
University of Nebraska - Lincoln

Computer Engineering Senior Design
Project

Wireless In-Ear Audio Monitor

Team Stonehenge:
Erin Bartholomew

Paul Bauer
Nate Lowry

Sabina Manandhar

May 4, 2010

Contents

1 Motivation 3

2 Our System 4

3 Implementation 5

4 Experience 6

5 Final Progress 7
5.1 Audio Controller Board . 7
5.2 Web-Based Application . 9

5.2.1 User Interface . 10
5.2.2 WiShield . 11

6 Challenges 12
6.1 Delay . 12

6.1.1 Sound Delay . 12
6.1.2 Web Delay . 13

6.2 Distortion . 14

7 Costs 14

8 Conclusion 15
8.1 Future Plans . 15

1

List of Figures

1 Schematic . 4
2 Web Interface . 6
3 Digital commands to set volume of a PGA 2311 chip 8
4 Digital commands to set volume of a PGA 2311 chip 9
5 Summing Circuit . 9
6 Prototype for HTML and JavaScript 10
7 User Interface . 11
8 User Interface with Collapsed Sliders 11
9 WiShield Schematic . 12
10 Input and Output Delay Measurements using Audacity 13
11 Screenshot of Wireshark Tool Recording Web Delay 13
12 Market Price Comparison . 15

2

1 Motivation

In live band performances today, audio levels for playback monitors are con-
trolled through a central audio mixing device. This device often controls
multiple audio levels and is difficult to locate so that each band member has
easy access. A band member can only change the audio levels for his in-ear
monitor between songs. Such a setup becomes problematic when a band
member needs to adjust the volume on a particular instrument because that
instrument is being featured for a specific part of the song they are playing.

In fact, two of our team members have direct experience with this prob-
lem. Nate Lowry and Paul Bauer often perform in various local venues with
other members of their group. They have difficulty being able to adjust
playback monitors during songs due to the location of the single mixer that
controls those monitors. After doing some research, the group discovered a
solution that included a 48 channel mixer and several other components that
were beyond the needs of the group. This solution was also over $100,000,
which is quite expensive.

Audio signals in playback monitors also need to be practically synchronized
with the real music to be helpful. Even 50 milliseconds can throw a musician
off when he is playing. Keeping delay very small made more difficult due to
differences in audio interfaces, from digital to analog. To convert between
multiple interfaces would take more time than is allowable for audio delay.

Thus, the motivation for our Senior Design project was to create a way to
more discretely and conveniently control the audio of instruments on play-
back monitors during live band performances. Our team was also able to
achieve the goal of making the solution affordable so it is a feasible option
for musical groups to implement.

This report will discuss the following things:

• Our proposed system

• Specific implementation details

• Experiences our team has that made this project a success

• Challenges that we faced during the project

• Cost breakdown for the final product

3

2 Our System

For this project, we created a Wireless Monitor System which takes input
signals from audio sources and alters the volumes of these signals based on
input from mobile controllers such as the IPod, Zune, and Motorola Android.
Audio signals from audio sources such as microphones and guitars are given as
input. These signals are processed by an audio controller board which adjusts
the volume based on user input. The resulting signals are summed and output
to a wireless audio transmitter. The audio-controller board is controlled by
an Arduino micro-controller, which also hosts a private Web Site accessible
by mobile devices to adjust volume levels. The adjusted volume is then
experienced by the end user with the help of headphones or a receiver.

Figure 1: Schematic

The main components used in the system are as follows:

1. Audio Mixer: It is an electronic device which combines or mixes two
or more audio signals to produce combined output signal. We will use
audio mixer to combine incoming sounds from the audio sources and
feed the combined output signal to audio controller board.

2. Audio Controller Board: It is a circuit board that will process the in-
coming audio signals based on its characteristics and output it to wire-
less audio transmitter. It will be connected to Controlling computer
via a serial port.

