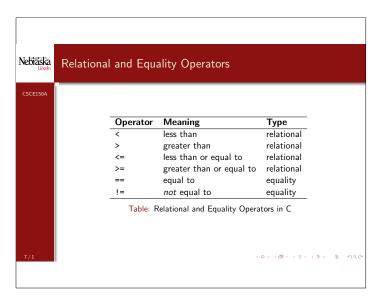
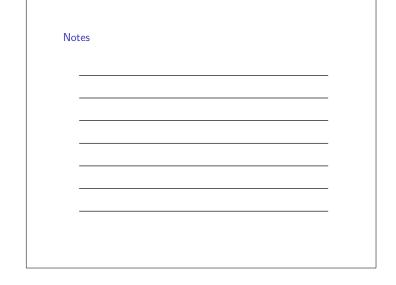


		_
		_
		_
		_

Nebraska Lincoln	Control Structure
CSCE150A	
	 Control structures: Control the flow of execution in a program or function. Enable you to combine individual instructions into a single logical unit with one entry point (i.e. int main(void) {) and one exit point (return 0; }).
	 Three kinds of structures to control execution flow: Sequence Selection Repetition
3/1	(D) (B) (E) (E) E NQC

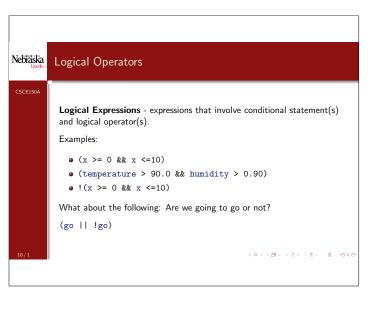


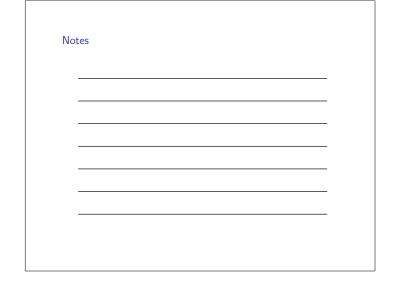


Notes		

Nebraska Lincoln	Selection Flow – Conditions
CSCE150A	Definition A condition is an expression that is either true or false.
	A program chooses alternative paths of computation by testing one or more conditions.
	 (ConditionEval == 1) → true, (ConditionEval == 0) → false.
	 The resting heart rate is a good indicator of health if (resting_heart_rate < 75) then you are in good health. if resting heart rate is 80, ConditionEval is false. if resting heart rate is 50, ConditionEval is true. if resting heart rate is 75, what is ConditionEval?
6/1	(ロ・(が)(芝)(芝) き かなの

		_
		_

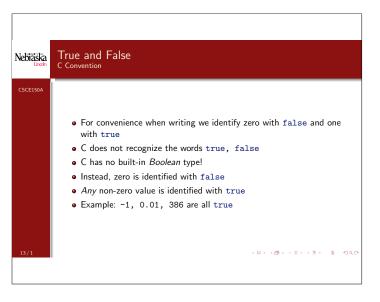


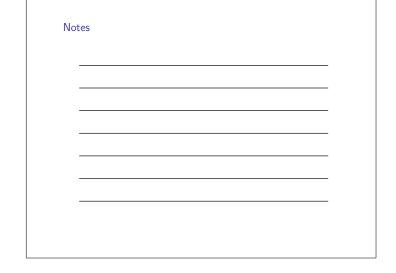


Nebřaska _{Lincoln}	Relational and Equality Operators
CSCE150A	Conditions come in four forms:
	• variable relational-operator variable
	Example: if(numberOfStudents > numberOfSeats)
	• variable relational-operator CONSTANT
	• Example: if(numberOfStudents < 5)
	• variable equality-operator variable
	• Example: if(numberOfStudents == numberOfSeats)
	• variable equality-operator CONSTANT
	• Example: if(averageGrade == 75.0)
	What about more than one condition? (Example: $0 \le x \le 10$)
8/1	(□) (♂) (₹) (₹) ₹ 少 Q(

