

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic Computer Science & Engineering 423/823 Design and Analysis of Algorithms

Lecture 01 — Medians and Order Statistics (Chapter 9)

Stephen Scott (Adapted from Vinodchandran N. Variyam)

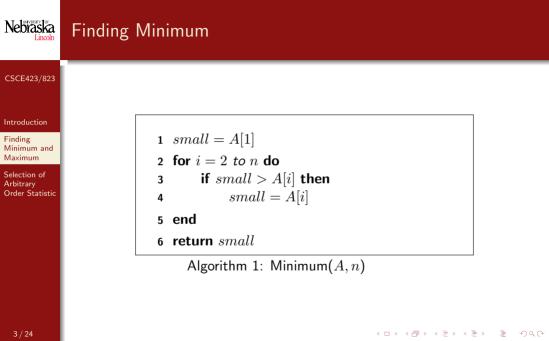
Introduction

CSCE423/823

Introduction

Finding Minimum and Maximum

- Given an array A of n distinct numbers, the *i*th **order statistic** of A is its *i*th smallest element
 - $i = 1 \Rightarrow \min$
 - $i = n \Rightarrow \max$ imum
 - $i = \lfloor (n+1)/2 \rfloor \Rightarrow$ (lower) median
- E.g. if A = [8, 5, 3, 10, 4, 12, 6] then min = 3, max = 12, median = 6, 3rd order stat = 5
- **Problem:** Given array A of n elements and a number $i \in \{1, ..., n\}$, find the *i*th order statistic of A
- There is an obvious solution to this problem. What is it? What is its time complexity?
 - Can we do better? What if we only focus on i = 1 or i = n?



Efficiency of Minimum(A)

CSCE423/823

Introduction

Finding Minimum and Maximum

- Loop is executed n-1 times, each with one comparison
 - \Rightarrow Total n-1 comparisons
- Can we do better?
- Lower Bound: Any algorithm finding minimum of n elements will need at least n-1 comparisons
 - Proof of this comes from fact that no element of A can be considered for elimination as the minimum until it's been compared at least once

Correctness of Minimum(A)

CSCE423/823

Introduction

Finding Minimum and Maximum

- Observe that the algorithm always maintains the **invariant** that at the end of each loop iteration, small holds the minimum of $A[1\cdots i]$ • Easily shown by induction
- $\bullet\,$ Correctness follows by observing that i==n before return statement

Simultaneous Minimum and Maximum

CSCE423/823

Introduction

Finding Minimum and Maximum

- $\bullet\,$ Given array A with n elements, find both its minimum and maximum
- What is the obvious algorithm? What is its (non-asymptotic) time complexity?
- Can we do better?

Simultaneous Minimum and Maximum

CSCE423/823

Nebraska

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

- **1** large = max(A[1], A[2])
- **2** small = min(A[1], A[2])
- 3 for i=2 to $\lfloor n/2 \rfloor$ do
- 4 $large = \max(large, \max(A[2i-1], A[2i]))$
- 5 $small = \min(small, \min(A[2i-1], A[2i]))$
- 6 end
- 7 if n is odd then
- 8 $large = \max(large, A[n])$
- 9 $small = \min(small, A[n])$

10 return (*large*, *small*)

Algorithm 2: MinAndMax(A, n)

Explanation of MinAndMax

CSCE423/823

Introduction

Finding Minimum and Maximum

- Idea: For each pair of values examined in the loop, compare them directly
- $\bullet\,$ For each such pair, compare the smaller one to small and the larger one to large
- Example: A = [8, 5, 3, 10, 4, 12, 6]

Nebraska Efficiency of MinAndMax

CSCE423/823

Introduction

Finding Minimum and Maximum

- How many comparisons does MinAndMax make?
- $\bullet\,$ Initialization on Lines 1 and 2 requires only one comparison
- Each iteration through the loop requires one comparison between A[2i-1] and A[2i] and then one comparison to each of large and small, for a total of three
- Lines 8 and 9 require one comparison each
- Total is at most $1 + 3(\lfloor n/2 \rfloor 1) + 2 \le 3\lfloor n/2 \rfloor$, which is better than 2n 3 for finding minimum and maximum separately

Selection of the *i*th Smallest Value

CSCE423/823

- Introduction
- Finding Minimum and Maximum
- Selection of Arbitrary Order Statistic
- Algorithm Overview
- Algorithm Pseudocode Example Time Complexity Master Theorem

- Now to the general problem: Given A and i, return the ith smallest value in A
- Obvious solution is sort and return *i*th element
- Time complexity is $\Theta(n \log n)$
- Can we do better?