3. Web Server: The web server houses the JavaScript for our Web Site.
The server sends amplification information to an Arduino device through
a wireless connection. The Arduino then feeds that information to the
audio controller board, where the sound is amplified and sent to the
user.

4

4. FM Transmitter: The FM transmitter will broadcast the amplified
audio output so the user is able to receive the output for the in-ear
audio monitor.

5. Mobile controllers: (Zune/IPod/Droid): These are portable media-
player that will be used as volume sliders in our system. The device
is facilitated with Wi-Fi which we will use to communicate wirelessly
with the web server to get desired volume levels.

6. Headphones with FM Receiver: This represents the receiving end of
communication channel which receive decoded messages send from the
sender. The final output is the adjusted volume processed by our sys-
tem can be listened by users using headphones or receiver.

3 Implementation

In this section, we follow the logical flow of the system from the audio source
to the user’s in-ear monitor. The components and interfaces between them
are explained.

Usable audio sources include any musical instrument or microphone that
is able to output to 1/4” TRS (Tip, Ring, Sleeve) connector. The 1/4” ca-
ble will be the input to the audio controller board. Our primary focus was
the electric guitar, though an XLR microphone can be used with the proper
cable adapter.

The audio controller board is a circuit board designed and assembled by
the team. It has 4-1/4” inputs and 1-1/4” output. The main function of
the board is digital volume control, provided by two PGA2311 chips. The
PGA2311 chips change the amplitude, or volume, of the analog input signals
based on digital input signals from an Arduino micro-controller. These result-
ing signals are summed using a simple single operational amplifier summing
circuit, then output to the 1/4” output port. The audio controller board is
examined with more detail in a future section.

For this specific use (wireless in-ear monitor system) a wireless transmit-
ter is used for output, though any set of speakers or headphones with a 1/4”
plug may be used. The transmitter may be a UHF wireless professional au-
dio transmitter or a cheaper FM transmitter. The user has the appropriate
wireless receiver on their person. This could be a UHF receiver, a standard
FM receiver or even a pocket MP3 player tuned to the proper frequency. For

5

our project, we used a Sansa Clip MP3 player which contains a FM receiver.

Another component of the system is the mobile controller. This can be any
internet enabled cell phone or other wireless device. The mobile controller
accesses a web site hosted on a private server. This web site has volume
controls that allow the increase, decrease or muting of the different audio
channels. The interface to the web site is shown in Figure 2, below.

Figure 2: Web Interface

The interface was constructed with HTML and JavaScript (jQuery), making
JavaScript is a requirement for any browser used. Proprietary frameworks
like Flash were not looked at because of further limitations it would impose.
The interface includes sliders for each channel of audio, these sliders control
the volume level of each channel. The interface also shows an icon represent-
ing what the channel is controlling - guitar or microphone. The final part of
the interface is a master volume slider that affects all channels.

A mobile controller interfaces with the controlling web site, hosted on a
private server. The server converts the volume slider positions to HTTP re-
quests that are then sent to the Arduino micro-controller, which then sends
the resulting digital commands to the audio controller board. This means
much of the web server load is handled by the private server, rather than
the Arduino. This is important, as the Arduino is not powerful enough to
handle too much load.

4 Experience

Our experience with these types of systems starts with two of our members
playing in a local band. They deal with monitor levels on a monthly basis,

6

but still struggle to find a system that works. They were the default voice
for features and usefulness of the system.

All of the group members had some experience with the components. We
had all worked with integrated circuits, web servers, mobile devices, and basic
web site creation. Our Electrical Engineering labs used many of the smaller
components such as amplifiers, potentiometers, and digital logic chips. We
were able to use this experience and knowledge of the field to select the
proper parts and assemble them correctly.