Nebraska Lincoln	Logical Operat	tors				
CSCE150A						
			Operators that can combinection statements.	ne conditions to m	ıake	
	C Syn	tax	Meaning	True When		
	,	&&	•	Both are true		
		\Box	logical OR	Either is true		
		!	logical Not (negation)	False		
			Table: Logical Operators i	n C		
9/1	l			4	E> E	୬୧୯

_



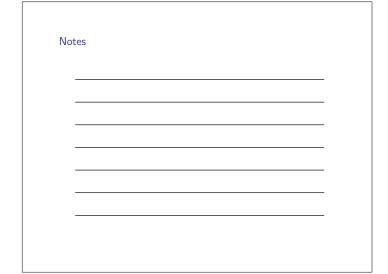

Tautologies & Contradictions • A tautology is a logical expression that is always true • Any non-zero constant (1, 1.5, 8, etc.) • An expression that, when simplified, always ends up being true • (go || 1 || 1go) is always true • A contradiction is a logical expression that is always false • The zero constant (0) • An expression that, when simplified, always ends up being false • (go && !go) is always false

No	tes			

at formulas	
Nebraska	Distributivity
CSCE150A	 The logical AND can be distributed over a logical expression just as multiplication can be over an algebraic expression. a(b+c) = ab + ac a && (b c) is same as (a && b) (a && c) (Here, a, b, and c are relations like x < 5) When distributing the logical Not, AND and OR are reversed! Example: !(x >= 0 && x <=10) (!(x >= 0) !(x <=10)) ((x < 0) (x > 10))
	Best to simplify logical expressions as much as possible, but more important to keep code readable.
12/1	くロ〉(B)(さ)(き) き がみ(b

Not	es	

N	ebraska _{Lincoln}


Operator Tables

CSCE150

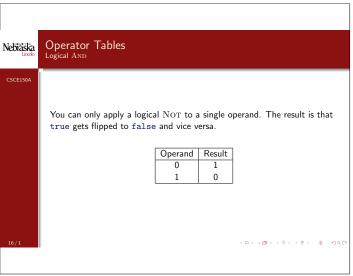
The result of taking a logical $\rm AND$ with two operands is true if and only if both operands are true. Otherwise it is false.

Operand A	Operand B	Result
0	0	0
0	1	0
1	0	0
-	1	4

14/1

Operator Tables Logical And

CSCE150

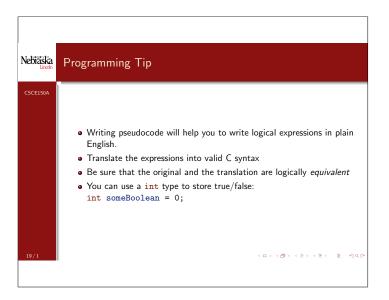

The result of taking a logical OR with two operands is true if and only if at least one of the operands is true. Otherwise it is false.

Operand A	Operand B	Result
0	0	0
0	1	1
1	0	1
1	1	1

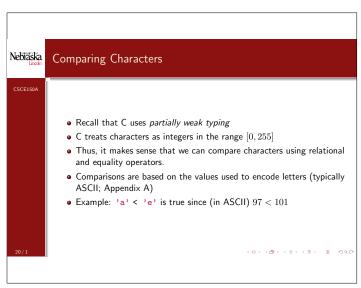
15/1

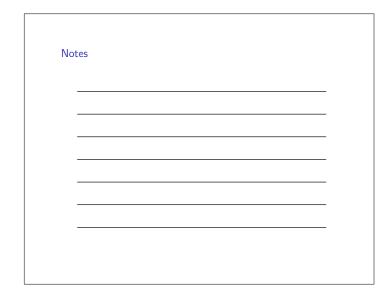
<□> <**♂**> <**≥**> <**≥**> <**≥**> <**≥** <**○**

