Lab: Rounding Errors

ROUNDING ERRORS LAB

Imagine you are traveling in Italy, and you are trying to convert $27.00 into Euros. You
go to the bank teller, who gives you €20.19. Your friend is with you, and she is
converting $2,700.00. You predict that she will get

100 * €20.19 = €2019.00,
but to your dismay, she gets €2019.11. Where did the extra €0.11 come from?*

1. OBJECTIVE

In this lab, we will explore a very common error in programming: rounding errors. We will
discuss how different representations of numbers in your computer can change the values that
you get when doing calculations, and how these differences can have serious consequences in
your applications.

2. INTRODUCTION

Floating point numbers

In most programming languages, including Java, C++, and C, there are multiple data types that
are used to represent numbers. The most common types are int, double, and f1loat. These
types can be signed or unsigned. We will briefly introduce these options below.

e int is used to represent integer values without any decimals.
e Decimal numbers can be represented in multiple ways:
o fixed-point or floating-point, and
o single or double precision.
* unsigned means only positive numbers can be represented
* signed means both positive and negative numbers can be represented

1 A conversion rate of 0.74782 euros to a dollar was used. You calculate $27*0.74782 and realize it comes to
€20.1911, but since there are no €0.001 in euros, your amount was rounded down to €20.19. This is one example
of rounding errors that can cause serious problems in computer software if they go unchecked.
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What are fixed point and floating point numbers?

Fixed vs. floating point refers to the position of the decimal point in the stored value. Fixed-
point means the decimal point is always in the same position, i.e. we always have the same
number of digits (in binary) before and after. For example, in base 10, we might decide to
always have 2 digits before the decimal and 2 digits after, so numbers would look like 10.00 or
00.01.

Floating point means the decimal point may be in any position of the number. The computer
stores floating point numbers the way we write scientific notation in base 10: there is a
significand (the number part of scientific notation), and exponent (the power of 10 part of
scientific notation), as well as sign bits for each (which we will discuss later). For example, we
could have 1.09x10° or 3.45x10”. On a computer, however, the numbers are represented base
2 (binary) intead of base 10. Notice that the decimal point floats to different places in the
number: 1090 int the first case and 0.0000345 in the second.

Why is floating point useful?

Floating point numbers allow you to represent a huge range of values that ints and fixed point
doubles do not. Imagine you have 4 digits with which to represent all numbers. With
integers, you can represent numbers from 0001 to 9999. With fixed point, you might get the
range 00.01 to 99.99. But say you use the first 3 digits for the significand, and the 4th for the
exponent. Then you can represent 0.01x10° to 9.99x10°, which is a much wider range!

Computer Representation

In computer memory, everything is represented in binary (base 2) instead of decimal (base 10).
Each digit is either 0 or 1, and each place is a power of 2 rather than 10. So, for example, the
floating point representation of 2.375x10° is actually 1.0011x2" in binary.

Aside: Converting to binary

When you declare an int or a double in a programming language, the computer stores it for
you in memory, automatically taking care of the details of its representation as an integer or
floating- or fixed-point decimal. However, it is useful to understand how numbers are written
in binary to avoid the types of errors that we will discuss later on.

Here is a quick tutorial of how to convert an int to its binary representation. Just follow these
steps:

1) Take the number and divide it by 2

2) If the remainder is 1, the least significant bit (2°) is 1. If it divides evenly, the bit is 0.

3) Repeat steps 1 and 2 on the result of the division. Each bit you add will be for the next power
of 2 (build the binary number from right to left). Stop when the result is 0.
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Take the example 13:

13/2 = 6 remainder 1, so our 2% bitis 1.

6/2 =3, so our 2! bit is 0. We now have 01.

3/2 =1 remainder 1, so our 2 bit is 1. We now have 101.
1/2 = 0 remainder 1, so our 23 bit is 1. We now have 1101.

Since our result is now 0, we stop and our final number is 1101.

We can convert back to base 10 by multiplying the bit value in each position by 2 to the power
of the position number.

In this example, 1101 is 23*1 + 2°*1 + 2'*0 + 2°%1 = 8+4+1 = 13. Success!

