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Introduction

Graphs are abstract data types that are applicable to numerous
problems

Can capture entities, relationships between them, the degree of the
relationship, etc.

This chapter covers basics in graph theory, including representation,
and algorithms for basic graph-theoretic problems

We’ll build on these later this semester
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Types of Graphs

A (simple, or undirected) graph G = (V,E) consists of V , a
nonempty set of vertices and E a set of unordered pairs of distinct
vertices called edges

B

D E

CA

V={A,B,C,D,E}
E={ (A,D),(A,E),(B,D),
        (B,E),(C,D),(C,E)}
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Types of Graphs (2)

A directed graph (digraph) G = (V,E) consists of V , a nonempty
set of vertices and E a set of ordered pairs of distinct vertices called
edges
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Types of Graphs (3)

A weighted graph is an undirected or directed graph with the
additional property that each edge e has associated with it a real
number w(e) called its weight
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Other variations: multigraphs, pseudographs, etc.
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Representations of Graphs

Two common ways of representing a graph: Adjacency list and
adjacency matrix

Let G = (V,E) be a graph with n vertices and m edges
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Adjacency List

For each vertex v ∈ V , store a list of vertices adjacent to v

For weighted graphs, add information to each node

How much is space required for storage?
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Adjacency Matrix

Use an n× n matrix M , where M(i, j) = 1 if (i, j) is an edge, 0
otherwise

If G weighted, store weights in the matrix, using ∞ for non-edges

How much is space required for storage?
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a  b  c  d  e

e 0  1  1  1  0
1  0  1  0  1
1  0  0  1  1
1  0  0  0  1
0  1  1  1  0
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Breadth-First Search (BFS)

Given a graph G = (V,E) (directed or undirected) and a source node
s ∈ V , BFS systematically visits every vertex that is reachable from s

Uses a queue data structure to search in a breadth-first manner

Creates a structure called a BFS tree such that for each vertex
v ∈ V , the distance (number of edges) from s to v in tree is the
shortest path in G

Initialize each node’s color to white

As a node is visited, color it to gray (⇒ in queue), then black (⇒
finished)
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BFS(G, s)

for each vertex u ∈ V \ {s} do
1 color[u] = white

2 d[u] = ∞
3 π[u] = nil

4 end

5 color[s] = gray

6 d[s] = 0

7 π[s] = nil

8 Q = ∅
9 Enqueue(Q, s)

10 while Q 6= ∅ do
11 u = Dequeue(Q)

12 for each v ∈ Adj[u] do
13 if color[v] == white then
14 color[v] = gray

15 d[v] = d[u] + 1

16 π[v] = u

17 Enqueue(Q, v)

18

19 end

20 color[u] = black

21 end
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BFS Example
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BFS Example (2)
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BFS Properties

What is the running time?

Hint: How many times will a node be enqueued?

After the end of the algorithm, d[v] = shortest distance from s to v

⇒ Solves unweighted shortest paths
Can print the path from s to v by recursively following π[v], π[π[v]],
etc.

If d[v] ==∞, then v not reachable from s

⇒ Solves reachability
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Depth-First Search (DFS)

Another graph traversal algorithm

Unlike BFS, this one follows a path as deep as possible before
backtracking

Where BFS is “queue-like,” DFS is “stack-like”

Tracks both “discovery time” and “finishing time” of each node,
which will come in handy later
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DFS(G)

for each vertex u ∈ V do
1 color[u] = white

2 π[u] = nil

3 end

4 time = 0

5 for each vertex u ∈ V do
6 if color[u] == white then
7 DFS-Visit(u)

8

9 end
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DFS-Visit(u)

color[u] = gray

1 time = time+ 1

2 d[u] = time

3 for each v ∈ Adj[u] do
4 if color[v] == white then
5 π[v] = u

6 DFS-Visit(v)

7

8 end

9 color[u] = black

10 f [u] = time = time+ 1
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DFS Properties

Time complexity same as BFS: Θ(|V |+ |E|)
Vertex u is a proper descendant of vertex v in the DF tree iff
d[v] < d[u] < f [u] < f [v]

⇒ Parenthesis structure: If one prints “(u” when discovering u and
“u)” when finishing u, then printed text will be a well-formed
parenthesized sentence
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DFS Properties (2)

Classification of edges into groups
A tree edge is one in the depth-first forest
A back edge (u, v) connects a vertex u to its ancestor v in the DF
tree (includes self-loops)
A forward edge is a nontree edge connecting a node to one of its DF
tree descendants
A cross edge goes between non-ancestral edges within a DF tree or
between DF trees
See labels in DFS example

Example use of this property: A graph has a cycle iff DFS discovers a
back edge (application: deadlock detection)

When DFS first explores an edge (u, v), look at v’s color:
color[v] == white implies tree edge
color[v] == gray implies back edge
color[v] == black implies forward or cross edge
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Application: Topological Sort

A directed acyclic graph (dag) can represent precedences: an edge (x, y)
implies that event/activity x must occur before y
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Application: Topological Sort (2)

A topological sort of a dag G is an linear ordering of its vertices such
that if G contains an edge (u, v), then u appears before v in the ordering
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Topological Sort Algorithm

1 Call DFS algorithm on dag G

2 As each vertex is finished, insert it to the front of a linked list

3 Return the linked list of vertices

Thus topological sort is a descending sort of vertices based on DFS
finishing times

Why does it work?

When a node is finished, it has no unexplored outgoing edges; i.e. all
its descendant nodes are already finished and inserted at later spot in
final sort
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Application: Strongly Connected Components

Given a directed graph G = (V,E), a strongly connected component
(SCC) of G is a maximal set of vertices C ⊆ V such that for every pair of
vertices u, v ∈ C u is reachable from v and v is reachable from u

What are the SCCs of the above graph?
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Transpose Graph

Our algorithm for finding SCCs of G depends on the transpose of

G, denoted GT

GT is simply G with edges reversed

Fact: GT and G have same SCCs. Why?
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SCC Algorithm

1 Call DFS algorithm on G

2 Compute GT

3 Call DFS algorithm on GT, looping through vertices in order of
decreasing finishing times from first DFS call

4 Each DFS tree in second DFS run is an SCC in G
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After first round of DFS:

Which node is first one to be visited in second DFS?
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SCC Algorithm Example (2)

After second round of DFS:
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SCC Algorithm Analysis

What is its time complexity?

How does it work?
1 Let x be node with highest finishing time in first DFS
2 In GT, x’s component C has no edges to any other component

(Lemma 22.14), so the second DFS’s tree edges define exactly x’s
component

3 Now let x′ be the next node explored in a new component C ′

4 The only edges from C ′ to another component are to nodes in C, so
the DFS tree edges define exactly the component for x′

5 And so on...
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