
Computer Science & Engineering 423/823
Design and Analysis of Algorithms

Lecture 02 — Sorting Lower Bound (Section 8.1)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

sscott@cse.unl.edu

mailto:sscott@cse.unl.edu


Introduction

I Impossibility of algorithms: There are some problems that cannot be
solved

I We’ll visit this throughout the semester, especially with NP-completeness
I Today’s example: there does not exist a general-purpose

(comparison-based) algorithm to sort n elements in time o(n log n)
I Will show this by proving an Ω(n log n) lower bound on comparison-based

sorting



Comparison-Based Sorting Algorithms

I What is a comparison-based sorting algorithm?
I The sorted order it determines is based only on comparisons between the

input elements
I E.g., Insertion Sort, Selection Sort, Mergesort, Quicksort, Heapsort

I What is not a comparison-based sorting algorithm?
I The sorted order it determines is based on additional information, e.g.,

bounds on the range of input values
I E.g., Counting Sort, Radix Sort



Decision Trees

I A decision tree is a full binary tree that represents comparisions
between elements performed by a particular sorting algorithm operating
on a certain-sized input (n elements)

I Key point: a tree represents algorithm’s behavior on all possible inputs
of size n

I Each internal node represents one comparison made by algorithm
I Each node labeled as i : j , which represents comparison A[i ] ≤ A[j ]
I If, in the particular input, it is the case that A[i ] ≤ A[j ], then control flow

moves to left child, otherwise to the right child
I Each leaf represents a possible output of the algorithm, which is a

permutation of the input
I All permutations must be in the tree in order for algorithm to work

properly



Example for Insertion Sort

I If n = 3, Insertion Sort first compares A[1] to A[2]

I If A[1] ≤ A[2], then compare A[2] to A[3]

I If A[2] > A[3], then compare A[1] to A[3]

I If A[1] ≤ A[3], then sorted order is A[1], A[3], A[2]



Example for Insertion Sort (2)

I Example: A = [7, 8, 4]

I First compare 7 to 8, then 8 to 4, then 7 to 4

I Output permutation is 〈3, 1, 2〉, which implies sorted order is 4, 7, 8



Proof of Lower Bound

I Length of path from root to output leaf is number of comparisons made
by algorithm on that input

I Worst-case number of comparisons is length of longest path
(= height h)

I Number of leaves in tree is n!

I A binary tree of height h has at most 2h leaves

I Thus we have 2h ≥ n! ≥
√

2πn
(
n
e

)n
I Take base-2 logs of both sides to get

h ≥ lg
√

2π + (1/2) lg n + n lg n − n lg e = Ω(n log n)

⇒ Every comparison-based sorting algorithm has an input that forces it to
make Ω(n log n) comparisons

⇒ Mergesort and Heapsort are asymptotically optimal



Another Lower Bound: Convex Hull
I Can use the lower bound on sorting to get a lower bound on the convex

hull problem:
I Given a set Q ∈ {p1, p2, . . . , pn} of n points, each from R2, output

CH(Q), which is the smallest convex polygon P such that each point from
Q is on P’s boundary or in its interior



Another Lower Bound: Convex Hull (cont’d)

I We will reduce the problem of sorting to that of finding a convex hull
I I.e., given any instance of the sorting problem A = {x1, . . . , xn}, we will

transform it to an instance of convex hull such that the time complexity
of the new algorithm sorting will be no more than that of convex hull

⇒ If convex hull could be solved in time o(n log n) then so can sorting
⇒ Since that cannot happen, we know that convex hull is Ω(n log n)

I The reduction: transform A to Q = {(x1, x21 ), (x2, x
2
2 ), . . . , (xn, x

2
n )}

⇒ Takes O(n) time

I Since the points on Q are on a parabola, all points of Q are on CH(Q)

⇒ Can read off the points of CH(Q) in O(n) time
⇒ Yields a sorted list of points from (any) A

I Time to sort A is O(n)+ convex hull +O(n)
I If time for convex hull is o(n log n), then sorting is o(n log n)

⇒ Convex hull time complexity is Ω(n log n)


	Introduction
	Decision Trees
	Lower Bound Proof