Every integer value can be represented as an exact binary number (in the computer, every
integer value in the range stated above). Consider why this is true - if we divide by 2 each time,
eventually we will get to 0 with remainder 1 (If you don’t believe this, try it out on a few
numbers!). This will always be our most significant bit.

Note: To get the binary representation of a negative integer, we want to use the “two’s
complement.” This means flipping all of the bits and adding 1 to the result. To show that it is
negative, we add a sign bit of 1 before the binary. For example, if we want -9, we take 9=1001
in binary, flip the bits to get 0110, add 1 to get 0111, and add a 1 as the sign bit for a final
10111. To be able to understand this binary, we have to know if the binary is signed so we look
for a sign bit. Then we can do the reverse of what we just did instead of reading this as the
unsigned 23.

Decimal values are trickier, since many decimals cannot be represented exactly in binary. For
the integer part of the decimal value, our conversion is the same as above. For the decimal
part, however, we go through a similar process, but multiplying by 2 instead of dividing, and
building the number left to right. We add bits one at a time after the decimal point, starting
with the 27 bit, then 272, 273, etc.).

1) Take the decimal number and multiply it by 2.

2) If you get a number <1, your next bit is 0. Return to step 1.

3) If you get a number >1, your next bitis a 1. Subtract 1 from the number, and return to step 1
4) If you get exactly 1, your next bit is 1 and the algorithm is complete: you have found the
exact representation.

You might be able to see why this can be an issue - while division always gets down to the base
case of 0 remainder 1, with multiplication there is no obvious stopping point unless you reach
1.
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Consider trying to convert 0.2 to binary:

0.2*2=0.4, so our first bit is 0, giving .0.

0.4*2=0.8, so we now have .00.

0.8*2=1.6, so our next bit is 1, giving .001.

We now take 1.6-1=0.6, and continue with 0.6*2=1.2. This gives us .0011, and we take 1.2-
1=0.2 as our next number.

We are now back with 0.2, which is where we started. If we continue this process we will
repeat this cycle infinitely, never reaching 1 exactly. Our binary number is
0.0011001100110011..., but it has no exact representation.

This will be important to remember as we discuss floating point numbers and rounding errors in
this lab!
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This is where single vs. double precision floats come into play. Single precision means that the
number uses one “word” of memory, which in most operating systems in 32 bits, to represent
the number. A double precision uses two words, i.e. 64 bits, and therefore can be more precise.

When these values are signed, they have to split their available range between positive and
negative numbers, which means that they cannot reach as high a positive number as an
unsigned int. This is because one of these 32 (or 64 for doubles) bits is reserved to mark
whether the number is positive (0) or negative (1).

Ranges of Numeric Types

Type Min Max
Unsigned int 0 4,294,967,295
Signed int -2,147,483,648 | 2,147,483,647

Signed double | -1.79769e+308 | 1.79769e+308

Source: defined as constants in C++ in “limits.h” for ints and <cfloat> for doubles

For a 32 bit unsigned float, there are 23 bits for the significand (in the format X.XXXXX...), a sign
bit for the exponent that is O for positive and 1 for negative, and 8 digits for the exponent value.

If it is a signed float, there are 2 sign bits (one for the significand, one for the exponent) and one
less bit used for the significand. We will continue to use the base 10 analogy in this example,
since it is more familiar for many students.

For more information, check out this series of YouTube videos about floating points and their
representations:

Floating Point Background: http://www.youtube.com/watch?v=svFJXukm2uE

Floating Point Example: http://www.youtube.com/watch?v=t-8fMtUNX1A
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So what’s the problem?

There are several problems. We describe them below, demonstrating what can go wrong when
we are using 4 decimal digits to represent a floating point number. Keep in mind that on a
computer, binary bits are used instead of decimal digits, and there are many more bits than 4,
but the same problems still apply.

