
Final Progress Report 3
CSCE 487

 
John Miller

Josh Branchaud
Evan Chappelear

 
What

This section will detail the features that have been implemented up to this point. We 

consider this project a success because we were able to implement nearly everything that we 

set out to include. Though the end product has evolved since its inception, it has stayed true to 

what it has always been intended for.

The main feature that brought about the idea of this application in the first place was a 

route suggestion feature. Before this application was built, a person could get on their computer 

and pull up the ‘Get On Board’ application in their browser to get an idea of where the buses are 

and what the routes look like. This was clearly an improvement on simple static text schedules. 

However, with the prevalence of smart phones much more can be achieved than this. The first 

screen that appears when launching BusLinc is the ‘Where To?’ activity. It immediately begins 

using your phone’s GPS capability to narrow down your coordinates. These coordinates are 

then sent through a Yahoo! web service which reverse geocodes them. The result of reverse 

geocoding coordinates is an approximate address of the users current location. This gives the 

user a sense of the application working and being accurate. Once the application has acquired 

the phone’s GPS location, it will then allow the user to proceed with the route suggestion 

feature. At this point the user has three options: 



 

The user can search Yahoo! places with a simple keyword search. They can select 

destinations that already exist in their favorites. They can select a destination from Google 

maps by dropping a pin somewhere in the vicinity of Lincoln. By taking the route of any of these 

options, the user will be able to select a place to go and then BusLinc will immediately query 

the server to get the optimal route from their current location to the selected destination. This 

route is then loaded and displayed on the map view. The walking legs of the route are displayed 

in blue and the bus riding leg of the route is in red. Along the route are a series of green dots 

which are changes in direction. By selecting any one of these green dots, the user can read the 

directions for this portion of the route.

In addition to the information relevant to the route, the buses on the route and the official 



bus stops on the route are displayed.

Over the course of the past two semesters we spent a lot of time researching for this 

project by scouring the Android Market for all sorts of related apps. Of the many apps that we 

found and reviewed, we noticed a feature that showed up a majority of the time. This was some 

sort of favorites feature. It was clear that we needed to include a feature like this in our app. It 

would make the app quicker and easier to use and would meet the expectations of users as set 

by popular apps already in the Market. We were able to successfully implement this feature. 

The favorites list comes preloaded with two favorites; the Lincoln Capital Building and Memorial 

Stadium. We figured this would be a fun way to personalize the app and give users an idea of 

how the favorites list works. By navigating to the favorites tab, the user can choose to create a 

new favorite. This can either be a favorite destination (location or bus stop) or a favorite route.

Once a favorites list contains a few items, the user may wish to interact with these in one 

way or another. By tapping a particular favorite, the user is given three options. They can ‘Go!’ 

to that favorite (or in the case of a favorite route, view that route), they can edit the information 

for that favorite, or they can delete that favorite if they no longer wish for it to exist in their 

favorites list.



The third main feature which we sought to include in BusLinc is the ETA feature. The 

infrastructure for this feature is in place, but it is dependent on a server call which is not quite 

ready for release. As soon as the server has the ETA functionality ready to go, we should be 

able to plug it straight into the app. We are excited to include this feature in a future release 

because we believe it to be the most common use case. For any person that use this app with 

regularity, we expect that the ETA feature will become there best friend. Each day that they 

seek to use the app, they will already know the route they want to take, but will be curious about 

the time until the bus arrive at the particular stop. That is the power of this feature.

This sums up the main features of our app to date. As can be seen, we achieved all 

of our specifications except for the ETA feature. We feel that this project has been a success 

and we look forward to the minor improvements that will take place over the coming weeks in 

preparation for releasing it to the Android Market.

How

The way the application was developed was by identifying what we would like the 

application to do, then research if it was possible and if so how. For instance, when we were 

working on the Favorites tab of our application the dialog boxes that popped up were 

unpleasant to look at and from looking at other applications we figured out there were much 

more elegant ways of displaying the favorite options. From there Josh research ways to 

implement similar features into our application and from there we discovered Quick Actions that 

display the same options as before but were less obtrusive and had animations that gave the 



application a sleeker feel.

