
Using 3D Animation Programming in a
Core Engineering Course Seminar

Richard Zaccone
Bucknell University

Computer Science Department
Lewisburg, PA 17837

Email: zaccone@bucknell.edu

Stephen Cooper
Saint Joseph’s University

Computer Science Department
Philadelphia, PA 19131
Email: scooper@sju.edu

Wanda Dann
Ithaca College

Computer Science Department
Ithaca, NY 14850

Email: wpdann@ithaca.edu

Abstract— A core engineering course plays a vital role in
the curricula of schools of engineering. At Bucknell University,
Exploring Engineering (ENGR100) is the core engineering course
where first year students are introduced to the study and
practice of engineering and presented with overviews of specific
engineering disciplines. In this paper, we describe an innovative
approach for the 3-week programming seminar component of
ENGR100. This approach makes use of a 3D animation tool for
program visualization. Program visualization is used to introduce
traditional programming concepts in a short time frame. The
primary goal of this approach is to provide: a firm foundation
for the novice programmer, a challenge for the experienced
student, and a collaborative project experience for all students.
A description of the first trial results of this innovative approach
is included in the paper.

Index Terms— CS1, Alice, programming, visualization.

I. I NTRODUCTION

In the early 1990s the National Science Foundation’s En-
gineering Education Coalitions Program funded six coali-
tions [1]. These NSF-funded coalitions, such as the Foun-
dation Coalition [2], have stimulated change in Engineering
Education curricula at colleges and universities across North
America. The innovations often include the introduction and/or
redesign of freshman level courses to encourage creative,
hands-on design projects, multidisciplinary teaming, and use
of computer technology. One course that has been added to
many curricula is a core engineering course designed to give
freshmen a realistic overview at what engineering is all about
as well as develop foundation skills such as an understanding
of modeling and application of problem-solving skills. Part of
the reason for a first-year core engineering course is an effort
to improve retention of engineering majors without the side
effect of “watering down” traditional courses.

At Bucknell University, Exploring Engineering (ENGR100)
is the core engineering course where first-year students are
introduced to the study and practice of engineering. The first
few weeks of the semester are devoted to specific engineer-
ing discipline overviews. Following the discipline overviews,
ENGR100 students select and participate in two choices from
several three-week seminars. One of the seminars that students
may select is an introduction to computer programming. From
the perspective of the core course, the computer programming
seminar provides a general understanding of what program-

ming is, an opportunity to apply problem-solving skills in
designing and writing computer programs, and experience in
collaborative projects.

From a Computer Science perspective, the major goals
of the three-week programming seminar go beyond that of
the overall core course. The seminar is expected to prepare
students for going on to an object-oriented CS1 course. It is
also important to note, however, that the Computer Science
department prefers not to duplicate the first three weeks of
CS1. This preparation provided in the seminar is of particular
importance to students who have little or no previous program-
ming experience. The seminar offers a means to “level the
playing field” for these students. In addition, it is hoped that
the seminar will attract some undecided students to computing
majors.

The educational problem faced by the instructor of a com-
puter programming component of a core engineering course
is the extremely limited time frame (three weeks at Bucknell).
The challenge is to create a firm understanding of object-
oriented programming concepts and at the same time provide
experience with a team project. The greatest jeopardy is
that students who have little or no previous programming
experience will be unable to gain enough knowledge and
skill with fundamental concepts to allow them to reasonably
succeed in a rigorous CS1 course. At the same time, it is
equally important that students who have previously studied
programming are not lost to boredom.

In this paper, we describe an innovative approach for
the programming seminar component of a core engineering
course. This approach is designed to address the need for
developing a foundation in object-oriented concepts in a very
short time frame while avoiding duplication of the first three
weeks of CS1. Simultaneously, this approach enables both the
novice and experienced programmer to work on collaborative
projects with a high level of interest. This approach makes
use of a 3D animation programming environment named Alice
(freely available at [3]).

