
Objects: Visualization of Behavior and State
Wanda Dann*
Toby Dragon
Computer Science Dept.
Ithaca College
Ithaca, NY 14850
1-607-274-3602
wpdann @ ithaca.edu

Stephen Cooper*
Kevin Dietzler
Kathleen Ryan
Computer Science Dept.
Saint Joseph's University
Philadelphia, PA 19131
1-610-660-1561
scooper@ sju.edu

Randy Pausch
Computer Science Dept.
Carnegie Mellon University
Pittsburgh, PA 15213
1-412-268-3579
pausch @cs.cmu.edu

ABSTRACT
Animated program visualization can be used to support innovative
instructional methods for teaching beginners about objects, their
behavior, and state. In this paper, we present a discussion of
methods that define object behavior and character (class)-level
state variables that track state changes for 3D animated objects in
small virtual worlds. We have found that character-level methods
provide a means to demonstrate inheritance. Examples of worlds
and program code used in instructional materials are provided.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education – Computer Science Education.

General Terms
Documentation, Human Factors

Keywords
Visualization, Animation, 3D, Objects, Behavior, State

1. INTRODUCTION
This paper presents an instructional approach that uses animated
program visualization as a technology to support teaching
beginning programmers about behavior and state in object-
oriented programming. The key to object-oriented programming
is, of course, the object. In Object-Oriented Design with
Applications, Booch (one of the original text writers on object-
oriented programming) wrote: "An object has state, behavior, and
identity..." From a theoretical perspective, the concept of identity
is difficult. But, students are familiar with naming things. So,
teaching students to name objects presents little difficulty (at least
not until objects are passed as parameters). However, the concepts
of behavior and state, as they apply to objects, present particular
challenges to the instructor of introductory courses. Behavior is

* This work is supported in part by a grant from the National
Science Foundation, DUE- 0126833.

challenging because it is more complicated than method/function
calls in an imperative language. Some methods are associated
with certain objects while other methods seem not associated with
an object at all (such as static methods called from main in Java).
State is challenging because objects require the use of the program
heap for implementation. Drawing traditional memory maps to
explain objects, variable scope, and how methods work requires
both a stack and a heap. After a short lecture session, an instructor
is likely to find she has created a confusing clutter of arrows and
boxes on the board or projection screen. Student focus may well
be on deciphering the maze of memory maps and the concept of
object gets lost along the way.

The technology of animated program visualization offers a way to
keep the focus on objects while teaching about behavior and state.
In section 2, we describe the animated program visualization tool.
Section 3 provides details and examples of world-level and
character-level methods that define object behavior. Section 4
gives an interactive example illustrating the use state variables in
a character-level method. Finally, we discuss some results of this
approach, a discussion of other tools, and present our conclusion
in sections 5 and 6.

2. PROGRAM VISUALIZATION TOOL
This section describes the visualization tool. (The knowledgeable
reader may wish to skip ahead to the next section.) The tool used
in our approach is Alice, a freely available 3D Interactive
Graphics Programming Environment, developed at Carnegie
Mellon University (CMU) under the direction of Randy Pausch
[9]. A new Java-based version runs on the Windows operating
system, with support for Macintosh, Linux, and web browser
viewing of Alice worlds projected for early 2003. Alice is a rapid
prototyping environment for 3D object behavior, designed to
make it easy for novice programmers to develop interesting 3D
animations and explore interactive 3D graphics.

In Alice, 3D models of objects (e.g., buildings, people, furniture,
scenery) populate a virtual world. Alice programs, which have a
strong object-oriented flavor, allow students to control the
appearance and behavior of objects, have objects respond to
mouse and keyboard input, or do any sort of computation that
would normally be done in an introductory programming class.
Alice supports trial and error as well as a designed approach to
programming. Alice is also supportive of collaborative
programming. Students are immediately able to see how their own
animated program runs, affording an easy relationship of the
program construct to the animation action. Figure 1 displays
scenes from the execution of a typical virtual world. In this scene,
a skater performs a traditional figure skating action.

Figure 1. Animated Skater

The interface provides a smart editor for creating programs.
Students drag-and drop program constructs (e.g., if, while) to
form programs that are equivalent in expressive power to
Java/C++/Pascal class languages. However, students are protected
from making syntax errors by the programming environment,
which only allows students to drag and drop tiles of program
components to syntactically correct locations. For example,
students may only drop an expression of type Boolean into the
condition of a while loop. Full support is provided for all common
control structures (e.g., if/then/else, while, for all) and data types
(including 3D-object, Number, Boolean, String, etc.). Both array
and list aggregate data structures are provided and students can
write arbitrarily large methods and functions that take parameters
of any type. Alice supports recursive method calls, limited
polymorphism and a rich, interactive event structure for creating
interactive worlds (programs) and characters (objects and classes
that can be reused in other worlds/programs).

