Mediated Transfer: Alice 3 to Java

Wanda Dann
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
1-412-268-9959

wpdann@andrew.cmu.edu

Don Slater
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
1-412-268-4370

dslater@cs.cmu.edu

ABSTRACT

In this paper, we describe a pedagogy for an undergraduate
programming course using Alice 3 and Java. We applied the
educational theory of mediated transfer to develop a new version
of the Alice system and accompanying instructional materials.
The pedagogy was implemented and tested over two years.
Student test scores in experimental, treatment course sections
showed dramatic improvement over scores in comparable non-
treatment sections.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Measurement, Experimentation, Human Factors

Keywords

Alice, Java, Mediated transfer

1. INTRODUCTION

In this project, we developed and tested a pedagogy (teaching
techniques and instructional materials) for a college level first-
year programming course that uses Alice 3 and Java. Alice takes
advantage of the high level of interest and motivation students
find in video games and animated films. Since its release in 2004,
Alice 2 and other highly innovative visualization tools have been
increasingly adopted in college-level courses, particularly in
courses for non-majors and in CS0. In addition, we have recently
seen a wide-spread adoption in K-12 schools as an educational
tool for introducing computational thinking and fundamental
programming concepts. We want to build on this framework and
encourage students to continue learning computing in AP CS and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’12, February 29—March 3, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02...$10.00.

Dave Culyba
Human Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213
1-412-268-4074

dculyba@andrew.cmu.edu

141

Dennis Cosgrove
Human Computer Interaction Institute
Carnegie Mellon University
Pittsburgh, PA 15213
1-412-268-4074

dennisc@cs.cmu.edu

Steve Cooper
Computer Science Department
Stanford University
Stanford, CA 94305
1-650-723-9798

coopers@stanford.edu

CS1 courses. (CS1 is defined here as a typical undergraduate,
first course in programming with standard curriculum concepts
[1].) Java is a widely used language of instruction in first-year
college programming courses and is the language choice in the
current AP Computer Science course.

In terms of technology, we built Alice 3 and a custom plugin for a
Java integrated development environment (IDE) that translates the
Alice 3 abstract syntax tree (AST) into Java code. In terms of
pedagogy, we developed a tailored set of instructional materials
that integrates the Alice problem solving strategy (originally
introduced using Alice 2 [5]) with support for mediated transfer
teaching techniques known as "bridging" and "hugging." This
Alice 3 to Java approach is designed to enable students and
instructors to transfer concepts learned in the context of Alice
animations to programming in Java.

We conducted a two year study of the effectiveness of this Alice 3
to Java approach in terms of student achievement. Our hypothesis
was that using explicit mediated transfer with Alice 3 would
improve student achievement in learning Java in a CSI1, one-
semester course while still maintaining the strengths of the
approach originally introduced with Alice 2 in a pre-CS1 course,
(i.e., a course preparing students for CS1).

2. EDUCATIONAL TOOLS

Multiple tools and pedagogic approaches are available for
teaching Java programming at the high school and undergraduate
college level. In this section, we describe Alice and two well-
known tools for teaching/learning Java. The purpose is merely to
clarify the distinctions between Alice 3 and some currently
available tools that have some visual component for teaching
Java.

2.1 Alice

Alice is a programming environment specifically designed as a
teaching/learning tool to enable novice programmers to create
animations and games using 3D worlds [16, 17]. In Alice,
hundreds of 3D models (e.g., people, animals and props) are
provided in a gallery of Java classes. Instances of these classes are
created to populate a virtual world. The Alice IDE provides a
drag-and-drop editor (not text-entry) to create program code that

animates these objects, thereby eliminating the possibility of
novice programmers creating syntax errors. Alice was designed
by studying how novices try to describe the motions of objects in
a 3D world, and then modifying Alice to reflect these observed
expectations [18]. Alice makes use of program visualization and
enables students to immediately see how their animation programs
run, enabling students to easily understand the relationship
between each individual programming statement and the
corresponding behavior of objects in their animation.

