
CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Computer Science & Engineering 423/823

Design and Analysis of Algorithms

Lecture 01 — Medians and Order Statistics (Chapter 9)

Stephen Scott
(Adapted from Vinodchandran N. Variyam)

Spring 2012

sscott@cse.unl.edu

1 / 24

mailto:sscott@cse.unl.edu

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Introduction

Given an array A of n distinct numbers, the ith order statistic of A
is its ith smallest element

i = 1) minimum
i = n) maximum
i = b(n+ 1)/2c) (lower) median

E.g. if A = [8, 5, 3, 10, 4, 12, 6] then min = 3, max = 12, median =
6, 3rd order stat = 5

Problem: Given array A of n elements and a number i 2 {1, . . . , n},
find the ith order statistic of A

There is an obvious solution to this problem. What is it? What is its
time complexity?

Can we do better? What if we only focus on i = 1 or i = n?

2 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Finding Minimum

small = A[1]1

for i = 2 to n do2

if small > A[i] then3

small = A[i]4

end5

return small6

Algorithm 1: Minimum(A, n)

3 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

E�ciency of Minimum(A)

Loop is executed n� 1 times, each with one comparison
) Total n� 1 comparisons

Can we do better?

Lower Bound: Any algorithm finding minimum of n elements will
need at least n� 1 comparisons

Proof of this comes from fact that no element of A can be considered
for elimination as the minimum until it’s been compared at least once

4 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Correctness of Minimum(A)

Observe that the algorithm always maintains the invariant that at
the end of each loop iteration, small holds the minimum of A[1 · · · i]

Easily shown by induction

Correctness follows by observing that i == n before return

statement

5 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Simultaneous Minimum and Maximum

Given array A with n elements, find both its minimum and maximum

What is the obvious algorithm? What is its (non-asymptotic) time
complexity?

Can we do better?

6 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Simultaneous Minimum and Maximum

large = max(A[1], A[2])1

small = min(A[1], A[2])2

for i = 2 to bn/2c do3

large = max(large,max(A[2i� 1], A[2i]))4

small = min(small,min(A[2i� 1], A[2i]))5

end6

if n is odd then7

large = max(large,A[n])8

small = min(small, A[n])9

return (large, small)10

Algorithm 2: MinAndMax(A, n)

7 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Explanation of MinAndMax

Idea: For each pair of values examined in the loop, compare them
directly

For each such pair, compare the smaller one to small and the larger
one to large

Example: A = [8, 5, 3, 10, 4, 12, 6]

8 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

E�ciency of MinAndMax

How many comparisons does MinAndMax make?

Initialization on Lines 1 and 2 requires only one comparison

Each iteration through the loop requires one comparison between
A[2i� 1] and A[2i] and then one comparison to each of large and
small, for a total of three

Lines 8 and 9 require one comparison each

Total is at most 1+ 3(bn/2c � 1) + 2 3bn/2c, which is better than
2n� 3 for finding minimum and maximum separately

9 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Selection of the ith Smallest Value

Now to the general problem: Given A and i, return the ith smallest
value in A

Obvious solution is sort and return ith element

Time complexity is ⇥(n log n)

Can we do better?

10 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Selection of the ith Smallest Value (2)

New algorithm: Divide and conquer strategy

Idea: Somehow discard a constant fraction of the current array after
spending only linear time

If we do that, we’ll get a better time complexity
More on this later

Which fraction do we discard?

11 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Procedure Select

if p == r then1

return A[p]2

q = Partition(A, p, r) // Like Partition in Quicksort3

k = q � p+ 1 // Size of A[p · · · q]4

if i == k then5

return A[q] // Pivot value is the answer6

else if i < k then7

return Select(A, p, q � 1, i) // Answer is in left subarray8

else9

return Select(A, q + 1, r, i� k) // Answer is in right subarray10

Algorithm 3: Select(A, p, r, i), which returns ith smallest element from

A[p · · · r]

12 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

What is Select Doing?

Like in Quicksort, Select first calls Partition, which chooses a pivot

element q, then reorders A to put all elements < A[q] to the left of
A[q] and all elements > A[q] to the right of A[q]

E.g. if A = [1, 7, 5, 4, 2, 8, 6, 3] and pivot element is 5, then result is
A0

= [1, 4, 2, 3, 5, 7, 8, 6]

If A[q] is the element we seek, then return it

If sought element is in left subarray, then recursively search it, and
ignore right subarray

If sought element is in right subarray, then recursively search it, and
ignore left subarray

13 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Partitioning the Array

x = ChoosePivotElement(A, p, r) // Returns index of pivot1

exchange A[x] with A[r]2

i = p� 13

for j = p to r � 1 do4

if A[j] A[r] then5

i = i+ 16

exchange A[i] with A[j]7

end8

exchange A[i+ 1] with A[r]9

return i+ 110

Algorithm 4: Partition(A, p, r), which chooses a pivot element and

partitions A[p · · · r] around it

14 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Partitioning the Array: Example (Fig 7.1)

Compare each element A[j] to x (= 4) and swap with A[i] if A[j] x

15 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Choosing a Pivot Element

Choice of pivot element is critical to low time complexity

Why?