Imprecision: Say you wanted to represent 93,425. We can write 9.34x10" (93,400) or 93.5x10"
(93,500), but not 93,425 exactly. What if we tried to do 9.34x10* + 2.50x10" to get 93,425?
When we add these numbers together, we can still only represent 3 significant digits, and we
again get 9.34x10*. This can cause significant errors in calculations. If you tried to add 2.50x10*
to 9.34x10" 40 times, you should get 9.44x10", but instead you would just get 9.34x10* using
this logic.

Rounding Errors: Suppose you wish to represent the number 1/7 in decimal. This number goes
on infinitely repeating the sequence 0.142857. How would you represent this in the above
representation? 1.43x10 is as close as you can get. Even with 10, 20, or 100 digits, you would
have to have some rounding to represent an infinite number in a finite space. If you have a lot
of digits, your rounding error might seem insignificant. But consider what happens if you add up
these rounded numbers repeatedly for a long period of time. If you round 1/7 to 1.42x10™, and
add up this representation of 700 times, you would expect to get 100, or 1.00x10% However,
you instead get 9.94x10%.

Base 2 confusion: In binary, rounding errors occur in fractions that cannot be represented as
powers of 2 (rather than base 10 like the examples above). In fact, there is no way to represent
1/10 exactly in binary, even as a floating point with 23 digits. We can get a close approximation,
but this is often not good enough - as you will see in the later example of the Patriot Missile
disaster, these rounding errors can sometimes have huge consequences. A power of 2 like %
(i.e. 2°), on the other hand, is exactly 0.001 in binary, and there is no rounding needed.

Why should we care?

Relatively small imprecisions and rounding errors like the ones described above can have huge
impacts. In this lab, you will look at a few real world examples of the problems these rounding
errors can cause. Knowing how these rounding errors can occur and being conscious of them
will help you be a better and more precise programmer.
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3. EXERCISES

Note to instructors: Some of these examples rely on 32-bit representation of floats. If this is an issue,
there is a flag “-mpc32” that can be used which will force the gcc compiler to use 32-bit floating points.
For a list of flags please see http://gcc.gnu.org/onlinedocs/gcc/i386-and-x86_002d64-Options.html

3.1. TRY IT YOURSELF!

Now that we’ve discussed the difficulty of representing 1/7 in base 10, try representing 1/7 in
base 2, and add up this representation 700 times.

#include <iostream>
using namespace std;
float addFraction() ;
int main () {

cout << addFraction() << endl;
return O;

float addFraction () {
float fraction = (float)l/7;
// Your code here
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1) Run this program. What is the total after adding the fraction 1/7, 700 times?

2) Now change the fraction from 1/7 to 1/6 and add this up 600 times, what is your answer
now?

3) Which one of these fractions was rounded up? Which one was rounded down?

4) Change the fraction to 1/8 and add this 800 times. What is the answer? Why? (Hint: Think
of the binary representation for powers of 2.)*

ZA good source to convert between base 10 to base 2 is http://www.binaryconvert.com/
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3.2. GOOGLE CALCULATOR

You are in the library and need to do some calculations for your physics homework. However,
you just realized that you forgot your calculator at home and decide to use Google calculator
for your answers.

Here is the calculation you need to make. You have two objects. Object one traveled 1.0 meter
and object two traveled .999998 meters. You want to find the difference between the two, so
you go to google.com and search for: 1.0-0.999998. To your dismay, Google calculator tells
you that 0.00000199999 is your answer! You know that this is wrong, since the answer is
clearly 0.000002.

What could have possibly gone wrong?

Goc )gle 1- 999998 ——

Web Images Maps Shopping Books More ~  Search tools
e (095 seconde
1-.999998 =
0.00000199999
Rad x! ( ) % AC
Inv sin In 7 8 9 +
n cos log 4 5 6 X
e tan v 1 2 3 -

Ans EXP xY 0 . H T

* Source: Google and the Google logo are registered trademarks of Google Inc., used with permission.
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3.2.1 Representation of numbers (Google v. Bing)

Now that you found this error, you decide to try out a few more calculations in search of an
answer.

First, go to Google® to see this error with your own eyes, search for: 1.0 - 0.999998
What do you get?