2.2 BlueJ

Bluel [20] is an educational tool used in teaching with an objects-
first methodology. Bluel is a text-entry Java IDE in which the
user generally starts with a predefined set of classes. The class
structure is presented graphically, in UML-like fashion. The user
can create objects and invoke methods on these objects to
illustrate their behavior. Later, users may create their own classes.
(BlueJ provides a graphical representation of these classes as
well.)

2.3 Greenfoot

Greenfoot[12] is an interactive environment that enables students
to develop 2D graphic applications such as simulations and
games. Greenfoot works with a text-entry Java IDE. At its most
fundamental level, Greenfoot has two built-in classes, World and
Actor. The user creates a program in Greenfoot by declaring sub-
classes of Actor and then implementing an act method, in
standard Java, for each sub-class. Execution of a Greenfoot
program consists of a built-in main loop that iteratively calls each
actor's act method.

3. PREVIOUS WORK

Alice 2 has been used successfully as an intervention to draw at-
risk students into computing [4, 5, 6]. At-risk students were
defined as those students who had demonstrated less success in
math and/or those who had little previous programming
experience. A textbook [5] was developed and pilot tested in
introductory computer programming courses (pre-CS1) offered at
Saint Joseph's University and Ithaca College. Additionally, a
detailed set of curricular materials [8], including several different
curricular models (with complete lecture notes), laboratory
exercises, solutions, exams, assignments, sample student projects,
and other material, was created.

The primary results of this investigation [14] were:

oThe average grade for at-risk students exposed to Alice was a
3.0 GPA in CS1, which is comparable to the grades of students
who were at no risk or low risk. The average grade for at-risk
students not exposed to Alice was a 1.2 GPA in CSI1.

*88% of at-risk students exposed to Alice enrolled in CS2 after
CS1. Only 47% who were not exposed to Alice enrolled in
CS2. (p < .05, chi-squared)

Investigators in this study concluded that the Alice approach
doubled retention rates of at-risk students and increased
achievement by at least one letter grade.

Other investigators have performed studies in various courses and
reached supportive conclusions. For example, Mullins, Whitfield,
and Conlon [15] concluded: “Retention data shows that the
incorporation of Alice into the programming sequence has
increased the number of students that pass the courses and
decreased the number of withdrawals. Also, the number of
students enrolling in Alice has increased by 10% as the number of
majors has dropped by 50%.”

142

Instructional materials have been designed for and tested with pre-
CS1 and pre-AP courses. Over the last six years, dozens of Alice
professional development workshops have been conducted in
which the curricular materials and the Alice approach for pre-CS1
and pre-AP were presented.

In National Science Foundation-sponsored workshops [9], surveys
were used to obtain feedback from participants regarding their
intended target audience and their plans for using Alice 2 in their
courses. One clear survey result was a significant demand for
curriculum and instructional materials that could be used to blend
the Alice approach with Java in a "regular CS1" course. The
primary reason for this demand is the reality of reduced budgets
and limited resources in collegiate Computer Science
departments, which limits their ability to offer a pre-CS1 course.
Community colleges face similar problems and are further
burdened by the constraints of a 2-year curriculum and the need to
adhere to articulation agreements.

To respond to this demand, a major question had to be answered:
How can we use Alice to teach/learn fundamental programming
concepts in an engaging context and then apply those same
concepts in a text-based Java environment? Early attempts to start
with Alice 2 and then move to a professional programming
language in the same course demonstrated that "new techniques
are needed to improve student confidence during the transition
from Alice’s graphical, syntax free, storytelling environment to
object-oriented textual programming."[19] This observation was
confirmed in course sections instructed in Spring, 2006, by one of
the investigators in this study.