Selection of the ith Smallest Value (2)

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic

Algorithm Overview

Algorithm Pseudocode Example Time Complexity Master Theorem

- New algorithm: Divide and conquer strategy
- Idea: Somehow discard a constant fraction of the current array after spending only linear time
 - If we do that, we'll get a better time complexity
 - More on this later
- Which fraction do we discard?

Procedure Select

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode Example Time Complexity Master Theorem

- 1 if p == r then
- **2** return A[p]
- 3 q = Partition(A, p, r) // Like Partition in Quicksort
- 4 $k = q p + 1 // \text{Size of } A[p \cdots q]$
- 5 if i == k then
 - **return** A[q] // Pivot value is the answer
- 7 else if i < k then
- 8 return Select(A, p, q 1, i) // Answer is in left subarray
- 9 else

6

10 return Select(A, q + 1, r, i - k) // Answer is in right subarray

Algorithm 3: Select(A, p, r, i), which returns *i*th smallest element from $A[p \cdots r]$

Nebraska What is Select Doing?

CSCE423/823

- Introduction
- Finding Minimum and Maximum
- Selection of Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode Example Time Complexity Master Theorem

- Like in Quicksort, Select first calls Partition, which chooses a **pivot** element q, then reorders A to put all elements < A[q] to the left of A[q] and all elements > A[q] to the right of A[q]
- E.g. if A = [1, 7, 5, 4, 2, 8, 6, 3] and pivot element is 5, then result is A' = [1, 4, 2, 3, 5, 7, 8, 6]
- If A[q] is the element we seek, then return it
- If sought element is in left subarray, then recursively search it, and ignore right subarray
- If sought element is in right subarray, then recursively search it, and ignore left subarray

Nebraska Partitioning the Array

CSCE423/823

Introduction

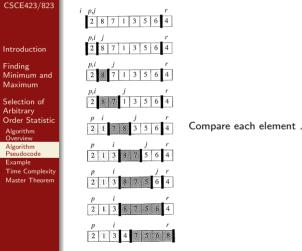
Finding Minimum and Maximum

```
Selection of
Arbitrary
Order Statistic
Algorithm
Overview
Algorithm
Pseudocode
Example
Time Complexity
Master Theorem
```

1 x = ChoosePivotElement(A, p, r) // Returns index of pivot2 exchange A[x] with A[r]3 i = p - 14 for j = p to r - 1 do 5 if $A[j] \leq A[r]$ then 6 i = i + 17 exchange A[i] with A[j]8 end exchange A[i+1] with A[r]9 10 return i + 1

Algorithm 4: Partition(A, p, r), which chooses a pivot element and partitions $A[p \cdots r]$ around it

Partitioning the Array: Example (Fig 7.1)



Compare each element A[j] to $x \ (= 4)$ and swap with A[i] if $A[j] \le x$

Choosing a Pivot Element

CSCE423/823

- Introduction
- Finding Minimum and Maximum
- Selection of Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode
- Example Time Complexity Master Theorem

- Choice of pivot element is critical to low time complexity
 - Why?
 - What is the best choice of pivot element to partition $A[p \cdots r]$?

Choosing a Pivot Element (2)

CSCE423/823

- Introduction
- Finding Minimum and Maximum
- Selection of Arbitrary Order Statistic Algorithm Overview Algorithm
- Pseudocode Example Time Complexity Master Theorem

- Want to pivot on an element that it as close as possible to being the median
- Of course, we don't know what that is
- Will do median of medians approach to select pivot element

Median of Medians

CSCE423/823

Nehraska

Introduction

- Finding Minimum and Maximum
- Selection of Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode Example
- Time Complexity Master Theorem

18 / 24

- Given (sub)array A of n elements, partition A into $m = \lfloor n/5 \rfloor$ groups of 5 elements each, and at most one other group with the remaining $n \mod 5$ elements
- Make an array $A' = [x_1, x_2, \dots, x_{m+1}]$, where x_i is median of group i, found by sorting (in constant time) group i
- \bullet Call ${\rm Select}(A',1,m+1,\lfloor (m+1)/2 \rfloor)$ and use the returned element as the pivot

