

#### CSCE423/823

Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms

Applications

## Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 03 — Elementary Graph Algorithms (Chapter 22)

Stephen Scott (Adapted from Vinodchandran N. Variyam)



### Introduction

### CSCE423/823

#### Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms

Applications

- Graphs are abstract data types that are applicable to numerous problems
  - Can capture *entities, relationships* between them, the *degree* of the relationship, etc.
- This chapter covers basics in graph theory, including representation, and algorithms for basic graph-theoretic problems
- We'll build on these later this semester



## Types of Graphs

### CSCE423/823

### Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms

Applications

• A (simple, or undirected) graph G = (V, E) consists of V, a nonempty set of vertices and E a set of *unordered* pairs of distinct vertices called *edges* 





## Types of Graphs (2)

CSCE423/823

Introduction

Types of Graphs

- Representations of Graphs
- Elementary Graph Algorithms
- Applications

• A directed graph (digraph) G = (V, E) consists of V, a nonempty set of vertices and E a set of *ordered* pairs of distinct vertices called *edges* 





## Types of Graphs (3)

### CSCE423/823

Introduction

Types of Graphs

- Representations of Graphs
- Elementary Graph Algorithms
- Applications

• A weighted graph is an undirected or directed graph with the additional property that each edge *e* has associated with it a real number *w*(*e*) called its *weight* 

- 12 0 -6 7 4
- Other variations: multigraphs, pseudographs, etc.



## Representations of Graphs

#### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Adjacency List Adjacency Matrix
- Elementary Graph Algorithms
- Applications

• Two common ways of representing a graph: Adjacency list and adjacency matrix

 $\bullet~ {\rm Let}~ G = (V,E)$  be a graph with n vertices and m edges



## Adjacency List

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Adjacency List Adjacency Matrix
- Elementary Graph Algorithms
- Applications

- $\bullet\,$  For each vertex  $v\in V,$  store a list of vertices adjacent to v
- For weighted graphs, add information to each node
- How much is space required for storage?





## Adjacency Matrix

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs Adjacency List Adjacency Matrix

a

d

- Elementary Graph Algorithms
- Applications



- $\bullet~$  If G weighted, store weights in the matrix, using  $\infty$  for non-edges
- How much is space required for storage?



## Nebraska Breadth-First Search (BFS)

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Elementary Graph Algorithms
- Breadth-First Search
- Depth-First Search
- Applications

- Given a graph G = (V, E) (directed or undirected) and a source node s ∈ V, BFS systematically visits every vertex that is reachable from s
- Uses a queue data structure to search in a breadth-first manner
- Creates a structure called a **BFS tree** such that for each vertex  $v \in V$ , the distance (number of edges) from s to v in tree is the shortest path in G
- Initialize each node's **color** to WHITE
- As a node is visited, color it to GRAY ( $\Rightarrow$  in queue), then BLACK ( $\Rightarrow$  finished)



 $\mathsf{BFS}(G,s)$ 

#### CSCE423/823

| Int | rod | uct | tion |
|-----|-----|-----|------|
|     |     |     |      |

Types of Graphs

```
Representations of Graphs
```

Elementary Graph Algorithms

Breadth-First Search

Depth-First Search

Applications

```
for each vertex u \in V \setminus \{s\} do
             color[u] = WHITE
 1
             d[u] = \infty
 2
 3
             \pi[u] = \text{NIL}
     end
 4
 5
     color[s] = GRAY
     d[s] = 0
 6
     \pi[s] = \text{NIL}
     Q = \emptyset
 8
     ENQUEUE(Q, s)
 9
10
     while \mathcal{Q} \neq \emptyset do
11
              u = \text{DEQUEUE}(Q)
12
             for each v \in Adi[u] do
13
                      if color[v] == WHITE then
14
                               color[v] = GRAY
15
                               d[v] = d[u] + 1
16
                               \pi[v] = u
17
                               ENQUEUE(Q, v)
18
19
             end
20
              color[u] = BLACK
21
     end
```

æ

イロト イ部ト イミト イミト



### BFS Example

### CSCE423/823

Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms

Breadth-First Search

Depth-First Search

Applications

(e)







v

 $\mathcal{Q}$ 

r



w



t x

2 2



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで



## BFS Example (2)

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Elementary Graph Algorithms
- Breadth-First Search
- Depth-First Search
- Applications



3 3





## BFS Properties

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Elementary Graph Algorithms
- Breadth-First Search
- Depth-First Search
- Applications

- What is the running time?
  - Hint: How many times will a node be enqueued?
- After the end of the algorithm, d[v] = shortest distance from s to v
  - $\Rightarrow$  Solves unweighted shortest paths
    - Can print the path from s to v by recursively following  $\pi[v],\,\pi[\pi[v]],\,$  etc.

- If  $d[v] == \infty$ , then v not reachable from s
  - $\Rightarrow$  Solves reachability



## Depth-First Search (DFS)

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Elementary Graph Algorithms Breadth-First Search
- Depth-First Search
- Applications

- Another graph traversal algorithm
- Unlike BFS, this one follows a path as deep as possible before backtracking
- Where BFS is "queue-like," DFS is "stack-like"
- Tracks both "discovery time" and "finishing time" of each node, which will come in handy later



## $\mathsf{DFS}(G)$

### CSCE423/823

Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms Breadth-First Search

Depth-First Search

Applications

| 1                              | for $each$ vertex $u \in V$ do |  |  |
|--------------------------------|--------------------------------|--|--|
| 1                              | color[u] = WHITE               |  |  |
| 2                              | $\pi[u]=	ext{NIL}$             |  |  |
| 3 end                          |                                |  |  |
| 4                              | 4 $time = 0$                   |  |  |
| s for each vertex $u \in V$ do |                                |  |  |
| 6                              | if $color[u] ==$ WHITE then    |  |  |
| 7                              | DFS-VISIT $(u)$                |  |  |
| 8                              |                                |  |  |
| 9 end                          |                                |  |  |