The design of Alice is driven by several key concepts: (1) Make
as much state visible to the student as possible. Most changes are
immediately visible (e.g. set the color of the frog from green to
red.). (2) Animate all changes of state. Students are able to see the
change of state, whenever possible, through an animation: objects
that are told to change their position move through space; objects
that are told to change their color animate through color space,
etc. (3) Do not allow ill-formed programs at any time. Alice’s
sophisticated user interface allows students to build extremely
complex programs that are always syntactically valid. (4) Reify
the notion of an object. For many students, objects are very
ethereal, abstract concepts. The objects in Alice are clearly visible
on the screen: the Ice Skater object shown in Figure 1 is clearly an
object in the 3D world and students find that creating and
associating methods with such visible objects (such as Spin,
Jump, and Bow) is more intuitively obvious. (5) Use 3D graphics
to engage the students. The importance of this last point cannot be
overemphasized.

3. VISUALIZATION OF BEHAVIOR
3.1Character-Level and World-Level Methods
Behaviors in an animated world are either character-level
(equivalent to methods associated with objects of a given class in
Java) or world-level (equivalent to static methods called from

main in Java). Each character class (from a gallery of hundreds)
has a built-in set of primitive behaviors the character object
already knows how to perform (e.g., move, turn, roll). To
motivate the introduction of programmer-defined character-level
methods, students are asked to complete an exercise to "teach" a
character a new behavior. For example, the skater in Figure 1 can
be taught how to perform a simple spin movement (by combining
several primitive instructions in a method). The visual nature of
the behavior provides a context in which the instructor can discuss
with students the concepts of methods and method calls.

A more difficult programming exercise, such as animating two
characters in a dance as seen in Figure 2, is used to motivate the
introduction of world-level behaviors. Students discover that
creating a program of hundreds of primitive motion instructions
makes their code not very readable, not easy to modify, and a
problem when the characters need to perform the same dance
action at several different times. Students learn that gathering a set
of actions that collectively have meaning into a single method
makes sense. They can then use those simple methods to build
more complicated methods, as is illustrated in the two-step dance
method of Figure 3, shown as it appears in the Alice interface.
This dance situation provides a visual representation of a behavior
that is world-level, rather than character-level, because it involves
multiple characters.

Figure 2. Scenes from a dancing world

Figure 3. Dance world-level method

3.2 Prototyping and Parameters
Importantly, character-level methods can be used to prototype
new kinds of objects for re-use in other virtual worlds. By starting
with a character from the gallery, adding functionality to the
character, and then saving it back out to use in another world,
students learn about inheritance. As an example, a Bunny
character is used as a basis for prototyping a SuperBunny that
knows how to nibble and hop. In the interest of brevity, only the
nibble method is shown in Figure 4. (Note that code in Figure 4
and remaining figures is presented as simple text.) The
SuperBunny character class of objects knows all the common
primitive behaviors and also knows how to nibble and hop.

The character-level nibble method necessarily makes use of a
parameter. The parameter NibbleWhat is used to specify the object
(presumably a carrot or other edible object) to be nibbled. If the
object nibbled were not passed as a parameter, the method would
have to be world-level. This example provides a context for the
instructor to discuss with students the need for parameters in
character-level methods. When a SuperBunny object is created in

a new world, the SuperBunny object will expect to have some
edible object to nibble. But, it is not possible to guarantee that
both the SuperBunny object and the original edible object will
both be added to the newly built world. The nibbleWhat
parameter ensures that the programmer will be prompted to
provide an edible object for the SuperBunny. This use of
visualization provides a context for students to learn that methods
belonging to a particular type of object must use parameters to
obtain information about other objects.

3.3 Functions
Behaviors discussed thus far may be viewed as methods that
change the state but do not return values. Pure functions, in the
form of questions, are introduced as a means of computing values.
They are "pure" functions in that they do not change the state.
Alice keeps an Algol-like distinction between the functional and
imperative aspects of the language. Again, it is possible to have
functions at both the world-level and at the character-level.

