
Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 04 — Minimum-Weight Spanning Trees (Chapter 23)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu

Introduction

I Given a connected, undirected graph G = (V ,E), a spanning tree is an
acyclic subset T ⊆ E that connects all vertices in V

I T acyclic ⇒ a tree
I T connects all vertices ⇒ spans G

I If G is weighted, then T ’s weight is w(T) =
∑

(u,v)∈T w(u, v)

I A minimum weight spanning tree (or minimum spanning tree, or
MST) is a spanning tree of minimum weight

I Not necessarily unique

I Applications: anything where one needs to connect all nodes with
minimum cost, e.g. wires on a circuit board or fiber cable in a network

MST Example

Kruskal’s Algorithm

I Greedy algorithm: Make the locally best choice at each step

I Starts by declaring each vertex to be its own tree (so all nodes together
make a forest)

I Iteratively identify the minimum-weight edge (u, v) that connects two
distinct trees, and add it to the MST T , merging u’s tree with v ’s tree

MST-Kruskal(G ,w)

A = ∅
1 for each vertex v ∈ V do
2 Make-Set(v)

3 end

4 sort edges in E into nondecreasing order by weight w

5 for each edge (u, v) ∈ E, taken in nondecreasing order
do

6 if Find-Set(u) 6= Find-Set(v) then
7 A = A ∪ {(u, v)}
8 Union(u, v)

9

10 end

11 return A

More on Kruskal’s Algorithm

I Find-Set(u) returns a representative element from the set (tree) that
contains u

I Union(u, v) combines u’s tree to v ’s tree

I These functions are based on the disjoint-set data structure

I More on this later

Example (1)

Example (2)

Example (3)

Disjoint-Set Data Structure

I Given a universe U = {x1, . . . , xn} of elements (e.g. the vertices in a
graph G), a DSDS maintains a collection S = {S1, . . . ,Sk} of disjoint
sets of elements such that

I Each element xi is in exactly one set Sj
I No set Sj is empty

I Membership in sets is dynamic (changes as program progresses)

I Each set S ∈ S has a representative element x ∈ S

I Chapter 21

Disjoint-Set Data Structure (2)

I DSDS implementations support the following functions:
I Make-Set(x) takes element x and creates new set {x}; returns pointer

to x as set’s representative
I Union(x , y) takes x ’s set (Sx) and y ’s set (Sy , assumed disjoint from

Sx), merges them, destroys Sx and Sy , and returns representative for new
set from Sx ∪ Sy

I Find-Set(x) returns a pointer to the representative of the unique set
that contains x

I Section 21.3: can perform d D-S operations on e elements in time
O(d α(e)), where α(e) = o(lg∗ e) = o(log e) is very slowly growing:

α(e) =


0 if 0 ≤ e ≤ 2
1 if e = 3
2 if 4 ≤ e ≤ 7
3 if 8 ≤ e ≤ 2047
4 if 2048 ≤ e ≤ 16512

Analysis of Kruskal’s Algorithm

I Sorting edges takes time O(|E | log |E |)
I Number of disjoint-set operations is O(|V |+ |E |) on O(|V |) elements,

which can be done in time O((|V |+ |E |)α(|V |)) = O(|E |α(|V |)) since
|E | ≥ |V | − 1

I Since α(|V |) = o(log |V |) = O(log |E |), we get total time of
O(|E | log |E |) = O(|E | log |V |) since log |E | = O(log |V |)

Prim’s Algorithm

I Greedy algorithm, like Kruskal’s

I In contrast to Kruskal’s, Prim’s algorithm maintains a single tree rather
than a forest

I Starts with an arbitrary tree root r

I Repeatedly finds a minimum-weight edge that is incident to a node not
yet in tree

MST-Prim(G ,w , r)

A = ∅
1 for each vertex v ∈ V do
2 key [v] =∞
3 π[v] = nil

4 end

5 key [r] = 0

6 Q = V

7 while Q 6= ∅ do
8 u = Extract-Min(Q)

9 for each v ∈ Adj[u] do
10 if v ∈ Q and w(u, v) < key [v] then
11 π[v] = u

12 key [v] = w(u, v)

13

14 end

15 end

More on Prim’s Algorithm

I key [v] is the weight of the minimum weight edge from v to any node
already in MST

I Extract-Min uses a minimum heap (minimum priority queue) data
structure

I Binary tree where the key at each node is ≤ keys of its children
I Thus minimum value always at top
I Any subtree is also a heap
I Height of tree is blg nc
I Can build heap on n elements in O(n) time
I After returning the minimum, can filter new minimum to top in time

O(log n)
I Based on Chapter 6

Example (1)

Example (2)

Analysis of Prim’s Algorithm

I Invariant: Prior to each iteration of the while loop:

1. Nodes already in MST are exactly those in V \ Q
2. For all vertices v ∈ Q, if π[v] 6= nil, then key [v] <∞ and key [v] is the

weight of the lightest edge that connects v to a node already in the tree

I Time complexity:
I Building heap takes time O(|V |)
I Make |V | calls to Extract-Min, each taking time O(log |V |)
I For loop iterates O(|E |) times

I In for loop, need constant time to check for queue membership and
O(log |V |) time for decreasing v ’s key and updating heap

I Yields total time of O(|V | log |V |+ |E | log |V |) = O(|E | log |V |)
I Can decrease total time to O(|E |+ |V | log |V |) using Fibonacci heaps

	Introduction
	Kruskal's Algorithm
	Introduction
	The Algorithm
	Example
	Disjoint-Set Data Structure
	Analysis

	Prim's Algorithm
	Introduction
	The Algorithm
	Example
	Analysis