 $\mathsf{DFS-Visit}(u)$ 

### CSCE423/823

Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms Breadth-First Search

Depth-First Search

Applications

|    | color[u] = GRAY              |
|----|------------------------------|
| 1  | time = time + 1              |
| 2  | d[u] = time                  |
| 3  | for $each \ v \in Adj[u]$ do |
| 4  | if $color[v] ==$ WHITE then  |
| 5  | $\pi[v] = u$                 |
| 6  | DFS-VISIT $(v)$              |
| 7  |                              |
| 8  | end                          |
| 9  | color[u] = BLACK             |
| 10 | f[u] = time = time + 1       |



## DFS Example





Types of Graphs

```
Representations of Graphs
```

Elementary Graph Algorithms Breadth-First Search

Depth-First Search

Applications







> 2/

u

1/













## DFS Example (2)





Types of Graphs

Representations of Graphs

Elementary Graph Algorithms Breadth-First Search

Depth-First Search

Applications





## DFS Properties

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Elementary Graph Algorithms Breadth-First Search
- Depth-First Search
- Applications

- Time complexity same as BFS:  $\Theta(|V| + |E|)$
- Vertex u is a proper descendant of vertex v in the DF tree iff d[v] < d[u] < f[u] < f[v]
  - $\Rightarrow$  **Parenthesis structure:** If one prints "(u" when discovering u and "u)" when finishing u, then printed text will be a well-formed parenthesized sentence



# DFS Properties (2)

CSCE423/823

Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms Breadth-First Search

Depth-First Search

Applications

### • Classification of edges into groups

- A tree edge is one in the depth-first forest
- A **back edge** (u, v) connects a vertex u to its ancestor v in the DF tree (includes self-loops)
- A **forward edge** is a nontree edge connecting a node to one of its DF tree descendants
- A cross edge goes between non-ancestral edges within a DF tree or between DF trees
- See labels in DFS example
- Example use of this property: A graph has a cycle iff DFS discovers a back edge (application: deadlock detection)
- $\bullet$  When DFS first explores an edge (u,v), look at  $v{\rm 's}$  color:
  - color[v] == white implies tree edge
  - color[v] == GRAY implies back edge
  - color[v] == BLACK implies forward or cross edge



## Application: Topological Sort





Types of Graphs

Representations of Graphs

Elementary Graph Algorithms

Applications

Topological Sort Strongly Connected Components A directed acyclic graph (dag) can represent precedences: an edge (x, y)implies that event/activity x must occur before y11/16 (undershorts) socks 17/18watch 9/10shoes 12/15pants 13/14shirt 1/8belt 6/7tie 2/5iacket 3/4



## Application: Topological Sort (2)

### CSCE423/823

Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms

Applications Topological Sort Strongly

Connected Components A **topological sort** of a dag G is an linear ordering of its vertices such that if G contains an edge (u, v), then u appears before v in the ordering





## Topological Sort Algorithm

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Elementary Graph Algorithms
- Applications
- Topological Sort Strongly Connected Components

- **(**) Call DFS algorithm on dag G
- ${f 0}$  As each vertex is finished, insert it to the front of a linked list
- O Return the linked list of vertices
- Thus topological sort is a descending sort of vertices based on DFS finishing times
- Why does it work?
  - When a node is finished, it has no unexplored outgoing edges; i.e. all its descendant nodes are already finished and inserted at later spot in final sort

# Nebraska Application: Strongly Connected Components

### CSCE423/823

Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms

Applications Topological Sort Strongly Connected Components





What are the SCCs of the above graph?



## Transpose Graph

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Elementary Graph Algorithms
- Applications Topological Sort Strongly Connected Components

- Our algorithm for finding SCCs of G depends on the **transpose** of G, denoted  $G^{\mathsf{T}}$
- $G^{\mathsf{T}}$  is simply G with edges reversed
- Fact:  $G^{\mathsf{T}}$  and G have same SCCs. Why?





## SCC Algorithm

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Elementary Graph Algorithms
- Applications Topological Sort Strongly Connected Components

- 0 Call DFS algorithm on G
- **2** Compute  $G^{\mathsf{T}}$
- **③** Call DFS algorithm on  $G^{\mathsf{T}}$ , looping through vertices in order of decreasing finishing times from first DFS call

**0** Each DFS tree in second DFS run is an SCC in G



## SCC Algorithm Example

### CSCE423/823

### After first round of DFS:



Types of Graphs

Representations of Graphs

Elementary Graph Algorithms

Applications Topological Sort Strongly Connected Components



Which node is first one to be visited in second DFS?



# SCC Algorithm Example (2)

### CSCE423/823

### Introduction

Types of Graphs

Representations of Graphs

Elementary Graph Algorithms

Applications Topological Sort Strongly Connected Components

### After second round of DFS:



# Nebraska SCC Algorithm Analysis

### CSCE423/823

- Introduction
- Types of Graphs
- Representations of Graphs
- Elementary Graph Algorithms
- Applications Topological Sort Strongly Connected Components

- What is its time complexity?
- How does it work?
  - **(**) Let x be node with highest finishing time in first DFS
  - In G<sup>T</sup>, x's component C has no edges to any other component (Lemma 22.14), so the second DFS's tree edges define exactly x's component
  - **③** Now let x' be the next node explored in a new component C'
  - The only edges from C' to another component are to nodes in C, so the DFS tree edges define exactly the component for x'
  - And so on...