
Using Visualization To Teach Novices Recursion
Wanda Dann

Computer Science Dept.
Ithaca College

Ithaca, NY 14850
1-607-274-3602

wpdann @ Ithaca.edu

Stephen Cooper
Computer Science Dept.
Saint Joseph's University
Philadelphia, PA 19131

1-61o-66o-1561

scooper@sju.edu

Randy Pausch
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, PA 15213

1-412-268-3579

pausch @cs.cmu.edu

ABSTRACT
This paper describes an approach for introducing recursion, as
part of a course for novice programmers. The course is designed
to make use of a 3-D animation world-builder as a visualization
tool that allows students to see their own programs in action. One
of the pedagogical goals of the course is to enable the student to
gain an intuitive sense of and mathematical insight into the
recursive process. The software, examples of animation using
recursion, and some experiences in using this approach are
discussed.

1. INTRODUCTION
Recursion is a key computer science concept. As argued by Dan
McCracken, "recursion is fundamental in computer science,
whether understood as a mathematical concept, a programming
technique, a way of expressing an algorithm, or a problem-solving
approach." [I 1]

Laying a firm foundation in recursion in early courses may make
topics studied in later courses easier to grasp. Unfortunately,
novice programmers seem to struggle with the concept of
recursion. Some computer science educators have described the
process of teaching recursion as "one of the universally most
difficult concepts to teach." [7] Bower [2] states that "(t)o
understand the process of recursion and to be able to write a
recursive definition or program one must be able to visualize the
nature or structure of a problem and how solutions to smaller,
similar problems are combined to solve the original problem."
This paper presents an approach to introducing recursion to
novice programmers with a 3-D animation tool that visualizes the
recursive execution process.

2. Approaches To Teaching Recursion
Many approaches have been used for introducing recursion. Wu,
Dale, and Bethel [19] summarized five widely used approaches:
Russian Dolls, Process Tracing, Stack Simulation, Mathematical

Induction, and Structure Templates. Each approach has some
complication such as applicability or assumed level of student
maturity.

Another approach to teaching recursion employs algorithm
animation tools (e.g. XTANGO [18], BALSA [3]). The instructor
programs an animation for commonly used algorithms (e.g. a
quicksort animation shows little shapes bouncing around from one
array slot to another). The student runs the prepared animation,
observing the animation of the algorithm when using different
inputs. The Generalized Algorithm Illustration through Graphical
Software (GAIGS) package, developed by Naps [12] offers the
ability to rewind a prepared animation to view it again. Algorithm
animation tools have contributed to helping students understand
algorithm analysis, but students can only view previously
prepared animations. Bower [2] writes, "(i)t is important that such
simulations are manipulative in order to actively involve the
learner rather than...passively watch pre-programmed instruction."

Yet another approach to teaching recursion uses program
visualization. Program visualization tools differ from algorithm
animation tools in that program visualization directly relates
individual lines of a student's own program code to the animation.
Some general-purpose program visualization tools have been
designed for use by beginners (e.g. Karel, The Robot [14]). Karel
was originally used to prepare students for success in learning
Pascal, and has undergone several updates, the latest being
Karel++ [1]. Karel++ can be used to introduce recursion by
writing tail-recursive functions for the robot. Similarly, LOGO
[13] can be used to demonstrate some recursive concepts.

Our approach to teaching recursion to novices centers on a
software system named Alice, similar in flavor to Karel and
LOGO. Alice is a convenient and easy-to-use 3-D graphic
animation tool that supports the pedagogical goals of the course,
i.e. a fundamental introduction to objects, methods, decision
statements, loops and recursion. In terms of recursion, students
are encouraged to develop an intuitive sense of recursion and to
gain some mathematical insight into the recursive process. The
use of 3-D graphics in a first programming course follows in the
footsteps of House and Levine[10] who used Jabka to render 3-D
models in a computer graphics course for non-majors.

3. What is Alice.'?
Alice98 (www.alice.org) is a 3-D interactive graphics
programming environment for Windows built by the Stage 3
Research Group at Carnegie Mellon University under the
direction of Randy Pausch [15]. Alice offers a full scripting and
prototyping environment for 3-D object behavior (e.g., animals

109

and vehicles) in a virtual world. Alice has an object-oriented
flavor. By writing simple scripts, Alice users can control object
appearance and behavior. Alice is built on top of the Python
language (www.python.org) and uses many of Python's features.
Readers interested in using Alice may download the free program
from www.alice.org. Additional information on programming
with Alice is available at wwwithaca.edu/-wpdann/alice1298.