This project provided a natural division of work. The main components (the
mobile controller, audio controller board, and web server) are very loosely
coupled. They interact with each other on a very limited basis in a very
defined way. The interfaces for the audio signals are always through a 1/4”
audio jack. The private server interacts with the controller board through
a standard interface designed by the team. Finally, the web interfaces use
standard HTTP protocols as well as a standard web browser interface.

This de-coupling allowed the team to divide the work into areas of user inter-
face design, networking and circuit construction. We were able to leverage
the individual strengths of each member in these areas.

5 Final Progress

Our final product included all of the components for two of the channels.
We used guitar, microphone, and a computer headphone jack for inputs. We
also used a FM transmitter for the output.

5.1 Audio Controller Board

At the heart of the audio controller board are two PGA 2311 stereo volume
control chips. These two chips provide the ability to digitally control the
volume of up to 4 input channels. Digital commands sent by the Arduino
microcontroller provide the volume control in our solution. There are three
command lines sent by the Arduino: Chip Select (CS), Serial Clock (SCLK),
and Serial Input (SDI).

PGA 2311 volume levels are set by supplying an eight bit command per
channel (sent on the SDI line). These eight bits are each locked in on the
rising serial clock command (SCLK). This rise on SCLK is ignored unless

7

Chip Select (CS, actually NOT CS on PGA 2311 chips) is active. The figure
below shows a typical volume-setting cycle for the PGA 2311 chip. Note that
the right channel is read first (most significant bit R7, specifically), followed
then by the left channel. Also note that we do NOT use stereo amplification
in our solution. Therefore we are able to use the right channel as our first
mono-amplified channel and the left channel as our second mono-amplified
channel, providing us with two channels per PGA 2311 chip.

Figure 3: Digital commands to set volume of a PGA 2311 chip

The above figure also shows an SDO command, representing serial out of
the PGA 2311 chip. Multiple chips can be daisy-chained by tying a second
chip’s SDI line to the SDO of the first chip (the two chips sharing CS and
SCLK). The second chip’s volume commands are read first in this arrange-
ment. By daisy chaining two chips together a user is able to provide volume
control for four channels (two channels per chip).

Our implementation of a PGA 2311 volume control system is shown fig-
ure 4 on the next page.

The signal outputs from the PGA 2311 chips are sent into a summing circuit,
which allows us to sum the 4 signals into one resulting output signal. Figure
5, also on the next page, shows our simple summing circuit configuration.

8

Figure 4: Digital commands to set volume of a PGA 2311 chip

Figure 5: Summing Circuit

5.2 Web-Based Application

Since the Arduino has limited capacity, we are using WiShield (hardware
that connect to wireless network) and WiServer to process the data and send
only tiny amount of data containing commands for the volume control chip
to the Arduino board. Our first attempt was to setup a PHP server and run
it on the Arduino, but after further research, we realized PHP will not work
with the Arduino web server.

We decided to use a separate server with AJAX and JavaScript. We set up
the Arduino web server and have AJAX working. The interface of Web Site
is written in HTML and JavaScript allowing it render in any web browser.
The team is leveraging the jQuery JavaScript framework to handle much of

9

the site’s UI. The HTML file contains a script which will link it to external
java script. The external java script will have all the necessary user-interface
and send backs only the required volume in plain text to the HTML file as
depicted in figure below.

Figure 6: Prototype for HTML and JavaScript

5.2.1 User Interface

The user interface is a static Web Site which points to the Arduino. It
consists of five sliders:

• Master volume

• Microphone

• Guitar

• Bass

• Microphone

For user convenience, we have added the ability to hide channels. The user
can display only the channel he is using and hide the rest. We used jQuery to
make the user interface because it is easier to use and gives more flexibility
to developers. It uses some familiar JavaScript methods, but also has built-
in functions and methods that are easier to use. The user-interface can be
controlled from any mobile device which has Internet access and supports

10

JavaScript. Once the mobile device is connected to the controlling Web Site,
the user can use the sliders to control the volume of desired channels. We
have also implemented password protection to the Web Site so that only
authorized users will be able to control the channels.

