Nebiaska

Lincoln

Nebiaska

Lincoln

Computer Science & Engineering 423/823 @ Given an array A of n distinct numbers, the ith order statistic of A
is its ith smallest element

Introduction Introduction

Design and Analysis of Algorithms

e =1 = minimum

Finding Finding
;v‘hm'mum and . L Minimum and e Z =n = maXimUm
o Lecture 01 — Medians and Order Statistics (Chapter 9) o o i=|(n+1)/2] = (lower) median
S on of Sels of
Tl Tl o Eg. if A=[8,5,3,10,4,12,6] then min = 3, max = 12, median =
6, 3rd order stat = 5
Stephen Scott o Problem: Given array A of n elements and a number i € {1,...,n},
(Adapted from Vinodchandran N. Variyam) find the ith order statistic of A
@ There is an obvious solution to this problem. What is it? What is its
time complexity?
o Can we do better? What if we only focuson i =1 or i =n?
1/24 2/24
LeRe) Finding Minimum WEeeRY Efficiency of Minimum(A)
CSCE423/823 CSCE423/823
Introduction Introduction
mmg] 1 small = A[1] mmg] @ Loop is executed n — 1 times, each with one comparison
Maximum 2 fori—=2 ton do Maximum = Total n — 1 comparisons
oo of 3 if small > A[i] then Seiecionl @ Can we do better?
s Stattc 4 small = Ali SShetine o Lower Bound: Any algorithm finding minimum of n elements will
5 end need at least n — 1 comparisons
i e Proof of this comes from fact that no element of A can be considered
6 return sma, for elimination as the minimum until it's been compared at least once
Algorithm 1: Minimum(A4,n)
3/24 4/24
Nebl‘aslalm]“ Correctness of Minimum(A) NebfaSl@,m Simultaneous Minimum and Maximum
CSCE423/823 CSCE423/823
Introduction Introduction
Finding . . . Finding
e o Observe that the a|g9r|thrr] always maintains the Invariant that at . Madmom o Given array A with n elements, find both its minimum and maximum
o the end of each loop iteration, small holds the minimum of A[1-- -] ——— .) L o o
i o Easily shown by induction i o What is the obvious algorithm? What is its (non-asymptotic) time
Order Statistic Order Statistic com p|eXIty7
@ Correctness follows by observing that i == n before return

>
statement @ Can we do better?

Nebiaska

Lincoln

Simultaneous Minimum and Maximum

— 1 large = max(A[1], A[2])
TR 2 small = min(A[1], A[2])
o 3 fori=2to [n/2] do
o of 4 large = max(large, max(A[2i — 1], A[2i]))
ey 5 small = min(small, min(A[2i — 1], A[24]))
6 end
7 if n is odd then
8 large = max(large, An])
9 small = min(small, A[n])
10 return (large, small)

Algorithm 2: MinAndMax(A, n)

7/24
NEeEed Efficiency of MinAndMax
CSCE423/823
Introduction @ How many comparisons does MinAndMax make?
Mo @ Initialization on Lines 1 and 2 requires only one comparison
Maximum
on of o Each iteration through the loop requires one comparison between

O o A[2i — 1] and A[2i] and then one comparison to each of large and
small, for a total of three

Lines 8 and 9 require one comparison each

Total is at most 1+ 3(|[n/2] — 1)+ 2 < 3|n/2], which is better than
2n — 3 for finding minimum and maximum separately

9/24

WctlY Selection of the ith Smallest Value (2)

Introduction

Finding : s
Minimerm and o New algorithm: Divide and conquer strategy

Maximum

o |dea: Somehow discard a constant fraction of the current array after

Actizemy spending only linear time
Order Statistic) . .
‘Algorithm o If we do that, we'll get a better time complexity

Overview

o More on this later

@ Which fraction do we discard?

Nebiaska

Lincoln

Explanation of MinAndMax

Introduction

Finding . . .
Wi @ Idea: For each pair of values examined in the loop, compare them
aximum .
directly
S n of
Arbitrary

@ For each such pair, compare the smaller one to small and the larger
one to large

o Example: A =8,5,3,10,4,12,6]

Order Statistic

8/24
NEeEed Selection of the ith Smallest Value
C 23/823
Introduction
5
Minimum and o Now to the general problem: Given A and i, return the ith smallest
o value in A
A @ Obvious solution is sort and return ith element
O o Time complexity is ©(nlogn)

o Can we do better?

Nebiaska

Lincoln

Procedure Select

Introduction 1 if p==r then
Finding 2 return A[p]
Minimum and 3 g = Partition(A,p,r) // Like Partition in Quicksort
Meximm 4 k=q-p+1// Size of Afp---q]
5 if i ==k then
6 return A[q] // Pivot value is the answer
7 elseif i < k then
Algorithm 8 return Select(A,p,q — 1,i) // Answer is in left subarray
9 else
10 return Select(A,q+ 1,7,i — k) // Answer is in right subarray

Algorithm 3: Select(A, p, r,4), which returns ith smallest element from

Afp---7]

Nebiaska

Lincoln

Nebiaska

Lincoln

What is Select Doing?