You remember that a friend told you that Bing is better at math, so you try the same search, 1.0
- 0.999998. What do you get now?

Bing and Google show you different answers for the same calculation, but only one of the two
calculations is right. What could have Bing done differently from Google in this situation?

While the actual implementation for these numbers is unknown to the public, the most likely
explanation for these errors lies in the underlying binary representation of numbers by each of
these search engines.

*To get to the Google calculator, simply go to google.com and type the equation into the search bar. If this does
not bring up the Google calculator, try adding “=" (without the quotes) after the equation.
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3.2.2 Write your own calculator: The difference between int, f1oat, and double

As previously discussed, there are multiple data types that are used when representing
numbers. The three main types are f1loat, double, and int. In this section, you’ll explore
which type works best in different scenarios.

It might be useful to look back at the introduction and review each of these types. In this
example, each of these types is signed.

In order to better understand these data types, write a program that subtracts two numbers
using the three different data types described, and then compare the results.

To do this, printout f1oatl - float2,doublel - double2,and intl - int?2.

Note that in the following code, “??” are placeholders for the numbers that will be used in the
exercises below.

#include <iostream>
using namespace std;
float numFloat () ;

double numDouble () ;
int numInt();

int main () {
cout << "float: " << numFloat () << endl;
cout << "double: " << numDouble () << endl;
cout << "int: " << numInt () << endl;

return 0;

}

float numFloat () {
float numl = ?7?2;
float num2 = ?°?2;
return numl-num2;

}

double numDouble () {
double numl = ?7?;
double num2 = ?7?;

return numl-num?2

}

int numInt () {
int numl = ?7?;
int num2 = ?7?;

return numl-num2;
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Note: Some compilers might report an error if a decimal is forced into an int. Remember type
casting? (See endnote 2) If you try type casting the decimal into an int, your error will go
away. Typecasting into an int: “int numl = (int)??;”

1) You want to test out your calculator’s limits. Try each of these functions subtracting the
number 0.999999999998 from 1.0 (in the code above, set each num1 to 1.0 and each num?2 to
0.999999999998).

a. What is the result when the numbers are represented as f1oats?
b. doubles?

C. ints?

2) Now, going back to your physics calculation, try to see if your calculator can get a better
answer than Google did for 1.0 - 0.999998.

a. What is the result when the numbers are represented as f1oats?
b. doubles?
c.ints?

3) Modify your code to perform addition instead of subtraction.

4) Try adding these numbers: 100,000 and 0.5

a. What is the result when the numbers are represented as f1oats?
b. doubles?

C. ints?

5) Try adding these numbers: 3.25 and 0.25
a. What is the result when the numbers are represented as f1oats?
b. doubles?
c.ints?
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6) Try these numbers: 222,333 and 1,222,333
a. What is the result when the numbers are represented as f1oats?
b. doubles?

C.ints?

7) Now, try experimenting with more numbers. (l.e. large integers, extremely small decimals,
decimals up to hundreds place, or decimals mixed with integers.)

a. Which of these numbers seemed to be best represented by f1oats?
b. doubles?
C. ints?

d. Were your answers for f1oats and doubles the same or different?

8) Compare your results to those of your neighbors to see if you got different answers to any of
your calculations.

As you might have noticed, ints only work for integers, while f1oats and doubles are better
fitted for decimals. However, f1oats are represented differently from one computer to
another. So you might or might not have seen your answers for £1oats differ to those of your
neighbors.
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9) In order to solve the mystery between floats and doubles, it is important to look at how
many bits of information each type stores. To do so, print out the size of int, float, and

double. You can do this by using sizeof (), which prints the size of each of these data
types in bytes.

int main () {
cout << sizeof (int) << endl;
cout << sizeof (float) << endl;
cout << sizeof (double) << endl;
return 0;

a. Given that 1 byte = 8 bits, how many bits does an int keep track of?
What abouta f1oat?

double?