Three textbooks have been published in an effort to address this
issue [2, 3, 13]. In each of these texts the authors (including an
investigator in this study) use Alice 2 examples to introduce a
programming concept and then a traditional Java program that
uses the same concept. Of particular importance is the study that
underlies the Alice and Media Computation textbook.[3] An
experimental study was conducted by Cooper, co-author of the
text, at Saint Joseph's University. Eight high-risk students (3™
quartile of math background) were taught using a back and forth
approach (Alice, Media Comp, Alice, Media Comp, etc.). All
students successfully finished the course and 4 of the students (3
of whom are women) switched their major to CS. The results of
this study involved a starting n too small for research publication
and Cooper took a position at NSF prior to being able to replicate
the study. The experimental results, however, were encouraging to
the investigators and the study strengthened our motivation to
create a version of Alice that would support the ability to transfer
an Alice animation directly into Java code.

4. MEDIATED TRANSFER

The goal of an Alice 3 to Java approach is to take advantage of
Alice in developing an intuitive understanding of both object-
oriented and fundamental programming concepts and then transfer
the Alice program directly into Java and programming in a text-
based IDE. By using the exact same example in both Alice and
Java, we can better mediate a transfer of concept.

4.1 Educational Theory

Educational theorists are adamant that learning should be
transferable. [7, 11, 21] That is, what is learned in one context
should be employable in another context. Although we may

expect transfer of learning, it does not necessarily occur "on its

own.

A good illustration is the following anecdote [21]: A Physics
professor presented and solved this problem in lecture: "A ball
weighing 5 kg is dropped from the top of a building that is 100
meters high. How many seconds later does the ball hit the
ground." Then, this problem was on the next exam: "A hole in the
ground is 150 meters deep. A ball weighing 7 kg is dropped into
the hole. How long does it take for the ball to reach the bottom of
the hole?" One student complained to the professor that the
problem was unfair because "We didn't have any hole problems!"

While we might dismiss this as just a funny story to tell our
colleagues, it is actually a common student experience in many
problem-solving disciplines. In our experience, it is not unusual to
observe students who are bewildered and not at all sure of how to
begin designing and implementing program code for an assigned
project, even though a similar problem was previously
demonstrated in lecture/presentation.

4.2 Teaching for Transfer

The art of teaching for transfer, known as "mediating transfer,” is
an active research field [7, 11, 21]. Perkins (Harvard Graduate
School of Education)[21] and Salomon (University of Arizona)
[21] define two broad categories of techniques that teach for
transfer. The first category is "bridging," in which the teacher
helps students build a bridge from the context in which a concept
was learned into other potential contexts. Bridging is in the form
of meanings, generalizations, and insights. The second category
is "hugging," in which the teacher makes the learning situation
more like the situations in which transfer is expected.

In this Alice to Java approach, we apply a "bridging technique" of
using analogies, and the reasons for them, to encourage students
to abstract the concept and recognize other contexts in which it
may be applied. For example, in Alice we introduce the concept
of parameter data types by writing a procedure to have a dragon
fly toward a target object, a given distance, in a given amount of
time. The target object's data type is Person and the distance and
amount of time are each of type Double. We then discuss the
example with students, using the analogy of ordering a pizza on
their cell phone. The waiter taking an order will ask for the size of
the pizza (Double), whether or not it is to be delivered (Boolean),
and so forth. Each of these items is a different data type. Then, we
ask students to work in pairs to brainstorm other situations where
information must be supplied in order to carry out some action.
The idea is to integrate into Alice to Java instructional materials
the use of techniques that teach for transfer. Using analogies and
encouraging students to develop their own generalization of a
concept in different contexts is just one example of a bridging
technique.

Fortunately, using bridging techniques in instructional materials is
software independent. Further, many teachers already use these
techniques in their teaching styles. However, using a "hugging
technique" for transitioning from Alice to Java implies that
writing a program in Alice needs to be more like writing a
program in Java. Clearly, this means the Alice software must
undergo changes — but at what cost? Alice allows students to
assemble programs using a drag-and-drop editor. An advantage of
the drag-and-drop editor is that students can focus their attention
on understanding a fundamental programming construct without
the initial distraction and frustration of syntax details.

