Nebiaska

Lincoln

Introduction

Types of
Graphs

Representations|
of Graphs
Elementary
Graph
Algorithms

Applications

Nebiaska

Lincoln
CSCE423/823

Introduction

Types of
Graphs

Represent:
of Graphs
Elementary
Graph

Gra

Applications

Nebiaska

Lincoln

Introduction

Types of
Graphs

Representations|
of Graphs

Elementary
Graph
Algorithms

Applications

Computer Science & Engineering 423/823

Design and Analysis of Algorithms

Lecture 03 — Elementary Graph Algorithms (Chapter 22)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

Types of Graphs

o A (simple, or undirected) graph G = (V, E) consists of V, a
nonempty set of vertices and E a set of unordered pairs of distinct
vertices called edges

V={AB,CDE}

(B.E),(C.D)(C.E)}

AN\ E=((ADLAB BD)
OO

Types of Graphs (3)

o A weighted graph is an undirected or directed graph with the
additional property that each edge e has associated with it a real
number w(e) called its weight

Nebiaska

Lincoln

Introduction

Types of @ Graphs are abstract data types that are applicable to numerous
Graphs problems

ff‘f,',::a‘ o Can capture entities, relationships between them, the degree of the
S relationship, etc.

Graph
Algerithms @ This chapter covers basics in graph theory, including representation,

and algorithms for basic graph-theoretic problems

Applications

o We'll build on these later this semester

Nebidska Types of Graphs (2)

CSCE423/823

o A directed graph (digraph) G = (V, E) consists of V, a nonempty
set of vertices and E a set of ordered pairs of distinct vertices called
Introduction edges

Types of
Graphs

Represent:
of Graphs

Elementary
Graph
Algorithms

Applications

™S

Nebiaska

Lincoln

Representations of Graphs

Introduction

Types of
Graphs

@ Two common ways of representing a graph: Adjacency list and
adjacency matrix

Representations|
of Graphs

o Let G = (V, E) be a graph with n vertices and m edges
Elementary

Grapl :

Algorithms

Applications

Nebiaska

Lincoln

Adjacency List

@ For each vertex v € V, store a list of vertices adjacent to v

tntreduction o For weighted graphs, add information to each node

Types of

Graphs @ How much is space required for storage?

' B @b Q@

@=L

@ —=b (0

Adjacency List

Matri

Elementary
Graph
Algorithms

Applications

WLettY Breadth-First Search (BFS)

o Given a graph G = (V, E) (directed or undirected) and a source node

Introduction

Types of s € V, BFS systematically visits every vertex that is reachable from s
;;}m N @ Uses a queue data structure to search in a breadth-first manner
CEETS o Creates a structure called a BFS tree such that for each vertex
e v € V, the distance (number of edges) from s to v in tree is the
Lt iR shortest path in G

Sm @ Initialize each node’s color to WHITE

Applications @ As a node is visited, color it to GRAY (= in queue), then BLACK (=

finished)

Nebiaska

Lincoln

BFS Example

Introduction

Types of
Graphs

Representations|
of Graphs

Elementary

Graph

Algorithms
Breadth-First
Search

Applications ()

Nebiaska

Lincoln

Adjacency Matrix

@ Use an n x n matrix M, where M (i,j) = 1if (i,7) is an edge, 0

otherwise

Introduction
Types of o If G weighted, store weights in the matrix, using oo for non-edges
Graphs . .