Alice serves as a programming language environment where
students can immediately see how their programs run. The highly
visual feedback allows the student to connect individual lines of
code to the animation action. Many of the commands and
animation actions have been previously discussed [4, 5] and will
not be covered here.

4. Using Recursion in Alice
Alice supports recursion as a means of creating more powerful
animations with repeated actions that get closer and closer to
completing a task. Below, two different examples of animations
that use recursion are illustrated.

4.1 Tail recursion
A typical game-playing example is an animation of a chase scene.
In Figure 1, the butterfly moves in a random direction and the
rabbit moves in pursuit.

%

Figure 1. Rabbit and Butterfly Chase

def bmove():

ifRabbit .DistanceTo(butt~fly)>l.0:
DoTogether(

DolnOrder(

Rabbit. PointAt(

(butterfly.GetPosition() [0], 0,

butterfly.GetPosition() [2])),

DoTogether(

butterfly.MoveTo(

butterfly.GetPosition() [0]

+ range(-.25,.25),

range(0,1),

butterfly.GetPosition() [2]

+ range(-.25,.25)),

Rabbit.Move(Forward,.5)),

),

Alice. SetAlarm(3, do(bmove)))

If the Rabbit is within one unit of the butterfly, the chase has
ended. Otherwise, three actions occur. The Rabbit points itself
toward the current location of the butterfly (actually, to the point
directly beneath the butterfly). Then, the Rabbit moves towards
the butterfly while the butterfly moves in a random direction. The
range function generates a random number within a specified
range.

Finally, an alarm is set to recursively call the function to do the
whole process again. The SetAlarm instruction specifies an
amount of time to wait before calling a function. In the above
code, the alarm waits 3 seconds before the recursive function call.
The purpose of the wait is to allow an animation or sequence of
animations to complete. If the recursive call were made
immediately, the animation would not appear to work properly.
The butterfly's height (the second coordinate in the MoveTo
instruction) must stay between ground level and 1 unit above the
ground because the butterfly could potentially "fly" away, and the
recursion would never terminate.

4.2 Multiple recursion
The Towers of Hanoi problem is used as a slightly more
complicated example.

def towers (n, frompeg, topeg, spare):

if n == i:

moveit (i, frompeg, topeg)

else:

towexs(n-l, frompeg, spare, topeg)

A1 ice. SetAlarm (math. pow (2, (n-1)) -I,

do (moveit, (n, frompeg, topeg)))

Alice. SetAlarm(math.pow(2, (n-l)) ,

do(towers, (n-l, spare,

topeg, frompeg)))

If there is only 1 ring to move, it moves (the base case). Otherwise
(the recursive case), n-1 rings move onto the spare peg. An alarm
is set so that after the n-1 rings have moved onto the spare peg,
the bottom one can move. Finally another alarm is set so that after
the bottom ring moves onto the target peg, the n- 1 rings can move
onto the target peg. An important aspect of this problem is that the
student becomes aware that the time required for the animation is
directly related to the number of moves needed to move n-1 rings
from the original peg to the spare peg. In experiments with
different numbers of rings students gradually recognize the pattern
(and develop an abstract notion of the recursive decomposition).

Depending on the source and target pegs, a ring move involves an
appropriate distance in a specific direction. Figure 2 shows a
move in progress. The moveit ()function accomplishes this
task, returning the correct motion animation as a result. (Moving
forward a negative amount is the same as moving back.) The
w h i c h () function provides a correlation between the hard-coded
name of a ring and its corresponding number.

110

Figure 2. Towers of Hanoi In Progress

def moveit (num, frompeg, topeg):

return which(num).move (forward,

(topeg-frompeg))

While the Towers of Hanoi problem is an example of structural
recursion, the rabbit and butterfly example uses generative
recursion. Although generative recursion is often not taught to
novice programmers, we found students' insight into chase scenes
and game-playing provided a context for understanding a
generative solution.

5. Our Experiences
Our course has been used in various formats since 1998 at Ithaca
College (gifted and talented special summer programs and a
credit-bearing college course for students with no previous
programming experience). The course is being conducted again
this fall and we continue to collect data for statistical analysis.