143

To maintain a drag-and-drop IDE and also "hug" Java, Alice 3 has
been designed to provide a set of preference options that allows
the student to view Java code with greater syntax details than in
Alice 2. (Note: Alice 2 had a similar option, but the code was
"Java-like," whereas Alice 3's Java display is a far more accurate
representation.) Figure 1 illustrates the preference options for Java
code in Alice 3. Figure 2 illustrates the Java code, with all
parentheses, quotes, commas, and semicolon syntax detail.

V' Ermphasize Classes

V' Always Show Blocks
Include "this" For Field Accesses

V' Include Type Decoration
Expose Re-assignability For Fields And Locals
Recursion...

Edit Sceng
= Gallery (2

Figure 1. Java options in Alice 3

decigre procedure LN on ciass

doin arder

| (hare) move(oveDreston RIGHT 0) more ; |
hare)say(fhoi)) more | |

Figure 2. Java code in Alice 3

We found that the more accurate representation of Java code in
Alice 3 is a step in the right direction, but it is not sufficient to
truly "hug" a Java text-editor environment. For more effective
transfer, we developed a plugin for NetBeans (an open source
Java IDE[10]) that allows students to transfer their Alice project
directly into Java, as illustrated in Figure 3.

Choose Project

Cateqgories: fojects:
D NERE #h Java Project from Existing Alice Project
{53 Maven Java Application

& Java Deskkop Application

& Java Class Library

@ Java Project with Existing Sources
5{}, Java Free-Form Project

) MetBeans Modules
B3 Samples

Figure 3. Transferring an Alice Project to Java

When a student transfers their own Alice project from Alice 3 to a
Java IDE, the context does not change. They are still working
with the same animation program as was created in Alice but now
the code can be modified using traditional text editing. Figures 4
and 5, below, show an example of student code for the following
assignment:

Build a commercial for Bug’s Gym, where a frog catches
a bug and gets a surprise when the bug grabs the frog's
tongue, lifts the frog off the ground, and carries it away
to drop in a nearby pond. The commercial message is
“Learn how to handle bullies at Bug’s Gym.”

FURN ¢) on ciass MyScene)

o in order
'::: ‘moveAndOrientTo(Chuy_Red =20) _morsyl]
frogCatchBugg;]
.bugLiftsFrog{;]
.bugCarriesFrogAway(;]
.message;

Figure 4. Alice 3 code for Bug’s Gym

public wvoid run()
bug.wovelnddrientTo | bug Red, £.0):
this.frogCatchBug(bug) ;
this.bugLifcsFrogi)
this.bugCarriesFrogliway () :
this.message () :

Figure 5. Alice 3 code transferred to NetBeans

With each transfer of code from Alice 3 to a Java IDE, the
instructor uses “hugging” techniques to directly connect Alice
code to Java code. For example, both Alice 3 and Java IDE are
displayed on a projector and lines are literally drawn from Alice
statements to equivalent Java statements. Then, students are given
a previously unseen Alice code segment and asked to write (on
paper) the equivalent code in Java. In this same lab exercise,
students are also asked to modify the code in the Java IDE to add
a second frog and, at runtime, ask the user to select which frog
that will perform the actions with the bug. This modification is
done in the Java IDE with text-entry and requires that some
methods be modified to use parameters.

5. TESTING AND EVALUATION
5.1 Historical Data

For comparison purposes, historical data was collected from a
final exam originally administered in the Carnegiec Mellon
University (CMU) 15-100 course sections in the Spring semester,
2006. At that time the CMU 15-100 course was a course in Java
programming and students in the course included both majors and
non-majors. Course instruction consisted of three 50-minute
lectures/presentations and one 50 minute recitation/lab session per
week.

Because final exams and summaries are kept on file for at least 3
years, access to a historical record of raw scores, broken into the
topic sections of the exam (Parts 1-6) as well as final scores
(total 100 possible points) were available. Student identities
were protected as no student names were included in the
summary.