II. T HE SOFTWARE

Alice is a rapid prototyping environment for 3D object
behavior, designed to enable novice programmers to develop
interesting 3D animations. 3D models of objects are added to



Fig. 1. An initial skater scene

a virtual world to set up an initial scene. In Figure 1, a skater,
a second person, and a sign have been added to a virtual world
(as have a hill, several trees, an ice patch, and a house). It is
important to note that the concept of “object” is reified by the
objects in the world. Objects can be turned 360 degrees to
provide a visual perception of height, width, and depth of a
real-world object. Thus, the object-oriented sense of an object
is given some (virtual) reality.

Once objects are constructed and the scene is set up,
students write programs to control the appearance/behavior of
objects and to make objects respond to mouse and keyboard
input. Students use the Alice drag-and-drop editor to write
their own programs for animating the objects. The editor
has drag-and-drop tiles that are used to put together com-
mon programming language constructs (e.g.,if, while). The
program tiles provide constructs in a C++/Java-like syntax
and are equivalent in expressive power to these languages.
The intention of a drag-and-drop editor is to protect students
from making frustrating syntax errors. The editor only allows
students to drag and drop program components to syntactically
correct locations. For example, only a construct of type
boolean may be dropped into the condition of awhile loop.
We note that syntax is still a part of what students are learning,
but the frustrations of novice programmers in learning to enter
code is reduced. A much more detailed description of the Alice
programming environment is provided in [4] or [5].

As students write their own programs, an incremental ap-
proach to implementing and testing their programs can be
used. That is, students are able to test out individual commands
and methods to ensure they perform as expected. This enables
students to see the relationship of the program construct to the
animation action performed by method execution. A simple
example is illustrated in Figure 2, where a student has written
a method for animating a skate action for the ice skater object.

The skate method incorporates the use of a parameter (how
many steps to skate forward), a loop (similar to thefor loop
in Java), as well as sequential and simultaneous execution of

code. Specifically, the skater pushes off first with her right
thigh and then with her left thigh. At the same time, she is
also gliding forward. (And, to make the motion more realistic,
at the same time she also slides slightly to her left, indicating
the effect of pushing off with her right leg, and then to her
right.) Finally, this skate method takes a parameter of type
integer, and loops that many times, so she will skate forward
the appropriate number of strides.

III. C ONDUCTING THE SEMINAR

The programming seminar component of the ENGR100
course consisted of three one hour lectures and a two hour
lab per week over a 3-week period. Students learned to write
programs illustrating the following programming concepts:
methods (at the world-level as well as at the class-level),
repetition (for and while loops), decisions (if ), concurrency,
objects, class inheritance, encapsulation, events and behaviors.
The following examples illustrate how we used Alice to teach
CS1 topics.

objects We discussed objects on the first day of class
by showing objects such as rabbits and boats
to the students. We even talked about state in a
meaningful way because the state is something
that the students can see.

methods By the third lecture we began learning how
to write methods. The students learned how
to write a method that makes an object (with
legs) walk and turn. This led naturally to a
discussion of loops since marching (walking
back and forth) is just a repetition of the walk
method.

parameters Supplying a count to the “march” method was
an effective way to teach the usefulness of
parameters.

inheritance The students learned inheritance by extending
the capabilities of an object so that their ex-
tended object could perform actions the parent
object did not know how to do.

events Objects in Alice can respond to events such
as key presses and mouse clicks. We devoted
a portion of a lecture to this topic, but most
students had already figured it out on their own.

if Students learned logical expressions and condi-
tional execution by having an ice skater make
different moves depending where she is on
the ice. Other objects were used in student
programs.

This is an impressive list of topics for a 3 week seminar.
We felt that we were able to introduce and build a basic
understanding of each of these topics because the program
visualization in Alice made these concepts seem natural and
easy to understand (see Results section below).

In addition to the day-to-day discussions and programming
assignments, a complete programming project was assigned
on the first day of class and was due by the end of the
seminar. Students worked on their project in groups of three.