Example

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode Example Time Complexity

Master Theorem

Split into teams, and work this example on the board: Find the 4th smallest element of A=[4,9,12,17,6,5,21,14,8,11,13,29,3]

Show results for each step of Select, Partition, and ChoosePivotElement

Nebraska Lincoln

Time Complexity

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode Example Time Complexity Master Theorem

- Key to time complexity analysis is lower bounding the fraction of elements discarded at each recursive call to Select
- On next slide, medians and median (x) of medians are marked, arrows indicate what is guaranteed to be greater than what
- Since x is less than at least half of the other medians (ignoring group with < 5 elements and x's group) and each of those medians is less than 2 elements, we get that the number of elements x is less than is at least

$$3\left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil - 2\right) \ge \frac{3n}{10} - 6 \ge n/4 \qquad \text{(if } n \ge 120\text{)}$$

- $\bullet\,$ Similar argument shows that at least $3n/10-6\geq n/4$ elements are less than x
- Thus, if $n \ge 120$, each recursive call to Select is on at most 3n/4 elements

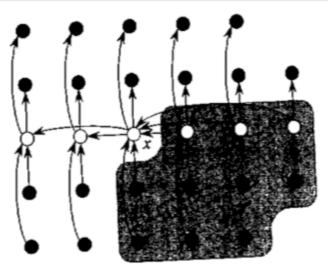
Time Complexity (2)

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode Example Time Complexity Master Theorem



Time Complexity (3)

CSCE423/823

- Introduction
- Finding Minimum and Maximum

Selection of Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode Example Time Complexity Master Theorem

- Now can develop a **recurrence** describing Select's time complexity
- Let T(n) represent total time for Select to run on input of size n
- Choosing a pivot element takes time ${\cal O}(n)$ to split into size-5 groups and time T(n/5) to recursively find the median of medians
- Once pivot element chosen, partitioning n elements takes O(n) time
- Recursive call to Select takes time at most T(3n/4)
- Thus we get

 $T(n) \le T(n/5) + T(3n/4) + O(n)$

- Can express as $T(\alpha n)+T(\beta n)+O(n)$ for $\alpha=1/5$ and $\beta=3/4$
- Theorem: For recurrences of the form $T(\alpha n)+T(\beta n)+O(n)$ for $\alpha+\beta<1,\ T(n)=O(n)$
- Thus Select has time complexity O(n)

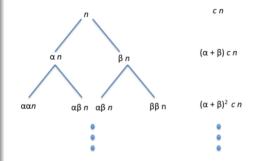
Proof of Theorem

CSCE423/823

Introduction

Finding Minimum and Maximum

Selection of Arbitrary Order Statistic Algorithm Overview Algorithm Pseudocode Example Time Complexity Master Theorem Top T(n) takes O(n) time (= cn for some constant c). Then calls to $T(\alpha n)$ and $T(\beta n)$, which take a total of $(\alpha + \beta)cn$ time, and so on.



Summing these infinitely yields (since $\alpha + \beta < 1$)

$$cn(1 + (\alpha + \beta) + (\alpha + \beta)^2 + \cdots) = \frac{cn}{1 - (\alpha + \beta)} = c'n = O(n)$$

Master Method

CSCE423/823

Introduction

Finding Minimum and

Maximum

Arbitrary Order Statistic

Algorithm

Algorithm Pseudocode Example

Time Complexity Master Theorem

Selection of

- Another useful tool for analyzing recurrences
- Theorem: Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined as T(n) = aT(n/b) + f(n). Then T(n) is bounded as follows.
 - If f(n) = O(n^{log_b a-ε}) for constant ε > 0, then T(n) = Θ(n^{log_b a})
 If f(n) = Θ(n^{log_b a}), then T(n) = Θ(n^{log_b a} log n)
 If f(n) = Ω(n^{log_b a+ε}) for constant ε > 0, and if af(n/b) ≤ cf(n) for constant c < 1 and sufficiently large n, then T(n) = Θ(f(n))

- E.g. for Select, can apply theorem on T(n) < 2T(3n/4) + O(n)(note the slack introduced) with a = 2, b = 4/3, $\epsilon = 1.4$ and get $T(n) = O\left(n^{\log_{4/3} 2}\right) = O\left(n^{2.41}\right)$
- \Rightarrow Not as tight for this recurrence