The main functionality completed since our last progress report is the human readable 

instructions queried from the server. Since we already had the functionality of displaying routes, 

all we had to do was incorporate this data on top of the instructions pulled from the server. The 

server returns instructions and waypoint data that will guide the user to their destination. First 

we had to filter out the readable instructions from the query and strip the html coding so the user 

could actual read where to go. Each step of the instructions was then numbered and associated 

with a GeoPoint where it should be displayed. With the step number, the instruction, and 

GeoPoint known, we then set all the data into a pinpoint on the map that had pop-up balloon 

containing the step number and instruction.

This information is useful, but also confusing without lines connecting them. Drawing a 

line directly from each step would look bad so we made use of the walking data the server 

provided to connect the user appropriately to each step. At first when we implemented this, we 

thought we had done something wrong, since the lines were still cutting through buildings and 

fields until we realized the data pulled from the server was off and not supplying the full walking 

directions. For now the walking routes are stuck this way until the server is able to provide a 

more robust way of providing accurate walking directions.

Quality

In order to ensure the quality of our application, we had assigned one member to be in 

charge of testing. We did not only need to test our own application; we also needed to test the 

server as well. Testing of the server was accomplished through shell scripts. The scripts made 

calls to the server using the wget utility in Unix and stored the output in files. The contents of 

these files were then inspected for their correctness. This may be a relatively simple way to do 

this, but it does have some advantages. First of all, this method makes it very easy to do other 

tasks on the files in the test script. Something that might be useful might be adding the address 



into the result file or comparing the result with the result of an older test. It would also be trivial 

to write a program that automatically generates these test scripts, though we did not take 

advantage of that.

Testing of our application came in two main phases. The first phase was unit testing and 

the second phase was system testing. Since we did develop for the Android platform, Google 

has testing tools that we took advantage of. The unit testing was done with J-Unit. Being able to 

use J-Unit is one of the advantages of developing for the Android as opposed to the phones. 

System testing was used with tool called monkeyrunner. This gets a little bit confusing. There’s 

monkeyrunner and then MonkeyRunner. Monkeyrunner is a shell script. It loads the testing 

script into Jython, which is basically Java with a Python syntax. MonkeyRunner is the API that 

the testing script uses. It allows the script to connect to and control either a running Android 

emulator or an Android phone that is connected to the computer.

Development and testing of our application unfortunately did not go as quickly as we had 

hoped, so we had to cut out some phases of testing. The first phase we cut out was for stress 

testing. We were planning on using a tool called Exerciser Monkey. This is similar to 

monkeyrunner, except it makes it makes pseudo-random inputs to the device. This phase was a 

regrettable loss, but not a huge loss. The loss that really hurt was field testing. It would have 

been very useful to get the application in the hands of people had not been working on it for 

months to get their feedback.

The “Where To?” tab will perhaps be the most used tab and has the most code 

associated with it. The “Search Places” button was something that was tested quite a bit. The 

first thing to test with it is if the button work. Different types of searches were tried. There was 

something general like “pizza”, something specific like “Godfathers Pizza”, there was something 

that had no results like “kwyjibo”, and there was something with special characters that might be 

an SQL injection like “a’; DROP TABLE ‘main’;”. The general search and the specific search 



returned reasonable results, the nonexistent search had no results, and the SQL injection didn’t 

break the server (which would be weird because the server doesn’t use SQL). All of those are 

expected. With the two that had results, the first result was selected. The resulting routes were 

the correct routes. This was repeated after changing the emulator’s GPS coordinate in Spain. 

All of these then showed the expected message that the phone needs to be in Lincoln for the 

application to work. Since all of the results were the expected results, it can be concluded that 

this button is working.

 

Risk Analysis and Mitigation

One of the issues that we have struggled with in the latter part of the semester 

has to do with our subversion repository. Last semester we had created a public subversion 

repository on Google Code. This seemed like a good approach because it did not require us to 

do any repository configuration or management. However, at the beginning of this semester we 

had uncertainties about the code being publicly available. The primary concern was that we did 

not know what the final direction of the app would be and so it seemed like it would be safer to 

have it hosted privately. The other concern was that the app was far from being in a presentable 

state and it seemed unfit for being displayed publicly. Because of these concerns, we 

determined that it would be best to host the repository privately until things had matured. We 

then setup a subversion repository on John’s CSE account and began hosting the project there. 