The course is recommended to students who have no previous
programming, before enrolling in CS 1. Recent studies [6, 9] have
shown that students without prior programming experience are at
a decided disadvantage in being able to complete a computer
science degree program (as compared to those students who had
prior programming experience). We hope that teaching
fundamental concepts in a preliminary course, particularly with
regard to the presentation of recursion material, will provide
sufficient "prior programming experience". Not enough time has
passed to track the degree to which Alice has helped students who
went on to be computer science majors.

In conducting the course, recursion was introduced in the 3 '~ or
4 th week. For students, the motivation to learn recursion was to
solve a problem, namely the need for an unknown number of
repeated actions. (Alice provides a loop construct that implements
for loops but no while loop -- although while loops could be
implemented by using the underlying Python language.) Students
begin by trying to write their recursive programs in a way similar
to code presented by the instructor but soon make two kinds of
mistakes. The first kind of mistake involves technical issues
concerning recursion. These mistakes included not making the
sub-problem smaller (the situation became "worse"), missing base
cases (the animation kept going when it isn't supposed to), and
premature stopping (a base case hits when it should not). Many of
these mistakes were quickly and easily identified as students
watched their virtual worlds.

The second kind of mistake involved timing issues. Different
sequences of actions require different amounts of time to complete

the animation. In order to determine the delay time needed for
their own animation, students must consider the real-time
requirements of a particular sequence of animated actions in order
to have the recursive call occur at the right time. This leads to an
exploration of how the run-time is related to the number of
recursive moves. While students develop an intuitive sense of how
long to wait by experimental means, the ultimate proof is an
inductive one. Thus, timing the recursive call can be used to
provide a basis for gaining an understanding of the run-time of the
algorithm.

Student responses on follow-up questionnaires indicate that
students had little difficulty understanding recursion and were
able to use recursion in writing their own programs. Students
demonstrated a high level of involvement. They enjoyed
watching their recursive programs in action, viewing the impacts
of their recursive calls as their worlds responded (not always in an
anticipated manner). We emphasize that students did not
necessarily "master" the intricate concepts of recursion, but they
did experience working with recursion and exhibited some facility
with using the technique.

6. But does Alice really provide recursion?
Recursion may be understood from an external, or perhaps
abstract perspective. Knuth defines a recurrence to be a situation
where "...the solution to each problem depends on the solutions
to smaller instances of the same problem." [8] And Roberts states
that "...informally, recursion is the process of solving a large
problem by reducing it to one or more subproblems which are (1)
identical in structure to the original problem and (2) somewhat
easier to solve." [16] By these definitions, Alice does support
recursion.

However, recursion in Alice is implemented in a different fashion
than in many other languages/environments. The main reason is
that a direct recursive call to a Python function does not wait for
animated actions in Alice to complete. Since the recursions
necessarily involve animation, the SetAlarm method is used to
delay the recursive call to allow the animation instructions to
complete. In fact, from an implementation point of view, stacking
of environments (typically associated with recursive calls) is not
involved. The function schedules the recursive call to be made
after a specified time delay and then terminates. Since
programming in Alice tends to avoid the use of local mutable
variables, the issue of repeated instances of a variable does not
exist. (See [5] for a deeper discussion of the "state-less" nature of
programming in Alice worlds.) The only mutable variables
generally needed are the global objects (which inhabit Alice
worlds) themselves.

In essence, much of the internal complication involved with
recursion, both from the machine standpoint as well as from an
explanation standpoint (whether traces or a stack) are not present
in Alice. Repeated recursive function calls for the animated
actions do not get stacked on top of one another. So, some might
argue that Alice animations do not provide true recursion (except
in the underlying Python language). While this may or may not
be true, our goal is that visualization be used to develop good
intuitions about recursion. Thus, we contend that visualization of
recursion is more important than whether Alice animations do or
do not support true recursion.

111

7. Conclusion
Using 3-D animations for program visualization offers computer
science instructors an approach to introducing fundamental
concepts such as recursion to novice programmers. Introducing
recursion using 3-D animations employs a combination of
visualization, experimentation, and mathematical explanation.
Benefits of this approach include a high level of student
involvement and the ability to develop an intuitive understanding
of basic concepts in a visual feedback environment, where
students see their own programs in action. Recursion can be
presented as a means to create more powerful (and interesting)
animations with repeated actions that get closer and closer to
completing the task. Visualizing recursion allowed students to
quickly identify and learn from mistakes.