- @ How much is space required for storage?
Representa

Graphs
A
Adjacency
Matrix

Elementary
Graph
Algorithms

Applications

O i—=—O
—ooo~—T
e —oc o=
Y o, guy a}
D i——0w

[l =N el i1

Lincoln

for each vertex u € V \ {s} do

1
2
Introduction 3 wu] = N
Types of 4 end '
Graphs 5 color[s] = Grav
6
Representa 7
of Graphs 8
Elementary 9
Graph 10 while Q # 0 do
Algorithms 11 u = DEQUEUE(Q)
Breadth-First 12 for each v € Adj[u] do
Search 13 if color[v] == WHITE then
hget 14 color[v] = GrAY
15 d[v] = du] + 1
Applications 16 wfv] = u
17 ENQUEUE(Q, v)
18
19 end
20 color[u] = BLACK
21 end

Nebiaska [IE{=IS Example (2)

Introduction

Types of
Graphs

Representa 3 3
of Graphs

Elementary

Graph

Algorithms

Breadth-First i 0

Search ® ¢
h-First

Applications

Nebiaska

Lincoln

BFS Properties WEeeR= Depth-First Search (DFS

E423/823

Introduction Introduction

@ What is the running time?

;::p;' e Hint: How many times will a node be enqueued? ;:Sp;' o Another graph traversal algorithm

Beasiy o After the end of the algorithm, d[v] = shortest distance from s to v Representations @ Unlike BF'S' this one follows a path as deep as possible before
Eama = Solves unweighted shortest paths Elementary backtracking

e o Can print the path from s to v by recursively following 7[v], m[x[v]], Craph o Where BFS is “queue-like,” DFS is “stack-like”

s etc. i o Tracks both “discovery time” and “finishing time" of each node,
DeptFirst o If d[v] == oo, then v not reachable from s Depth Fist which will come in handy later

Applications = Solves reachability Applications

Nebiaska

Lincoln

DFS-Visit(u)

Lincoln

CSCE423/823 3
color

Introduction for each vertexu € V do Introduction 1 time [: time + 1

1 coloru] = WHITE Lime °
Types of Types of SR,
Graphs) Graphs 2 dlu] = time
Representations s end [——— 3 for each v € Adj[u] do
of Graphs X 0 of Graphs 4 if color[v] == WHITE then
E\:;:maw 4 time = E\:;:maw 5] = u
A\gm‘i’t}h?i 5 for e‘:ach vertex u € V do A\gm‘i’t}h?i R DFS—VISIT(U)
= 6 if color[u] == WHITE then Breadsh-Firt
Semhe: 7 | DFS-Visit(u) ser !
Applications 8 Applications s end

o end 9 color[u] = BLACK

10 flu] = time = time + 1

Nebiaska

Lincoln

DFS Example e DFS Example (2)

u v w u v w
Introduction @»— (D) Introduction

D _
Types of / / / Types of
Graphs ' IS 'S Graphs
Representation X y z x 3 x z) Representation
of Graphs ® ® @ of Graphs
Elementary)) Elementary
Craph u v u . W u v u v W Craph
Algorithms VD=2l D U= ‘ WUDm=lD Q) Algorithms

dth-First

v 7
Breadih-First 8 5 l 8 5 B
Search v ' . ' . Search
Depth-First @ =3l) 6—(3/) D)] Depth-First
- Search
z z X z z

Search

Applications © 0) ® 0} Applications) ™ © ®

Nebiaska

Lincoln

DFS Properties

Introduction

Types of

Graphs o Time complexity same as BFS: O(|V| + |E|)
Representations @ Vertex u is a proper descendant of vertex v in the DF tree iff
of Graphs
dpe] < dlu] < flul < fv]
Graph = Parenthesis structure: If one prints “(u" when discovering u and
Algorithm: w An . . .
. u)" when finishing u, then printed text will be a well-formed
Depth-First parenthesized sentence

Search

Applications

Nebiaska

Lincoln

Application: Topological Sort

CSCE423/823
A directed acyclic graph (dag) can represent precedences: an edge (z,v)
implies that event/activity must occur before y

Introduction

I 11/16 (undershorts socks) 17/18

Graphs

Represent watch) 9/10
of Graphs

12/15 (pants

Elementary
Graph

Applications
Topological Sort

21/29

Nebiaska

Lincoln

Topological Sort Algorithm

@ Call DFS algorithm on dag G
@ As each vertex is finished, insert it to the front of a linked list
© Return the linked list of vertices