If the size for f1oats and doubles are the same on your computer, then the answers for your
previous solutions (Previous exercises 1-7) were the same for f1oats and doubles. On the flip
side, if the size for f1oats and doubles are different, your answers to your previous solutions

were also different. This is because some machines store 32bits for the type £1oat, while
others will store 64bits.

b. Explain how storing 32 bits versus 64 bits for the type £ 1oat will cause your answers
to be different when doing arithmetic with small numbers.
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3.3. Patriot Missile Failure

While some of these rounding errors seem to be very insignificant, as described by the
accounting and Euro conversion examples, small errors can quickly add up. One of the most
tragic events caused by rounding errors was the Patriot Missile Crisis in 1991.°

Patriot Missiles, which stand for Phased Array Tracking Intercept of Target, were originally
designed to be mobile defenses against enemy aircraft. These missiles were supposed to
explode right before encountering an incoming object. However, in Feb. 25, 1991, a Patriot
Missile failed to intercept an incoming Iragi Scud missile, which struck an army barrack in
Dhahran. This killed 28 American soldiers and injured around 100 other people!

> Source: “The Patriot Missile Failure”, University of Minnesota. 4 Feb 2013.
http://www.ima.umn.edu/~arnold/disasters/patriot.html.

® Source: [Photograph by officer or employee of United States Government]. 22 April 2006 [Photograph]. Patriot
Missile PAC-2. Retrieved 5 March 2013. http://commons.wikimedia.org/wiki/File:Patriot_08.jpg#filelinks
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What went wrong?

The system’s internal clock recorded passage of time in tenths of seconds. However, as
explained earlier, 1/10 has a non-terminating binary representation, which could lead to
problems. Let’s look into why this happens.

This is an approximation of what 1/10 looks like in binary:

0.0001100110011001100110011001100...

The internal clock used by the computer system only saved 24 bits. So this is what was being
saved every 1/10 of a second:

0.00011001100110011001100
Chopping off any digits beyond the first 24 bits introduced an error of about:

0.0000000000000000000000011001100
which is about 0.000000095 seconds for each 1/10 second.

This Patriot battery had been running for about 100 hours before the incident. Imagine this
error adding up 100 hours, 10 times for each second!

1) How does this small error add up in 100 hours? Calculate the total rounding error for this
missile.

The small error for each 1/10 of a second was not believed to be a problem, for the Patriot
Missiles were not supposed to be operated for more than 14 hours at a time. However, the
Patriot battery had been running for over 100 hours, introducing an error of about 0.34s!

Given that the Patriot Missile was supposed to intercept a Scud traveling 1,624 meters per
second, 0.34 seconds was a huge problem!
16
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2) A Scud travels 1624 meters/second, how much would the Scud have advanced in the 0.34
seconds?

The Scud traveled more than half a kilometer in this amount of time. Therefore, the Scud was
out of the Patriot Missiles range, hitting the army barrack in Dhahran.

3) Now that you know more about rounding errors, is there a way this catastrophe could have
been prevented? What about trying to count steps by a different fraction? What would be an
ideal fraction close to 1/10 that could have solved this problem?
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3.3.1 PATRIOT MISSILE. PROGRAMMING EXAMPLE.

Oh, how exciting! It looks like you have traveled back in time with your computer and you need
to write the code for the Patriot Missile. You are using the same computer you have right now,
and because you are doing this before taking this class, you decide to count time in 1/10 again.

int main () {
float total = 0;

//100 hours, 60 min/hr, 60 sec/min, 10 tenths/sec = 3600000
for (int 1 = 0; i < 360000*10; i++){
total += (float) .1l;

cout << total << " - total number of seconds recorded" << endl;

int correct = 360000;

cout << correct << " - the correct number of seconds in 100 hrs"
<< endl;

float difference = correct - total;

cout << difference << " - seconds your calculations are off"
<< endl;

cout << 1624 * difference
<< " - meters traveled by scud in time difference" << endl;

return 0;

1) Run this program. What is the distance traveled by the Scud in the amount of time the
Patriot Missile was off?

2) You know better than this! You go back in time, again, and decide to re-write this code.
What value are you going to use instead of 1/107?

3) What happens now? What is the amount traveled by the Scud in the amount of time your
Patriot Missile calculated wrong?
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