It seemed fine at first, but somewhere down the line we ran into issues with being able to make 

commits. This was obviously a serious concern because it hindered our ability to work efficiently 

on the project while making recent changes available. We then tried recreating the repository on 

John’s account and Josh’s account, but kept running into the same issues. In that time we had 

determined that the app would be open sourced. Our difficulties with a self-hosted SVN 

repository and the decision to go OS made the idea of hosting on Google Code viable again. 



We moved the current version of the app back onto our Google Code repository and have not 

had problems since. When analyzing risk at the beginning of the semester, this was not 

something we had anticipated. We took this type of tool for granted and just expected it to work. 

It was not until we were emailing zip files back and forth that we realized how important 

versioning systems are to software development.

Another issue that presented itself within the last few weeks was that of BusLinc’s 

ability to respond to extreme/unexpected situations. By simulating scenarios such as being 

in a wifi blackout zone (using the phone in airplane mode), we were able to discover how the 

app responded to such situations. The app did not respond in a sophisticated manner and so 

we had to respond to this. Instead of elegantly handling a situation in which there was no 3G 

and no internet, the app simply crashed. This is a sure and certain way to lose users and get 

a handful of 1-star ratings. In order to mitigate this issue, we did our best to find all the trouble 

spots and put safety nets around them. Now, if the app runs into such a situation, it will display a 

message alerting the user that there is no internet connection rather than just crashing.

 

Project Plan

Despite the fact that the semester is over, the app will live on. Both John and Josh have 

agreed to stay involved with the project to certain degrees to help push the application along to 

ready it for release on the Android Market. Although the application is working, there is still 

plenty of work to be done to make the app worthy of use by our fellow Lincolnites.

The main thing we would like to implement before releasing is the ETA tab which has 

absolutely no functionality at the moment. This feature was not implemented since the actual 

estimations need to be done be the server and since the functionality has yet to be implemented 

on the server we cannot do much with it now. In the next few weeks when the ETA goes live 

on the server all we will need to do is add the appropriate server calls and the functionality 



will be complete. In addition to the ETA, we would like to have notification to let the user know 

when their bus is about to arrive and when they need to exit the bus. The notification will be 

able to appear on the notification bar of Android as well as a message that will appear in the 

application. In the case where the user is not looking at their phone, we want to the phone to 

vibrate or ring to alert the user.

Another main functionality that we feel is necessary to the app is being able to save 

favorite destinations from the map by clicking on specified points on the map. The actual 

implementation will be done through the balloon pop-ups that appear when clicking on an object 

being displayed on the map. The actual balloon pop-ups that our app is using come from an 

open source library obtained from github and although the library is open source we feel it would 

be in the app’s best interests to write our own balloon pop-up functionality.

The last vital thing we would like to see added to the application before releasing is 

professional images and icons. Currently all of our images and icons have either been thrown 

together by team members or pulled directly from Google which could possibly raise some 

problems when releasing. Kaylei from the server team has informed the teams she knows 

someone who could help us give our applications a sleek and uniform feel and we are looking 

forward to seeing what we can get drawn for us.

The final and most important thing that needs to get done before releasing is actually 

field testing the application. Although the application appears to be working, it would be quite 

the tragedy if we released the app without actually seeing if it works only to find out that it has 

stranded some little old lady across town. The actual testing of the application will not be an 

issue since both John and Josh own Android phones and we have had several friends and 

relatives volunteer to help test our app as well.

 

Conclusion



We all agree that the app has been a success. As software engineers we approached 

this project with over-optimism just as we would do with any other project. We had a series of 

lofty goals that we figured we could get done once May rolled around. Once we actually got to 

programming we realized how daunting these goals actually were and the project became a bit 

intimidating. However, we persevered, worked hard, and came out on the other end with the 

product we set out to create. Along the way we learned a lot. We learned specifically about 

Android platform development, but more generally we learned about a lot of mobile concepts 

and the issues that face mobile development. This has been a tremendous learning experience 

and we will more than likely use at least some of what we have learned either in our future 

careers or in our hobby programming projects. Furthermore, it was great getting to work with 

other teams of programmers. As I understand it, this experience was unique to our class 

because the teams usually have independent projects that do not involve interaction. Our class, 

on the other hand, got the benefit of working with and interacting with teams on related projects 

and experience of the benefits and struggles that come along with that.

 

 



”Never Forget”