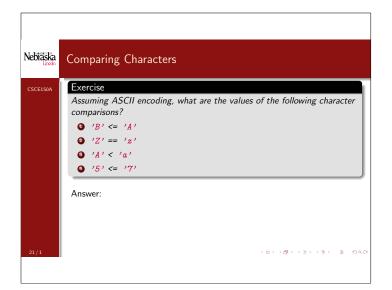
			_
			_
			_
-			_
			_
			_

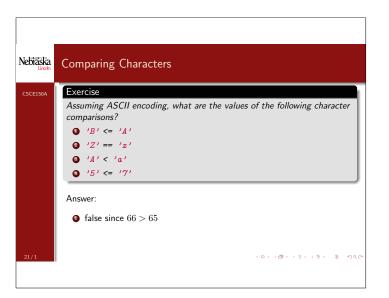


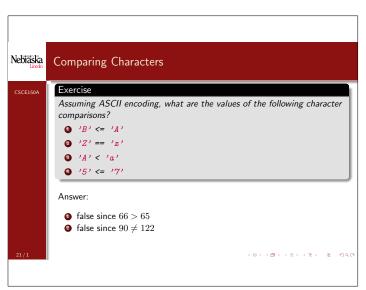
Nebraska Lincoln	Short-Circuiting
CSCE150A	 If the first operand of a logical OR is true, the whole expression is true regardless of the second operand. Similarly, if the first operand of a logical AND is false, the whole expression is false regardless of the second operand. (true anything) is true (false && anything) is false By convention, in either case C does not bother to evaluate the second operand. This is known as short-circuiting
18/1	(B) (B) (B) (B) (B)

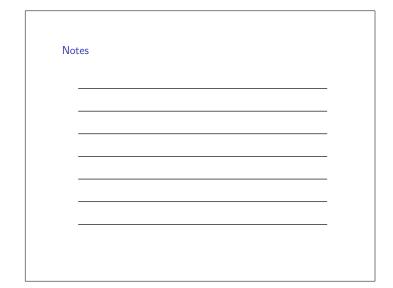

		_
		_
		_
		_

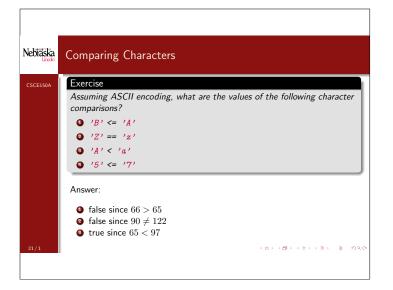

Nice		
Not	es	
-		
-		
-		

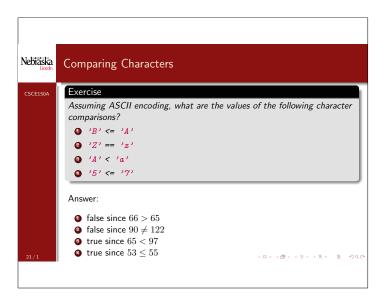

Notes			
			_
			_
			_
			_
			_
			_

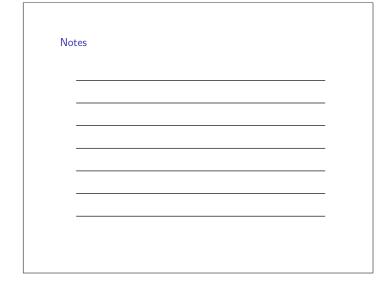


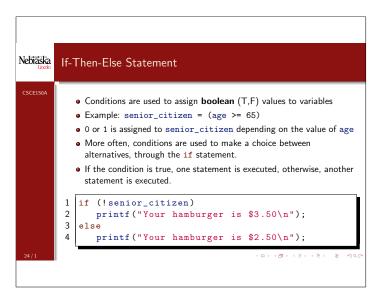












Nebřaska Lincoln	Comparing Characters
CSCE150A	 ASCII stands for American Standard Code for Information Interchange The ASCII character set was designed to preserve alpha-numeric order, so e.g. 'a' is strictly less than 'b' Capital letters are less than lower-case letters
22/1	(ロ) (명) (공) (공) 공