The content of questions in each part is listed here:
Part 1: Expression evaluation (arithmetic, Boolean, String)
Part 2: Control Structures (conditionals, iteration)
Part 3: Arrays of Primitives
Part 4: Work with a class definition
Part 5: Work with arrays of objects
Part 6: Write code in a class

For this study, we selected all course sections in which Alice 2
was introduced during the first two weeks of the course, before
switching over to Java for the remainder of the course. Mediated
transfer techniques were not used, as Alice 2 did not have the
capability of supporting a direct transfer to Java.

Students in the selected class sections include both majors and
non-majors, although more than 70% were non-majors. We
collected data only from these sections of the CMU 15-100 course
because other sections did not use Alice 2 and we were
specifically testing for the effect of mediated transfer in a one-
semester course. Other variants in demographics, such as sections
specifically for majors and sections with a majority of majors,
also contributed to this selection process.

Table 1 summarizes the historical data from that exam in the
sections selected for the study. The number of students tested was
67 (n=67).

Table 1. Historical Achievement Data, Spring 2006 (Java Only)

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Total
Points 7.45/10 6.84/15 9.42/15 14.7/20 9.21/20 | 13.2/20 60.8 /100
Percent 74% 46% 63% 74% 46% 66% 61%
Table 2. Experimental Achievement Data, Fall 2009 (First Trial Alice to Java)
Part 1 Part 2 Part 3 Part 4 Parts 5 & 6 Total
Points 13.06/15 17.46 /20 16.3/20 21.26/25 16.88/20 84.96 /100
Percent 87% 87% 81% 85% 84% 85%

144

Table 3. Second Trial, Fall 2010 (Second Trial Alice to Java)

Part 1 Part 2 Part 3 Part 4 Parts 5 & 6 Total
Points 13.1/15 16.0 /20 16.5/20 21.75/25 14.54 /20 81.52 /100
Percent 87% 80% 83% 87% 73% 82%

5.2 First Trial

In the Fall semester of 2009, experimental sections of CMU 15-
101 were offered. The course instructors used the Alice 3 to Java
mediated transfer approach and curricular materials. Course
instruction time for 15-101 was the same as the previous 15-100
course consisting of three 50-minute "lectures/presentations" and
one 50-minute "recitation/lab" per week. One of the participating
instructors had also taught the 15-100 course in 2006 and was
familiar with the standard course content.

At the conclusion of the Fall 2009 semester, students in 15-101
took the same exam (with the modification that topics in Parts 5 &
6 were merged to use a 3D animation example as a basis for the
questions). The number of students tested in Fall 2009 was 50,
most of whom were non-majors and had little if any prior
programming experience (n = 50). The data shown in Table 2
summarizes results in the Fall 2009 semester. There was no
significant difference in student scores between sections taught by
the one instructor and sections taught by a second instructor.

Table 2 indicates that Parts 5 & 6 were merged. As described
above, Parts 5 & 6 of the original exam (Spring 2006) were
blended into Part 5, using a programming example for an Alice 3
animation. Although the program is for an animation, it was
written on paper in Java. Students were asked to write their code
in Java (as on the original exam). Even with these disclaimers, we
are uncomfortable making any claims with regard to Parts 5 and 6
of the exam. For the purpose of full disclosure, Tables 1, 2, and 3
include all data for all Parts. For the purpose of comparison,
however, Figures 5 and 6 below will display only Parts 1 — 4.

The best (most scrupulous) evaluation of this data is to compare
percentage scores where Part 1 is compared to Part 1, Part 2 to
Part 2, and so forth. Comparisons of respective parts of the exam
show a consistent gain of at least 10 % (one letter grade) and the
gain in Part 2 is nearly double, as can be seen Figure 5. An
ANOVA analysis of the data yielded p < 0.001 for each Part of
the exam as well as for the Total scores.