@ Like in Quicksort, Select first calls Partition, which chooses a pivot
element ¢, then reorders A to put all elements < A[q] to the left of

i Alg] and all elements > Alg] to the right of A[g] Wi an
e o Eg. if A=1[1,7,5,4,2,8,6,3] and pivot element is 5, then result is .
A'=11,4,2,3,5,7,8,6]
o If Alg] is the element we seek, then return it
@ If sought element is in left subarray, then recursively search it, and
ignore right subarray
@ If sought element is in right subarray, then recursively search it, and
ignore left subarray
WLetEY Partitioning the Array: Example (Fig 7.1) Nebraska
CSCE423/823 C 23/823

i pi -
[HEUDBECE

pi e r

Introduction |z_|x GE ﬂim
. .

Finding
Minimum and

Arbitr
Order S . .
rder Statistic Compare each element A[j] to « (= 4) and swap with Ai] if Aj] <z

15/24

Nebiaska

Lincoln

Nebiaska

Lincoln

Choosing a Pivot Element (2)

Introduction Introduction

Finding
Minimum and
Maximum

Finding
Minimum and
Maximum

@ Want to pivot on an element that it as close as possible to being the
median

o Of course, we don't know what that is

o Will do median of medians approach to select pivot element

Algorithm
Pseudo

Partitioning the Array

1 z = ChoosePivotElement(A,p,r) // Returns index of pivot
2 exchange A[z] with A[r]
3 i=p—1

4 forj=ptor—1do

5 if A[j] < A[r] then
6 i=i+1

7 exchange A[i] with A[j]
8 end

9 exchange A[i + 1] with A[r]

10 returni+1

Algorithm 4: Partition(A,p,r), which chooses a pivot element and
partitions A[p---r] around it

Choosing a Pivot Element

@ Choice of pivot element is critical to low time complexity
o Why?
o What is the best choice of pivot element to partition A[p- -

Median of Medians

@ Given (sub)array A of n elements, partition A into m = [n/5|
groups of 5 elements each, and at most one other group with the
remaining n mod 5 elements

o Make an array A’ = [x1, 22, ...,Zm+1], where z; is median of group
i, found by sorting (in constant time) group i

o Call Select(A’,1,m + 1, [(m + 1)/2]) and use the returned element
as the pivot

Nebiaska

Lincoln

Example

Introduction

Finding
Minimum and
N

um Split into teams, and work this example on the board: Find the 4th
smallest element of A =[4,9,12,17,6,5,21,14,8,11,13,29, 3]

Show results for each step of Select, Partition, and ChoosePivotElement

WLetE) Time Complexity (2)

Introduction

Finding

Arbitrary
Order Statistic

Nebiaska

Lincoln

Proof of Theorem

Top T'(n) takes O(n) time (= cn for some constant ¢). Then calls to T'(an) and
T'(Bn), which take a total of (o + §8)cn time, and so on.

Introduction cn

Finding
Minimum and

(a+B)cn
(a+B)2cn
& []
g . .
Master Theorem . .

Summing these infinitely yields (since o + 8 < 1)
cn

mL(1+(a+3)+<a+3)2+“‘):m

=cn=0(n)

Nebiaska

Lincoln

Time Complexity

@ Key to time complexity analysis is lower bounding the fraction of
elements discarded at each recursive call to Select

Introduction @ On next slide, medians and median () of medians are marked,
Finding arrows indicate what is guaranteed to be greater than what
Minimum and -
um @ Since x is less than at least half of the other medians (ignoring group

with < 5 elements and z's group) and each of those medians is less
than 2 elements, we get that the number of elements « is less than is
at least

[11n 3n
. i —|= — > — —6>
T 3 ([2 [5 W —‘ 2) 10 62n/4

o Similar argument shows that at least 3n/10 — 6 > n/4 elements are
less than x

@ Thus, if n > 120, each recursive call to Select is on at most 3n/4
elements

(if n > 120)

WEeet=l Time Complexity (3)

@ Now can develop a recurrence describing Select’s time complexity

Let T'(n) represent total time for Select to run on input of size n
Choosing a pivot element takes time O(n) to split into size-5 groups
and time T'(n/5) to recursively find the median of medians

Introduction

Finding
nimum and

@ Once pivot element chosen, partitioning n elements takes O(n) time

Recursive call to Select takes time at most 7'(3n/4)

Thus we get
T(n) < T(n/5) +T(3n/4) + O(n)

o Can express as T'(an) + T(Bn) + O(n) for a = 1/5 and 8 = 3/4

@ Theorem: For recurrences of the form T'(an) + T'(8n) + O(n) for
a+ <1, T(n)=0(n)

o Thus Select has time complexity O(n)

Nebiaska

Lincoln

Master Method

@ Another useful tool for analyzing recurrences
Mt @ Theorem: Let a > 1 and b > 1 be constants, let f(n) be a function,
- and let T'(n) be defined as T'(n) = aT(n/b) + f(n). Then T'(n) is
Minimum and bounded as follows.
@ If f(n) = O(n'°8 =€) for constant € > 0, then T'(n) = O(n'°&+)
@ If f(n) = O(n'°&), then T(n) = O(n'°8 *logn)
@ If f(n) = Q(n'°% 9¥) for constant € > 0, and if af(n/b) < cf(n) for
constant ¢ < 1 and sufficiently large n, then T'(n) = O(f(n))
o E.g. for Select, can apply theorem on T'(n) < 27'(3n/4) + O(n)
(note the slack introduced) with a =2, b =4/3, e = 1.4 and get

T(n)=0 (nloga/s 2) -0 (n2.41)

= Not as tight for this recurrence