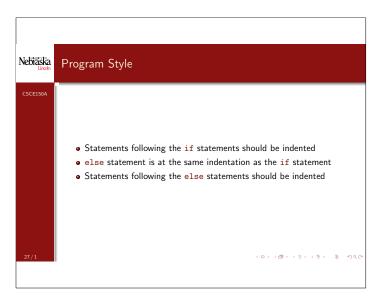
		-
		-

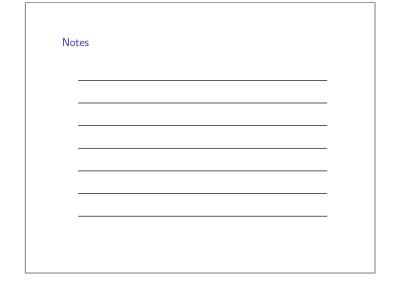
Nebraska Lincoln	The if Statement
CSCE150A	 if Statement with Two Alternatives (If-Then-Else) if Statement with One Alternative A Comparison of One and Two Alternative if Statements Programming Style
23/1	(B) (B) (B) 전 연안

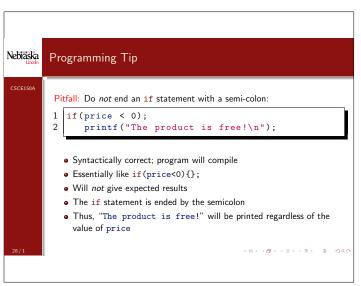

```
Notes
```

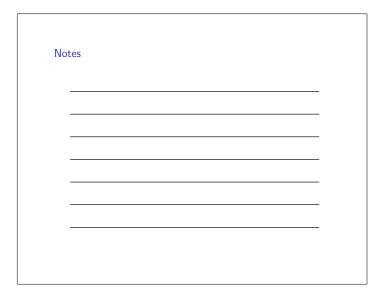
```
Nebiaska

• It is not necessary to specify an alternative (else statement)

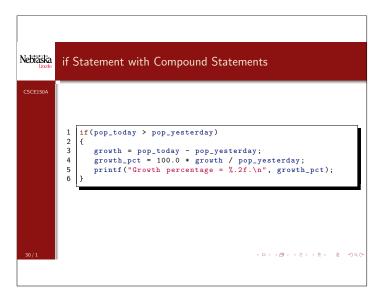

• An if statement can determine to execute a statement or not


1 if (senior_citizen)

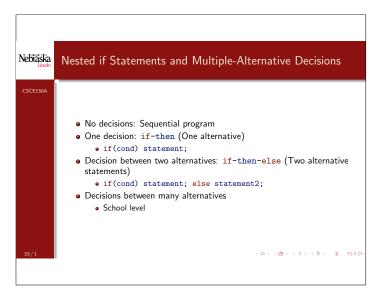

price = price - 1.0;
```

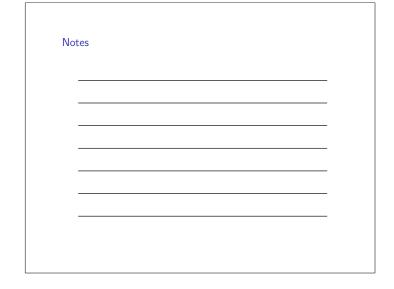

Nebraska Lincoln	Programming Tip
CSCE150A	 Recall that division by zero is undefined (and dangerous) You can use an if statement to avoid such errors 1 if (x != 0) quotient = quotient / x;
26/1	(ロ) (費) (ミ) (き) (き) ぎ かなの

Notes		

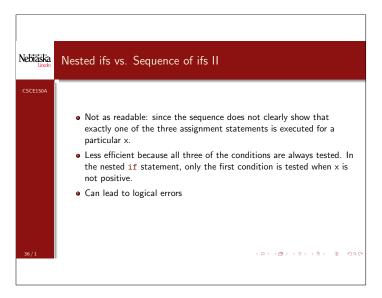


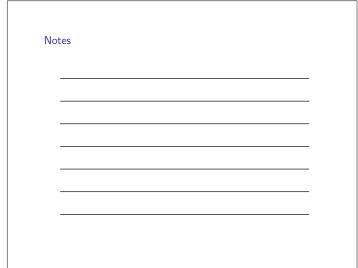
Nebiaska Lincoln	if Statement with Compound Statements
CSCE150A	 In previous slides, if and else statements have performed only one operation C always assumes that each if or else statement will be followed by one operation If more than one statement needs to be done for an if or else, we use {} to group a set of statements into one compound statement
29 / 1	(ロ)(費)(き)(き) そ めなの