100 1
. 80 1
£ 60 -
g
=] J
f — Spring 2006
20
m Fall 2009
0 -
N oY Y N
Q’b(‘“ be{' Q’b'(g szg' <G
Final Exam Parts and Total

Figure 5. Comparison of Parts, Spring 2006 and Fall 2009

145

5.3 Second Trial

The data collected and analyzed in Fall 2009 showed a clear
increase in scores in the respective parts of the exam. Being wary
about making broad claims based on a single trial run of the
instructional materials and curriculum, we made a decision to
extend the study and run a second trial.

In the Fall 2010 semester, an experimental section of CMU’s 15-
101 (Alice to Java) course was conducted once again, using
instructional materials developed in this project. The number of
students involved in this iteration was 28 (n = 28). As in the first
trial (Fall 2009), the students were primarily non-majors and had
little or no previous programming experience. To control as many
other factors as possible, the same instructors taught the courses
and used the same instructional approach. Further, course
instruction time for 15-101 remained consistent, three 50-minute
instruction sessions and one 50-minute recitation/lab sessions per
week.

The evaluative exam was administered for this test group and raw
scores and percentages for this iteration are listed in Table 3.
Again, all raw data is reported, for purposes of full disclosure. An
ANOVA analysis of the data yielded p < 0.001 for each Part of
the exam as well as for the total scores.

5.4 Summative Comparison

The exam score data can be interpreted as a guide to the
achievement of students in the treatment course. In each semester,
the final exam was written in "pure Java." That is, all questions
were stated and all answers were written using Java.

Two trials were run to obtain reliable data for comparison, one in
Fall of 2009 and one in Fall of 2010. The original exam (Spring
2006) was taken by a diverse group of students, including both
majors and non-majors (though the majority was non-majors).
The exam taken in Fall 2009 and in Fall 2010 was taken almost
entirely by non-majors. Figure 6 summarizes the results of the two
trial runs with the historical data.

100 ~
—_ 80
il |
§ a0 - Spring 2006
? 50 - = Fall 2009
0 A m Fall 2010

A P T T
(&. LY,
Q’Z'SK' Q@ sz>6 Q'b{" <0

Final Exam Parts and Total

Figure 6. Summative comparison

In the summative comparison for Parts 1 — 4, average student
scores (expressed in percentage) in Fall 2009 and 2010 sections
were consistent. This provides evidence that the test results are
reliable. In viewing the overall scores, student achievement in the
experimental sections averaged at least one letter grade above
those in the control course sections in Spring 2006. This result
provides evidence to support our hypothesis. Our hypothesis was
that using explicit mediated transfer would improve student
achievement in learning Java in a CS1, one-semester course while
still maintaining the strengths of the approach originally
introduced with Alice 2 as a pre-CS1 course.

Of particular interest is the large increase in scores in Part 2 of the
exam. The focus of questions in Part 2 is Control Structures
(conditionals and iteration). We do not have evidence as to the
specific cause of this jump in scores in this part of the exam. This
suggests a topic for future study.

In summary, data collection and analysis indicates that using
explicit mediated transfer techniques, supported by Alice 3's
ability to transfer code directly to Java, has a statistically
significant, positive impact on students' learning Java.

5.5 Other findings and future work

Although this study was focused on evaluating the effectiveness
of an Alice 3 to Java approach using mediated transfer, other
findings are noteworthy.

One finding is that for transfer of concept, inheritance needs to be
more fully implemented in Alice 3. The lack of fully implemented
inheritance constrains the ability to illustrate inheritance concepts
in Alice and then mediate a transfer of those concepts to Java.

A second finding is that transferring Alice code containing
concurrency and events to Java results in complex code that forces
the introduction of inner classes early in the curriculum. But, inner
classes are not a common topic in a CS1 course.

These two findings are catalyzing revisions in Alice 3 and will
form the basis of future work.