Figure 7: User Interface

Figure 8: User Interface with Collapsed Sliders

5.2.2 WiShield

This is a piece of hardware that enables wireless connectivity to the Arduino.
The board includes stack-through headers to allow access to unused pins and
a 9-pin breakout header space for prototyping. To set-up wireless configu-
ration, we downloaded the WiShield software and WiShield library. We had
to configure wireless parameters like SSID and security for wireless network.
Since WiShiled does not support DHCP, we have to select a static IP address.
The schematic of the WiShield is shown on the next page.

11

Figure 9: WiShield Schematic

6 Challenges

6.1 Delay

For controlling any audio signals one sensitive issue is delay. We needed to
account for the audio timing issues between different components and delay
due to the private web-server.

6.1.1 Sound Delay

Sound delay is the most critical form of delay in our system. Sound delay
between signal input and output can be disastrous for a performer. A delay
of only a few hundred milliseconds can have a huge impact when trying to
keep members of a band in time with each other. We made efforts to mini-
mize delay by keeping all audio signals in their analog forms throughout the
amplification process.

Once the system was completed, we measured delay using Audacity, an open
source software audio. The input signal is a generated sine wave that is fed
through the controller board and back into the computer. There is additional
delay that is introduced by the computer hardware, so we also recorded a
base amount of delay by running the same sine wave directly from the com-
puter’s output to the input. The sound delay is the difference between the
base case of delay and the delay from the output to our system. After several
trials, we recorded an average delay of approximately 7.3 milliseconds which
is definitely an acceptable amount of delay during a performance.

12

Figure 10: Input and Output Delay Measurements using Audacity

6.1.2 Web Delay

Web delay is less of a concern than sound delay, but is essential to minimize
for a snappy system. To measure web delay, we used Wireshark, an open
source software program used to capture structure of networking protocols
and displays details of the packet data. The main purpose of using Wireshark
is to troubleshoot network problems and examine security problems. Time
delay through the web-server can be tested using this software. In testing
the web delay, we measured the time difference between the RESTful packets
sent by the web server to the Ardunio and the acknowledgment sent back by
the Arduino. Using this information, we recorded an average web delay of
approximately 0.5 seconds.

Figure 11: Screenshot of Wireshark Tool Recording Web Delay

13

6.2 Distortion

Another design concern that our team monitored is that of distortion. For
our project, we were not concerned with minor distortion as the only person
listening to the output of our system will be the performer. However, we
needed to make sure the performer was clearly able to hear all parts through
the monitor.

We had several problems with distortion when trying to sum the output
signals, requiring several iterations of summing circuits before arriving at
our final one. Our final solution is a simple current to voltage converter.

7 Costs

One of the major factors in our design was keeping the overall cost low. Here
are our costs and comparable costs of similar systems. Because afford ability

Arduino Microcontroller $50.00
Arduino WiShield $30.00
Project Box $6.00
Arduino ScrewShield $12.00
2x PGA 2311 Chips $32.00
Other Elec. Components $20.00

Total $134.00

Table 1: Cost Breakdown of Our System

is a large motivation for this project, we also performed a price comparison
to similar products that are already in the market. The chart shown in figure
12, on the following page.

14

Figure 12: Market Price Comparison

8 Conclusion

We have implemented all major features of our proposed system. We have
also configured a Project Box to house the audio controller board and Ar-
duino device. The project box has openings for audio inputs and outputs.
The project box will make our controller board configuration more secure
and portable. This is an imperative feature of a wireless audio monitoring
system because bands must be able to take the device to various performance
locations easily.

8.1 Future Plans

We have learned a lot about the wireless capabilities of the Arduino device
and the WiShield. The WiShield is first generation technology, making it
unreliable and difficult to work with. Nate Lowry and Paul Bauer intend
to continue working on this project, likely removing the wireless component
until a more reliable solution can be found.

15

