Bellman-Ford r1 — I5 S _1
Algorithm

SSSPs in xe—w5 < 1
Directed

Acyclic Graphs $3 — 1 S 5
Dijkstra's _ <
Algorithm T4 z1 — 4
Difference T4 — T3 S -1
Constraints

and Shortest — < =
Paths Ts z3 = 3
Linea

P‘rnoe;rramming T — T4 g -3
Difference

Constraints and

Feasibility

Constraint

Graphs

Solvin M
Ponaiity with One solution: z = (—5,-3,0,—1,—4)
Befyg\?rgﬁrd
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@ Can represent instances of this problem in a constraint graph

Introduction G — (‘/, E)

Bellman-Ford . . .

Algorithm @ Define a vertex for each variable, plus one more: If variables are
SSSPs in X1y, Xp, get V = {vo,v1,..., 05}

Directed

Ayl Gepie @ Add a directed edge for each constraint, plus an edge from vy to

Dijkstra's each other vertex:

Algorithm

Difference

Constraint; — X N e e . .
and Shrtet E {(vi,vj) : @5 — ; < by is a constraint}

Tj:lasr U{(”Ov”l)?(’UOai@)" "7(U07vn)}
Programming

Difference

Feastty o Weight of edge (v;, v;) is by, weight of (vg,v,) is O for all £ # 0
Coaphe ™

Solving

Feasibility with

Bemgirgord
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Solving Feasibility with Bellman-Ford

@ Theorem: Let GG be the constraint graph for a system of difference
constraints. If G has a negative-weight cycle, then there is no
feasible solution to the system. If G has no negative-weight cycle,
then a feasible solution is

x = [0(vo, v1), 0(vo, v2), - - -, 6(v0, vn)]

o For any edge (v;,v;) € E, §(vo,v;) < 6(vo,v;) + w(vs,vj) =
0(vo, vj) — 6(vo,v;) < w(vi,v5)

o If there is a negative-weight cycle ¢ = (v;, V41, ..., vk), then there is
a system of inequalities z;41 — z; < w(v;, vi+1),
Tita — Tit1 S WVig1,Vig2), ooy Th — Tp—1 < W(VE—1,Vk). Summing
both sides gives 0 < w(c) < 0, implying that a negative-weight cycle
indicates no solution

e Can solve this with Bellman-Ford in time O(n? + nm)



	Introduction
	Optimal Substructure of a Shortest Path
	Negative-Weight Edges
	Cycles
	Relaxation

	Bellman-Ford Algorithm
	Introduction
	The Algorithm
	Example
	Analysis

	SSSPs in Directed Acyclic Graphs
	Introduction
	The Algorithm
	Example
	Analysis

	Dijkstra's Algorithm
	Introduction
	The Algorithm
	Example
	Analysis

	Difference Constraints and Shortest Paths
	Linear Programming
	Difference Constraints and Feasibility
	Constraint Graphs
	Solving Feasibility with Bellman-Ford