6. ACKNOWLEDGMENTS

This work is based on upon work supported, in part, by the
National Science Foundation under grants: DUE #1007631 and
DUE #0903271.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

7. REFERENCES
[1] ACM Joint Task Force for Computing Curricula. 2005.
Computing Curricula 2005. Retrieved September 2, 2011
from http://www.acm.org/education/education/curric_vols/
Adams, J. 2007. Alice in Action with Java. Thompson Course
Technology: Boston, MA.

Dann, W., Cooper, S., and Ericson, B. 2009. Exploring
Wonderland: Java Programming Using Alice and Media
Computation. Prentice-Hall: Upper Saddle River, NJ.

(2]
(3]

146

[4] Cooper, S., Dann, W., & Pausch, R. 2003. Teaching objects-
first in introductory computer science. Proceedings of the
34th SIGCSE technical symposium on Computer science
education (Reno, Nevada, USA).ACM Press.

Dann, W. P., Cooper, S., & Pausch, R. 2005. Learning to

program with Alice. Prentice-Hall: Upper Saddle River, NJ.

Dann, W., Dragon, T., Cooper, S., Dietzler, K., Ryan, K., &

Pausch, R. 2003. Objects: Visualization of behavior and

state. Proceedings of the 8th annual conference on innovation

and technology in computer science education, Thessaloniki,

Greece, 84-88.

Forgarty, R.; Perkins, D.; & Barell, J. 1991. The Mindful

School: How to Teach for Transfer. Palatine, IL:

IRI/Skylight Publishing.

Alice 2 instructional materials . Retrieved September 2,

2011 from http://www.aliceprogramming.net

Alice workshops — 2011. Retrieved September 2, 2011 from

http://www.aliceprogramming.net/workshop2011.html

[10] NetBeans download. Retrieved September 2, 2011 from
http://netbeans.org/downloads/

[11] Ip, Alex. Transfer of Learning. Retrieved September 2, 2011
from http://www.cdtl.nus.edu.sg/ideas/iot18.htm.

[12] Kolling, M. 2009. Introduction to Programming with
Greenfoot:. Prentice-Hall: Upper Saddle River, NJ.

[13] Lewis, J. and DePasquale. 2008. Programming with Alice
and Java. Addison Wesley: Boston, MA.

[14] Moskal, B., Lurie, D., & Cooper, S. 2004. Evaluating the
effectiveness of a new instructional approach. Proceedings
of the 35th SIGCSE technical symposium on Computer
Science Education. (Norfolk, Virginia).

[15] Mullins, P., Whitfield, D., and Conlon, M. 2008. Using Alice
2.0 as a first language. Journal of Computer Science in
Colleges, 24(3), 136-143.

[16] Pausch, R., & Forlines, C. 2000. Alice: Model, paint &
animate — easy-to-use interactive graphics for the web.
SIGGRAPH Comput. Graph., 34(2), 42-43.

[17] Pierce, J., Cobb, T., & Pausch, R. 1998. Alice. ACM
SIGGRAPH 98 Conference abstracts and applications.
(Orlando, Florida, United States).

[18] Pierce, J. S., Christiansen, K., Cosgrove, D., Conway, M.,
Moskowitz, D., Stearns, B., et al.1998. Alice: Easy to learn
interactive 3d graphics, CHI 98 conference summary on
Human factors in computing systems. (Los Angeles,
California, USA).

[19] Powers, K., Ecott, S. and Hirshfield, L. 2007. Through the
looking glass: teaching CSO with Alice. Proceedings of the
38" SIGCSE technical symposium on Computer Science
Education. (Covington, Kentucky, USA).

[20] Rolling, M. & Rosenberg, J., Guidelines for teaching object
orientation with Java. 2001. In Proceedings of the 6'nannual
conference on Innovation and Technology in Computer
Science Education (Canterbury, England, June, 2001), 33-36.

[21] Salomon, G., & Perkins, D. 1988, September. Teaching for
transfer. Educational Leadership, 22-32.

(9]

