Lincoln

CSCE4: 3
Computer Science & Engineering 423/823
oseten Design and Analysis of Algorithms
Iman-Ford
Algorithm
SSSPs in Lecture 05 — Single-Source Shortest Paths (Chapter 24)
P e
Dijksta’
A hm
> Stephen Scott
A (Adapted from Vinodchandran N. Variyam)
Path:

1/36

Nebiaska rtest Path Problems
CSCE423,
Given G as described earlier,
Introduction o Single-Source Shortest Paths: Find shortest paths from source

i node s to every other node

o Single-Destination Shortest Paths: Find shortest paths from every
node to destination ¢

el o Can solve with SSSP solution. How?

o Single-Pair Shortest Path: Find shortest path from specific node u

Gz to specific node v

o Can solve via SSSP; no asymptotically faster algorithm known

Dijkstra’s
m o All-Pairs Shortest Paths: Find shortest paths between every pair of
?\Nt‘n: nOdeS
andohortest o Can solve via repeated application of SSSP, but can do better
3/36

WLEEEY Negative-Weight Edges (1)

Lincoln

o What happens if the graph G has edges with negative weights?

o Dijkstra's algorithm cannot handle this, Bellman-Ford can, under the
hm right circumstances (which circumstances?)

Lincoln

Bellman-Ford
Algorithm
SSSPs in
Directed
Acyclic Graphs

Dijkstra's
Algorithm
Difference
Constraints
and Shortest
Paths

2/36

Lincoln

Substructure of
3 Shortest Path
ighi

Algorithm
Difference
Consf

and Shortest
Paths

4/36

Nebiéiska

Lincoln

CSCE423/823

tra's
ithm

and Shortest
Paths

Introduction

@ Given a weighted, directed graph G = (V, E) with weight function
w:E—R

@ The weight of path p = (vg, v, ...
its edges:

, vk is the sum of the weights of

k
w(p) = 2111(1’1‘—1-,1)1‘)
i=1
@ Then the shortest-path weight from u to v is
S(u,v) = min{w(p) : u % v} if there is a path from u to v
’ 00 otherwise

@ A shortest path from u to v is any path p with weight
w(p) = 6(u,v)
o Applications: Network routing, driving directions

Optimal Substructure of a Shortest Path

@ The shortest paths problem has the optimal substructure property:
If p = (vo,v1,...,v;) is a SP from vy to vy, then for 0 <7 < j <k,
Pij = (Vi; Vi1, .. .,v;5) is a SP from v; to v;

Proof: Let p =g X v; et v ik v with weight

w(p) = w(po;) +w(pij) +w(pjr). If there exists a path pj; from v; to
v; with w(p};) < w(pi;), then p is not a SP since

Po Pij Pjk .
Vo~ v; ~3 v; ~> vy has less weight than p

@ This property helps us to use a greedy algorithm for this problem

Negative-Weight Edges (2)

Nelsiik

Lincoln

Cycles
Relaxation

Bellman-Ford
Algorithm

SSSPs in
Directed
Acyclic Graphs

Lincoln

Dijkstra’s
Algorithm

Nebiéska

Lincoln

CSCE423/823

Introduction

Algorithm

D e
Constraints
and Shortest
Paths

Cycles

o What kinds of cycles might appear in a shortest path?
o Negative-weight cycle
e Zero-weight cycle
o Positive-weight cycle

Initialize-Single-Source(G, s)

for each vertexv € V do
1 d[v] = o0
2 m[v] = NIL
3 end
4 d[s]=0

How is the invariant maintained?

Relaxation Example

Numbers in nodes are values of d

\Evesed Relaxation

Lincoln

Introduction

pimal
e X o Given weighted graph G = (V, E) with source node s € V and other

node v € V (v # s), we'll maintain d[v], which is upper bound on

Fmd 5(€ 1))

R o Relaxation of an edge (u,v) is the process of testing whether we

o can decrease d[v], yielding a tighter upper bound

Acyclic Graphs

Nebiaska Relax(u, v, Il‘)

Lincoln

CSCE423/823

if d[v] > d[u] + w(u,v) then
1 d[v] = d[u] + w(u,v)

2] =u
3
Acv,rch:((;mphs
Koo How do we know that we can tighten d[v] like this?

and Shortest
Paths

10/36

Wectd Bellman-Ford Algorithm

Lincoln

CSCE423/823

Introduction

o Greedy algorithm

o Works with negative-weight edges and detects if there is a
negative-weight cycle

o Makes V| — 1 passes over all edges, relaxing each edge during each
pass

Difference
Constraints
and Shortest
Paths

Lincoln

13/36

Lincoln

Nebiéska

Lincoln

Introduction

Bellman-Ford
A hm

Bellman-Ford(G,

INITIALIZE-SINGLE-SOURCE(G, s)

1 fori=1to|V|—1do

2 for each edge (u,v) € E do
3 | RELAX(u,v,w)

4 end

5 end

6 for each edge (u,v) € E do
7 if d[v] > d[u] + w(u,v) then
8 | return FALSE // G has a negative-wt cycle