What is the best choice of pivot element to partition A[p · · · r]?

16 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Choosing a Pivot Element (2)

Want to pivot on an element that it as close as possible to being the
median

Of course, we don’t know what that is

Will do median of medians approach to select pivot element

17 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Median of Medians

Given (sub)array A of n elements, partition A into m = bn/5c
groups of 5 elements each, and at most one other group with the
remaining n mod 5 elements

Make an array A0
= [x

1

, x
2

, . . . , x
m+1

], where x
i

is median of group
i, found by sorting (in constant time) group i

Call Select(A0, 1,m+ 1, b(m+ 1)/2c) and use the returned element
as the pivot

18 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Example

Split into teams, and work this example on the board: Find the 4th
smallest element of A = [4, 9, 12, 17, 6, 5, 21, 14, 8, 11, 13, 29, 3]

Show results for each step of Select, Partition, and ChoosePivotElement

19 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Time Complexity

Key to time complexity analysis is lower bounding the fraction of
elements discarded at each recursive call to Select
On next slide, medians and median (x) of medians are marked,
arrows indicate what is guaranteed to be greater than what
Since x is less than at least half of the other medians (ignoring group
with < 5 elements and x’s group) and each of those medians is less
than 2 elements, we get that the number of elements x is less than is
at least

3

✓⇠
1

2

ln
5

m⇡
� 2

◆
� 3n

10

� 6 � n/4 (if n � 120)

Similar argument shows that at least 3n/10� 6 � n/4 elements are
less than x

Thus, if n � 120, each recursive call to Select is on at most 3n/4
elements

20 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Time Complexity (2)

21 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Time Complexity (3)

Now can develop a recurrence describing Select’s time complexity

Let T (n) represent total time for Select to run on input of size n

Choosing a pivot element takes time O(n) to split into size-5 groups
and time T (n/5) to recursively find the median of medians

Once pivot element chosen, partitioning n elements takes O(n) time

Recursive call to Select takes time at most T (3n/4)

Thus we get

T (n) T (n/5) + T (3n/4) +O(n)

Can express as T (↵n) + T (�n) +O(n) for ↵ = 1/5 and � = 3/4

Theorem: For recurrences of the form T (↵n) + T (�n) +O(n) for
↵+ � < 1, T (n) = O(n)

Thus Select has time complexity O(n)
22 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Proof of Theorem

Top T (n) takes O(n) time (= cn for some constant c). Then calls to T (↵n) and

T (�n), which take a total of (↵+ �)cn time, and so on.

Summing these infinitely yields (since ↵+ � < 1)

cn(1 + (↵+ �) + (↵+ �)2 + · · ·) = cn

1� (↵+ �)
= c0n = O(n)

23 / 24

CSCE423/823

Introduction

Finding
Minimum and
Maximum

Selection of
Arbitrary
Order Statistic

Algorithm
Overview

Algorithm
Pseudocode

Example

Time Complexity

Master Theorem

Master Method

Another useful tool for analyzing recurrences

Theorem: Let a � 1 and b > 1 be constants, let f(n) be a function,
and let T (n) be defined as T (n) = aT (n/b) + f(n). Then T (n) is
bounded as follows.

1 If f(n) = O(nlogb a�✏
) for constant ✏ > 0, then T (n) = ⇥(nlogb a

)

2 If f(n) = ⇥(nlogb a
), then T (n) = ⇥(nlogb a

log n)
3 If f(n) = ⌦(nlogb a+✏

) for constant ✏ > 0, and if af(n/b) cf(n) for
constant c < 1 and su�ciently large n, then T (n) = ⇥(f(n))

E.g. for Select, can apply theorem on T (n) < 2T (3n/4) +O(n)
(note the slack introduced) with a = 2, b = 4/3, ✏ = 1.4 and get

T (n) = O
⇣
nlog4/3 2

⌘
= O

�
n2.41

�

) Not as tight for this recurrence

24 / 24

	Introduction
	Finding Minimum and Maximum
	Selection of Arbitrary Order Statistic
	Algorithm Overview
	Algorithm Pseudocode
	Example
	Time Complexity
	Master Theorem