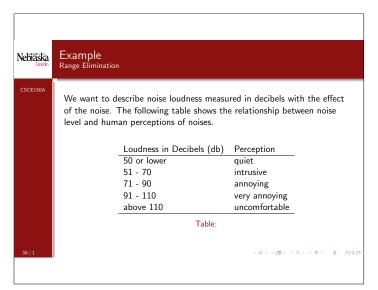


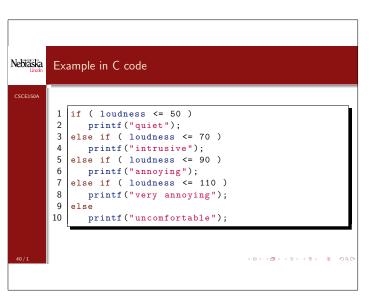

Nebraska Another Example 1 if (crash_test_rating_index <= MAX_SAFE_CTRI) 2 {</pre> 3 printf("Car #%d: safe\n", auto_id); numOfSafeCars = numOfSafeCars + 1; 4 5 } 6 else 7 { printf("Car #%d: unsafe\n", auto_id); 8 numOfUnsafeCars = numOfUnsafeCars + 1; 9 10 If you omit the braces, what happens?

Notes		
		-
		-
		-
		-
		-

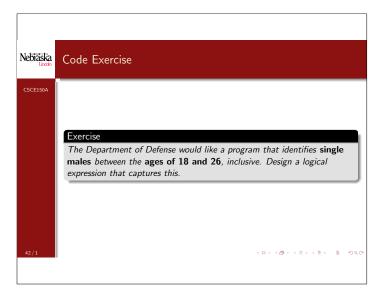

Nebraska Lincoln	Tracing an if Statement
CSCE150A	 Verifying the correctness of a C statement before running the program Catching logical errors will save a lot of time in debugging. A hand trace or desk check is a step-by-step simulation of each step of the program, as well as how the values of the variables change at each step.
32/1	· · · · · · · · · · · · · · · · · · ·

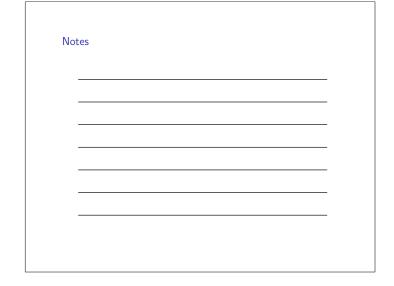






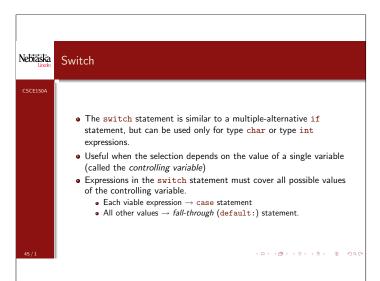
Nebraska if-else-if Statement Better solution: the if-else-if statement 1 if (condition_1) $statement_1$ 3 else if (condition_2) statement_2 5 6 else if (condition_n) 8 statement_n 9 else 10 statement_e 4 m >

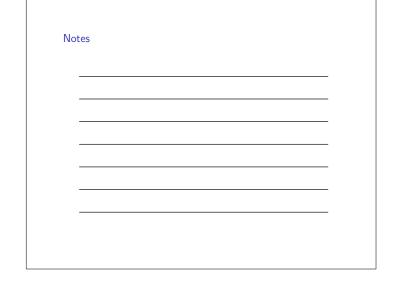



Vebraska Lincoln	Multiple-Alternative if, Order of Conditions
CSCE150A	
	 With if-else-if statements, one and only one statement is ever executed
	Moreover the first satisfied condition is the one that is executed
	The order of the conditions can affect the outcome
	 The order of conditions also affect program efficiency
	The most common cases (if known) should be checked first
	 If loud noises are much more likely, it is more efficient to test first for noise levels above 110 db, then for levels between 91 and 110 db, and so on.
41/1	(ロ)(愛)(き)(き) (き) 、 き か 久()・