10 end

11 return TRUE // G has no neg-wt cycle reachable frm
s

Bellman-Ford Algorithm Example (2)

Within each pass, edges relaxed in this order:
(tx), (ty), (t,2), (. 1), (v, 2), (v, 2). (2, 2), (2,

8)7 (s’ t)r (87 y)

Correctness of Bellman-Ford Algorithm

o Assume no negative-weight cycles
@ Since no cycles appear in SPs, every SP has at most |V| — 1 edges

© Then define sets Sp, 51, ... Sjy|-1:

Sk={veV:3s v st 4(s,v) = w(p) and |p| < k}

o Loop invariant: After ith iteration of outer relaxation loop (Line 2),
for all v € S;, we have d[v] = 6(s,v)

e Can prove via induction
o Implies that, after |V'| — 1 iterations, d[v] = d(s,v) for all
veV = S\V\—l

Lincoln

Dijkstra’s
Algorithm

Lincoln

Introduction

Analysis

Dijkstra's
Algorithm

Nebiéiska

Lincoln

CSCE423/823

Introduction

Acyclic Graphs

Di s
Algorithm

Difference
Constraints
and Shortest
Paths

Bellman-Ford Algorithm Example (1)

Within each pass, edges relaxed in this order:
(t,2), (), (X, 2), (2,1), (y, 2), (4, 2), (2, 2), (2, 9), (5,1), (,9)

Time Complexity of Bellman-Ford Algorithm

@ INITIALIZE-SINGLE-SOURCE takes how much time?

o RELAX takes how much time?

@ What is time complexity of relaxation steps (nested loops)?

o What is time complexity of steps to check for negative-weight cycles?
o What is total time complexity?

Correctness of Bellman-Ford Algorithm (2)

o Let ¢ = (vo,v1,...,v, = vo) be neg-weight cycle reachable from s:

k
E w('U1;17 'Ul') <0
i=1

o If algorithm incorrectly returns TRUE, then (due to Line 8) for all
nodes in the cycle (i =1,2,...,k),
d[vi] < dfvi—1] +w(vi-1,v;)

o By summing, we get

k k k
Z dfv;] < Z dlvi—1] + Z w(vi—1,v;)
i=1 i=1 i=1

@ Since vy = vg, Zle dlvi] = Zle dvi_1]
o This implies that 0 < Zle w(vi—1,v;), a contradiction

eed SSSPs in Directed Acycli Nebidska Dag-Shortest-Paths(G, w, s)

SRS e Why did Bellman-Ford have to run |V| — 1 iterations of edge L
relaxations?

Introduction @ To confirm that SP information fully propagated to all nodes Introduction topologically sort the vertices of G
Rigorthm Rgorthm 1 INITIALIZE-SINGLE-SOURCE(G, s)
Sespein 2 for each vertex u € V, taken in topo sorted
o order do
The it 3 for each v € Adjlu] do

e
Al 4 RELAX (u, v, w)
Dijkst
Alg 5 end
Di
Constrais. o What if we knew that, after we relaxed an edge just once, we would i 6 end
Paths be completely done with it? Paths

@ Can do this if G a dag and we relax edges in correct order (what

103 order?)

ety SSSP dag Example (1) ety SSSP dag Example (2)

Introduction Introduction

Bellman-Ford 5 Bellman-Ford
Algorithm ©; ’ Algorithm
SSSPs in
Directed
lic Graphs
Introduction
The Algorithm

Dijkstra's Dijkstra's
Algorithm Algorithm

Constraints
and Shortest

NEeEleY Time Complexity of SSSP in dag WNEeEled Dijkstra’s Algorithm
CSCE423/823 CSCE423/823
Introduction Introduction
Bellman-Ford Bellman-Ford o Faster than Bellman-Ford
Algorithm . a7 Algorithm . . .
o o Topological sort takes how much time? secpen o Requires all edge weights to be nonnegative
e, o @ INITIALIZE-SINGLE-SOURCE takes how much time? sl o Maintains set S of vertices whose final shortest path weights from s
Inroduction e How many calls to RELAX? s have been determined
2 . . . o Repeatedly select u € V'\ S with minimum SP estimate, add u to S,
Analysis o What is total time complexity? and relax all edges leaving
Di g g
Algorithm o Uses min-priority queue
Difference Difference
Constraints Constraints.
and Shortest and Shortest

Paths Paths

=

Lincoln
CSCE4; 3

Introduction

Bellman-Ford

Ps in

Lincoln

Introduction

Bellman-Ford
Algorithm

Nebiéska

Lincoln
CSCE423/823

Introduction

o
Analysis

Difference

traints
and Shortest
Paths

Dijkstra(

INITIALIZE-SINGLE-SOURCE(G, s)

15=0

2 Q=V

3 while Q # () do

4 u = EXTRACT-MIN(Q)
5 S =Su{u}

6 for each v € Adj[u] do
7 ‘ RELAX(u, v, w)

8 end

9

Dijkstra’s Algorithm Example (2)

Correctness of Dijkstra's Algorithm

o Invariant: At the start of each iteration of the while loop,

d[v] = d(s,v) forallv e S
e Prove by contradiction (p. 660)

@ Since all vertices eventually end up in S, get correctness of the

algorithm

=l Dijkstra’s Algorithm Example (1)

Introduction

Bellman-Ford
rithm

Ps in

d
Graphs

Dijkstra’s
rithm

and Shortest
Paths

AS&isd Time Complexity of Dijkstra’s Algorithm

Lincoln

o Using array to implement priority queue,
o INITIALIZE-SINGLE-SOURCE takes how much time?