In the future, a follow-up study will assess whether experience
with Alice will help students when they learn more about
recursion in CS1/CS2. While our experiences involved using 3-D
animations to introduce fundamental programming concepts in a
pre-CS1 course, we anticipate that this approach could also be
used during the first couple of weeks of a CS1 class. This would
follow the approach presented by Scragg et al.[17] who
recommended introducing students to basic computer science
concepts before launching into the traditional CS I.

8. ACKNOWLEDGEMENTS
Alice and the Stage3 Research Group are sponsored by DARPA,
NSF, Intel, Chevron, Advanced Network & Services, Inc.,
Microsoft Research, PIXAR, and NASA.

9. REFERENCES
[1] Bergin, J., Stehlik, M., Roberts, J., ~md Pattis, R., Karel++,

A Gentle Introduction to the Art of Object-Oriented
Programming. New York: Wiley, 1997.

[2] Bower, R.W. An investigation of a manipulative simulation
in the learning of recursive programming. PhD thesis. Iowa
State University, 1998.

[31 Brown, M.H., Algorithm Visualization. Cambridge, MA:
M.I.T. Press, 1988.

[4] Cooper, S., Dann, W,, and Pausch, R. Alice: a 3-D tool for
introductory programming concepts. In Proceedings of the
5 th Annual CCSC Northeastern Conference, Mahwah, NJ,
(2000), 107-116.

[5] Dann, W., Cooper, S., and Pausch, R. Making the
connection: programming with animated small worlds. In
[201, 41-44.

[6] Davy, J.D., Audin, K., Barkham, M. and Joyner, C. Student
well-being in a computing department. In [20], 136-139.

[7] Gal-Ezer, J. and Harel, D. What (Else) Should CS Educators
Know? Communications of the ACM 41, 9 (September
1998), 77-84.

[8] Graham, R.L., Knuth, D. E., and Patashnik, O. Concrete
Mathematics. Addison-Wesley Pub. Co., Reading, MA
1989.

[9] Hagan, D., and Markham, S. Does it help to have some
programming experience before beginning a computing
degree program? In [20], 25-28.

[10] House, D. and Levine, D. The Art and Science of Computer
Graphics: A Very Depth-First Approach to the Non-majors
Course. In Proceedings of the 25 th SIGCE Technical
Symposium, Phoenix, March, 1994.

[ll]McCracken, D.D. Ruminations on Computer Science
Curricula. Communications of the ACM. 30, 1: (January
1987), 3-5.

[12] Naps, T. and Swander, B. An object-oriented approach to
algorithm visualization - easy, extensible, and dynamic. In
Proceedings of the 25 th SIGCE Technical Symposium,
Phoenix, March, 1994.

[13] Papert, S., MindStorms: Children, Computers, and Powerful
Ideas. New York: Basic Books, 1980.

[14] Pattis, R., Karel the Robot. New York: Wiley, 1981.

[15] Pausch, R. (head), Burnette, T., Capeheart, A.C., Conway,
M., Cosgrove, D., DeLine, R., Durbin, J., Gossweiler, R.,
Koga, S., White, J. Alice:rapid prototyping system for virtual
reality, IEEE Computer Graphics and Applications, May,
1995.

[16] Roberts, E.S. Thinking Recursively. John Wiley & Sons, Inc.,
New York, 1986.

[17] Scragg, G., Baldwin, D., and Koomen, H. Computer science
needs an insight-based curriculum. In Proceedings of the 25 th
SIGCSE Technical Symposium, Phoenix, (1994), 150-154.

[18] Stasko, J.T., Dominque, J., Brown, M. and Price, B., eds.
Software Visualization, Programming as a Multimedia
Experience. Cambridge: MIT Press, 1998.

[19] Wu, C., Dale, N.B., and Bethel, L.J. Conceptual Models and
Cognitive Learning. Styles in Teaching Recursion in
Proceedings of the 29 th SIGCSE Technical Symposium on
Computer Science Education. Atlanta, 292-296.

[20] Proceedings of the 5 th Annual Conference on Innovation and
Technology in Computer Science Education, Helsinki,
Finland, (2000).

112