Introduction

Types of
Graphs

Representations|

of Graphs
Elementary
Graph @ Thus topological sort is a descending sort of vertices based on DFS
Algorithms
germ finishing times
Applications .
gial Sort o Why does it work?

o When a node is finished, it has no unexplored outgoing edges; i.e. all
its descendant nodes are already finished and inserted at later spot in
final sort

Nebiaska [pY=S Properties (2)

o Classification of edges into groups
o A tree edge is one in the depth-first forest

il o A back edge (u,v) connects a vertex u to its ancestor v in the DF

Types of tree (includes self-loops)

Cehs o A forward edge is a nontree edge connecting a node to one of its DF

Representations| tree descendants

of Graphs L

. o A cross edge goes between non-ancestral edges within a DF tree or
lementary

Graph between DF trees

Algorithm:

o See labels in DFS example

Dept it o Example use of this property: A graph has a cycle iff DFS discovers a
back edge (application: deadlock detection)
@ When DFS first explores an edge (u,v), look at v's color:

Applications

o color[v] == WHITE implies tree edge
e color[v] == GRAY implies back edge
e color[v] == BLACK implies forward or cross edge

WLettY Application: Topological Sort (2)

CSCE423/823

Introduction

Types of

SEls A topological sort of a dag G is an linear ordering of its vertices such
P that if G contains an edge (u,v), then u appears before v in the ordering
Elementary

o =)
Applications 17/18 11/16 12/15 13/14 9/10 18 6/7 2/5 3/4

Topological Sort

Nebiaska

Lincoln

Application: Strongly Connected Components

Given a directed graph G = (V, E), a strongly connected component
(SCC) of G is a maximal set of vertices C' C V such that for every pair of

Introduction vertices u,v € C' u is reachable from v and v is reachable from u
Types of

@rpie a b c d
Representation|

Elementary

Graph

Algorithms

e @

Components

34 3 0/7 (516 3>
S g h

What are the SCCs of the above graph?

e

NeBm,Sl@ anspose Graph

@ Our algorithm for finding SCCs of G depends on the transpose of
G, denoted GT

0 GTis simply G with edges reversed
Graphs o Fact: GT and G have same SCCs. Why?

Representations|
of Graph

S a b c d

Introduction

Types of

Graph
Algorithms

Applications

Topolog rt
Strongly
Connected
Components

N2et-d SCC Algorithm Example

CSCE423/823
After first round of DFS:
Introduction a b Cc d
of

Representation|

Graphs

aph
Algorithms

Applications

=) D
Strongly

Connected

Components e f g h

Which node is first one to be visited in second DFS?

NEvet-l SCC Algorithm Analysis

Introduction

o What is its time complexity?
Trpes of @ How does it work?

Graphs
; @ Let z be node with highest finishing time in first DFS

QIn GT, x's component C' has no edges to any other component
E‘;’;:”“’“ (Lemma 22.14), so the second DFS's tree edges define exactly z's
Algorithms component

© Now let 2/ be the next node explored in a new component C”

@ The only edges from C” to another component are to nodes in C, so
Em s, the DFS tree edges define exactly the component for z’
@ Andsoon...

Representations|
of Graphs

Nebiaska

Lincoln

Elementary
Graph
Algorithms

App
Topolog
Strongly
Connected
Components

tions

Nebiaska

Lincoln

Representa
of Graphs

Elementary
Graph
Algorithms

Appl
Top Sort
Strongly
Connected
Components

tions

SCC Algorithm

@ Call DFS algorithm on G
@ Compute el

@ Call DFS algorithm on aT, looping through vertices in order of
decreasing finishing times from first DFS call

@ Each DFS tree in second DFS run is an SCC in G

SCC Algorithm Example (2)

After second round of DFS:
a b c d