Introduction

Bellman-Ford

Algorithm e What is time complexity to create Q7
o o How many calls to EXTRACT-MIN?
E:‘rg;d@am o What is time complexity of EXTRACT-MIN?
- e How many calls to RELAX?
Algorithm o What is time complexity of RELAX?
Inrosetin o What is total time complexity?
Arsyi @ Using heap to implement priority queue, what are the answers to the

2 above questions?
o T @ When might you choose one queue implementation over another?

N2ty | inear Programming

Lincoln

CSCE423/823

o Given an m x n matrix A and a size-m vector b and a size-n vector
¢, find a vector z of n elements that maximizes Z:LZI c;x; subject to

Introduction Az <b

Bellman-Ford

Algorithm 1 1 22

ssspsin o Eg c= [2 -3] A= 1 -2 |, b= 4 implies:

-1 0 -8
maximize 2x; — 3z subject to

Algorithm

Difference

Constraints Tz < 22

and Shortest

Paths 21— 21 < 4
T Z 8

@ Solution: 21 =16, 29 =6

2=y Difference Constraints and Feasibility

=4 Difference Constraints and Feasibility (2)

o Decision version of this problem: No objective function to

Introduction Introduction

Jiman-Ford maximize; simply want to know if there exists a feasible solution, Iman-Ford 1 -1 0 0 0 0
m i.e. an z that satisfies Az <b Aleorithm 1 0 0 0 -1 -1

SSSPs in . . SSSPs in O 1 0 0 71 1
Bram @ Special case is when each row of A has exactly one 1 and one —1, Bica

cyclic Graphs e i 3 cyclic Graphs _
iketra'e resulting in a set of difference constraints of the form) A= Lo 1 (U and b= 5
At ’[UH:V "\\gurllhv; -1 0 0 1 0 4
Differ zj—x; < by Difference 0 0o -1 1 0 -1
and Shoree 0 0 -1 0 1 -3
o o Applications: Any application in which a certain amount of time : o 0 0 -1 1 -3
must pass between events (z variables represent times of events) e

WecteY Difference Constraints and Feasibility (3) WEvelal Constraint Graphs
Cscea Is there a setting for z1, ..., x5 satisfying: Csceazs/e23
o —z < 0 o Can represent instances of this problem in a constraint graph
Introduction r1— T2 = Introduction G = (V7 E)
iman-For —x5 < - Sellman-For .
S oS ! Al @ Define a vertex for each variable, plus one more: If variables are
SSSPs in rp—x5 <1 T1ye .y Ty, get V= {vg,v1,..., 00}
Directed ecte
bl GErin T3—r1 <5 bl GErin o Add a directed edge for each constraint, plus an edge from vy to
n-u;s(;i‘; -1 < 4 E\U;Sf.;im each other vertex:
Difference g —x3 < -1
traints e s E = {(vi,vj):zj —x; < by is a constraint}
p,i: rtest ‘(1;5 — xS S 73 rtest
o U{(vo,v1), (vo, v2), ..., (vo, v
o vz < -3 {(vo, v1), (vo, v2), - -, (v0,vn) }
i
Forstin " e o Weight of edge (v;,v;) is bk, weight of (vo, v¢) is 0 for all £ # 0
i v One solution: z = (—5,-3,0,—1,—4)
\Evelal Constraint Graph Example NEeEleY Solving Feasibility with Bellman-Ford
CSCE423/823 CSCE423/823

o Theorem: Let G be the constraint graph for a system of difference
constraints. If G has a negative-weight cycle, then there is no

[ntroduction Introduction feasible solution to the system. If G' has no negative-weight cycle,

Bellman-Ford Bl then a feasible solution is

SSSPs in

z = [6(vo,v1), 6(vo, v2),. .., (v, vp)]

o 2;;.‘.(;"‘ o For any edge (v;,v;) € E, 6(vo,v;) < 6(vo,v;) + w(vs,v;) =

D D B(vo-vy) — (vo, vi) < wvi,v;) .
S i Shorost o If there is a negative-weight cycle ¢ = (v;, v;+1,...,v), then there is
p:mS Paths a system of inequalities ;41 — ; < w(v;, vig1),

e Tigo — g1 < W(Vit1,Vig2), .. Tk — Tp—1 < w(vg—1,vy). Summing
Constrants and both sides gives 0 < w(c) < 0, implying that a negative-weight cycle
Gonstint indicates no solution

Graphe
th Bosabtiy with o Can solve this with Bellman-Ford in time O(n? + nm)

Beilman-Ford