4. STATE VARIABLES
It is important to note that it is possible to teach behavior without
requiring the use of mutable variables, where the student must
explicitly manipulate the state of an object. Certainly an
instruction such as Bunny.hop() changes the state (altering
position) of the Bunny. But, the student who writes the hop()
method does so by various calls to primitive move and turn
methods. Access to private x, y, and z coordinates that define the
object’s translational position is not needed, as primitive methods
are used to enable the desired behavior. This is, in spirit, quite
similar to what was done with Karel the Robot [8] (one of the
inspirations for Alice). Once students have mastered world-level
and character-level methods then mutable character-level
variables may be introduced.

It is perhaps easiest to justify the introduction of state variables
(which, in our approach, are not introduced until after the student
has mastered behaviors) by means of an example. This example
makes use of the interactive capabilities of Alice, where methods
can be written to respond to mouse or keyboard events. The
problem is to simulate the motion of a car in a steering

SuperBunny.nibble
 NibbleWhat

 Do in order
 // Bunny hops to the object
 SuperBunny pointAt NibbleWhat onlyAffectYaw = true
 SuperBunny.HopAndMove HowFar = Bunny.distanceTo NibbleWhat * 1/4

 NibbleWhat move up SuperBunny.chest.head.whiskers distanceAbove nibbleWhat
 asSeenBy = SuperBunny

 SuperBunny.WiggleWhiskers

 Do together
 //nibble
 SuperBunny.chest.armL turn forward 1/4 revolutions
 SuperBunny.chest.armR turn backward 1/4 revolutions

Figure 4. Character-level method for SuperBunny

simulation, where the user can “drive” the car along the street. It
is simple to turn the front wheels in response to a key press. The
problem is that when the car moves forward, it is not easy to
calculate how much right (or left) the wheels are turned. This is
because once the car has started moving forward and the wheels
have begun rolling, the orientation of the wheels is no longer
what it was before the car started moving. Thus, it is effective to
introduce a private, character-level variable named
turningAmount to keep track of how much the wheels have been
turned (right or left). The code for turning wheels to the right is
shown in Figure 5. The private variable turningAmount is
incremented by 1 each time the front wheels (wheel1 and
wheel2) turn right. (The initial test is to keep the wheels from
turning too much.) Figure 6 displays successive screen captures
from the police car as it is steered in a right turn. The
moveForwards method in Figure 7 demonstrates the use of the
value stored in turningAmount to govern the degree of the turn
(the police car turns right or left at the same time as it moves
forward). Finally, all four wheels are rotated the appropriate
amount. The variable Wheels refers to a list of the car’s wheels.

5. RESULTS
We have been teaching Alice to prospective computer science
majors (who do not have previous programming experience) for
the past three years. And, we are currently in the second year of
an NSF funded study. Our impressive early results have been
discussed elsewhere [3]. We do not duplicate that report in this

paper. As part of our project evaluation, students are randomly
selected to participate in an exit interview conducted by an
evaluator. At the time of this writing, 25 students have been
interviewed. One student's comments are particularly revealing:
"I was taking CS1 at the same time as the Alice course. In the
CS1 course, I was totally confused about objects and these
things called methods. But I can see the objects in an Alice
world and watch what the methods make the objects do. It
helped me figure out what an object is and what methods are all
about." These kinds of comments lead us to believe that students
who experience this approach gain a fundamental understanding
of objects and methods. We are following these students in their
first year of study and have found preliminary evidence that
students do especially well in CS1 in terms of dealing with
objects and classes at a more abstract level [3]. A full
compilation of results of this study will be forthcoming in a
future paper.

6. OTHER TOOLS
BlueJ [7] is a visual tool used in teaching an objects-first
methodology. BlueJ provides an integrated environment in
which the user generally starts with a previously defined set of
classes. The classes’ project structure is presented graphically, in
UML-like fashion. The user can create objects and invoke
methods on those objects to illustrate their behavior. Later the
user may create his own classes, and BlueJ provides a graphical
representation of these classes as well. While BlueJ does not

policecar.turnWheelsRight

If policecar.turningAmount < 10
 Do together
 increment policecar.turningAmount by 1
 policecar.wheel2 turn right .002 revs
 asSeenBy = policecar.wheel4
 policecar.wheel1 turn right .002 revs
 asSeenBy = policecar.wheel3

Else
 Do Nothing

Figure 5. turnWheelsRight increments turningAmount

policecar.moveForwards

distance

 Do together
 //Move police car forward and turn ri
 // amount specified by turningAmount
 policecar move forward distance meter
 policecar turn right 0.05 * policecar

 //turn all wheels forward at same tim
 For all policecar.Wheels, one item_fr
 item_from_Wheels turn forward poli

Figure 7. Turningamount governs

ght or left

s
.turningAmoun

e
om_Wheels tog
cecar.rollAmo

 the degree of the r

Figure 6. Steering the car right
t

ether
unt travelDistance = distance

ight turn

provide 3D graphics or animation, it is being used effectively to
help beginners learn about objects and their relations with other
objects. Many of the examples provided with BlueJ do not keep
novices from private mutable variables, though it would seem
possible to create examples in which this separation was
maintained.