		-

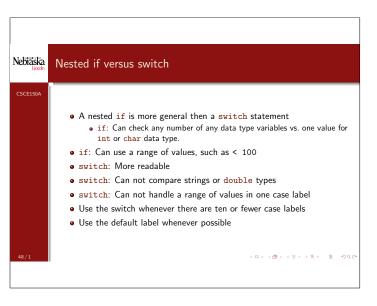
otes		

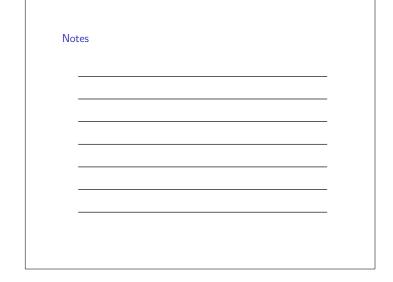

	-
	-
	-
	-




```
Notes
```

Notes			

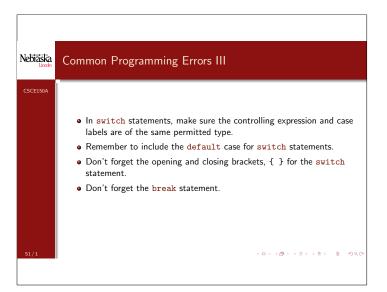




Notes			
			-
			-
			-
			-
			-

Nebiaska Lincoln	Common Errors
CSCE150A	 You cannot use a string such as "Cruiser" or "Frigate" as a case label. The omission of the break statement at the end of an alternative causes the execution to "fall through" into the next alternative. Forgetting the closing brace of the switch statement body.
47/1	(ロ) (問) (言) (言) 言 かなゆ

Notes			



Common Programming Errors I • (0 <= x <= 4) is always true • Associativity: first 0 <= x is evaluated (true or false) • Thus, it evaluates to either 1 or and 0 • In either case, both are less than 4 • Thus the entire expression is true regardless of the value of x • if(x = 10) is always true: the assignment operator is evaluated and x is given a value of 10, which is true

Notes		
		_
		_
		_
		_
		_
		-

Nebraska Lincoln	Common Programming Errors II
CSCE150A	 Don't forget to parenthesize the condition. Don't forget the opening and closing brackets, { } if they are needed. When doing nested if statement, try to select conditions so that you can use the range-elimination multiple-alternative format. C matches each else with the closest unmatched if, so be careful so that you get the correct pairings of if and else statements. Can insert curly braces to get the desired behavior
50/1	(ロ)(号)(き)(き))(e) (ロ)(の)(さ))(さ)) (ロ)(の)(さ))(さ)) (ロ)(の)(さ))(さ)) (ロ)(の)(さ))(さ)) (ロ)(の)(さ))(さ)) (ロ)(の)(さ))(さ)) (ロ)(の)(で)) (ロ)(の)(で)) (ロ)(の)(し)(し)(し)(し)(し)(し)(し)(し)(し)(し)(し)(し)(し)

Notes			


```
Notes
```

```
Nebraska
         Conditionals: Review I
         1 \mid \mathbf{if} \quad (\mathbf{x} == 0)
         2
                 statement_T;
         3
             if (x == 0)
                statement_T;
         5
         6
             else
                statement_F;
         8
         9
             if (x == 0) {
         10
                statements_T;
         11
         12
         13
                                                    4 m > 4 d > 4 E > 4 E > E = 990
```

Notes		
Notes		
		_
-		-
		_
		_
		_
		_
-		_

		_	

```
Notes
```

Nebraska Lincoln	
CSCE150A	
	Questions?
56 / 1	くロ・(番) (ま) (き) ま めん(や

Note	es			
-				
-				
-				
-				
-				
-				