Java Power Tools (JPT) [10] provides a comprehensive,
interactive GUI, consisting of several classes with which the
student will work. Students interact with the GUI, and learn
about the behaviors of the GUI classes through this interaction.
While GUIs may not provide the richness of interacting with 3D
objects, students have grown up interacting with GUIs. Thus we
believe that GUIs are a good example to use in helping students
to develop object-oriented concepts. Like BlueJ, JPT starts with
partially written programs that the student modifies. JPT uses
students working with widgets to help them to develop intuitions
about objects. While JPT does not have the widespread usage of
BlueJ, we predict that once the collection of examples is
enriched, that JPT will be successful as a means to teach
beginners about objects.

7. CONCLUSION
We have experimented with the use of animated program
visualization to support innovative instructional methods for
teaching beginners about objects, their behavior and state.
World-level methods (equivalent to static methods in Java) and
character-level methods (equivalent to methods belonging to
objects of a class in Java) can be visualized using animated
virtual worlds. The 3D models provide a context for using
methods to define object behavior. We have found that
character-level methods provide a means to demonstrate
inheritance. Further, character-level state variables that track
state changes for 3D animated objects can be demonstrated in
conjunction with the animations. We believe that the success of
this approach is due to the visual representation of objects.
Students can see and relate to the objects and their animation
actions, thus developing good intuitions about objects and
object-oriented programming.

8. REFERENCES
[1] Cooper, S., Dann, W., & Pausch, R. (2000) Alice: A 3-D

tool for introductory programming concepts. In
Proceedings of the 5th Annual CCSC Northeastern
Conference 2000, Ramapo, NJ, April, 28-29.

[2] Cooper, S., Dann, W., & Pausch, R. (2003-1) Using
animated 3d graphics to prepare novices for cs1.
Computer Science Education Journal, to appear.

[3] Cooper, S., Dann, W., & Pausch, R. (2003-2) Teaching
objects first in introductory computer science. SIGCSE
2003, to appear.

[4] Dann, W., Cooper, S. & Pausch, R. (2000) Making the
connection: Programming with animated small worlds.
Proceedings of the 5th Annual Conference on Innovation
and Technology in Computer Science Education, Helsinki,
Finland, July 11-13, 2000.

[5] Dann, W., Cooper, S., & Pausch, R. (2000). Using
visualization to teach novices recursion. Proceedings of
the 6 th Annual Conference on Innovation and Technology

in Computer Science Education, Canterbury, England,
109-112.

[6] Dann, W., Cooper, S. & Pausch, R. (2003) Learning to
Program with Alice. To be published by Prentice Hall.

[7] Kölling, M. & Rosenberg, J., Guidelines for teaching
object orientation with Java. In Proceedings of the 6th
annual conference on Innovation and Technology in
Computer Science Education (Canterbury, England, June,
2001), 33-36.

[8] Pattis, R., Roberts, J, & Stehlik, M. Karel the robot: a
gentle introduction to the art of programming, 2nd Edition.
John Wiley & Sons, 1994.

[9] Pausch, R. (head), Burnette, T, Capeheart, A.C., Conway,
M., Cosgrove, D. DeLine, R., Durbin,J., Gossweiler,R.,
Koga,S., & White, J. (1995) Alice: Rapid prototyping
system for virtual reality , IEEE Computer Graphics and
Applications, 15(3), 8-11.

[10] Proulx, V., Raab, R., & Rasala, R. Objects from the
beginning – with GUIs. In Proceedings of the 7th annual
conference on Innovation and Technology in Computer
Science Education (Århus, Denmark, June, 2002), 65-69.

	ABSTRACT
	1. INTRODUCTION
	2. PROGRAM VISUALIZATION TOOL
	3. VISUALIZATION OF BEHAVIOR
	3.1Character-Level and World-Level Methods
	�
	Figure 3. Dance world-level method
	3.2 Prototyping and Parameters

	4. STATE VARIABLES
	8. REFERENCES