Fig. 2. The ice skater’s skate method

The project was to create a computer animation (a more
involved program than the in-class exercises and programs).
The project animation specifications were that the animation
must last at least 30 seconds and must also contain at least
three methods, two of which use parameters in a meaningful
way. The students had no restrictions on the subject of their
animations.

IV. RESULTS

In the first trial of this innovative programming seminar,
the instructor of the seminar kept a log of observations of
student participation and questions as well as his own teaching
experience. (These observations were recorded as email to
two of the authors of this paper.) At the end of the seminar,
students were asked to complete a survey in which they
provided feedback on the seminar. The instructor did not see
student feedback until grades had been submitted. This section
summarizes the instructor’s comments and student reactions.

Approximately two-thirds of the students coming into this
seminar had little or no prior programming experience. Despite
their lack of experience, students were able to understand a
wide range of fundamental programming concepts (outlined
in the previous section of this paper). Student understanding
of the concepts was evident in their ability to apply these
concepts to a nontrivial project in just 3 weeks. In addition,
students were introduced to even more advanced CS2 topics

such as inheritance. The wide span of topics and the high-
interest, 3-dimensional, game-like interface kept the more
experienced students interested and challenged.

From a pedagogic standpoint, three weeks is a very limiting
time for introducing programming concepts in any meaningful
way. The Alice programming environment helped us overcome
the time limitation by providing program visualization of
objects and a drag-and-drop editor. Because programming in
Alice is so visual, we were able to talk about objects on
the first day. Objects were something that they could see
on the screen. Alice’s drag-and-drop editor had the students
constructing scenes for their projects in the very first lab. By
the second lab, students already had a significant portion of
their animation project working, and by the end of the seminar,
all of the students had completed their animation projects.

Alice supports collaborative programming and makes
project coordination easy. The students found it easy to work
together as a team because they could plan the animation of
several different objects and assign the development of dif-
ferent objects to different team members. Each team member
developed their own object independently and then integrated
it with the other objects in the overall animation for the project.

Alice offers many advantages to novice programmers. The
drag-and-drop editor encourages students to experiment. They
can simply drag behaviors into an object and see what happens.
Because there is no compile-link-run cycle, the visual feed-



back is immediate. The programs that students created were
equivalent in expressive power to those written in a Java-like
language. In addition to these benefits, the students were also
freed from syntax concerns, to which students in most CS1
courses devote a significant amount of energy.

Overwhelmingly, students thought that programming with
Alice was a fun experience. (This was despite the fact that we
were using a pre-beta version of Alice2 that was somewhat
unstable and crashed periodically. The latest version of Alice2
is far more stable.) In the survey distributed at the end of the
seminar, a Lickert 5-point scale was used to solicit feedback.
The average rating to a question regarding whether the seminar
had increased their interest in Compute Science was 3.73.
When asked whether they would recommend this seminar to
other students, the average response was 4.05.

V. A LTERNATIVE APPROACHES

Before deciding to use Alice, we considered several other
possibilities. Below is a summary of our considerations.

A. Squeak

Perhaps the most appealing alternative was Squeak [6] [7].
Squeak is an open source implementation of Smalltalk-80
written in itself. Squeak has all the elegance and simplicity of
Smalltalk with a good number of multimedia extensions [8].
The multimedia features of Squeak make programming fun
and Squeak has a very simple syntax that is easy to learn.
Despite its simplicity, we decided that there was still too much
overhead for a three week seminar.

B. C, C++, Java

C++ and Java have their roots in C and it shows. We decided
that the amount of syntactical overhead in these languages
would make it difficult for novice programmers to do anything
meaningful in just 3 weeks.

C. Visual Basic

VB was a potential alternative. While it is quite easy to
create GUIs in VB, it was too feature laden to be digestible
in three weeks. It also tends to encourage/allow poor pro-
gramming techniques, such as the requirement of using global
variables (required by the event handling mechanism) and, the
allowance of not declaring variables (unless a compiler option
is set).

VI. CONCLUSION

The programming seminar component of the ENGR100
core engineering course was successfully implemented using
3D animation for program visualization. Alice proved to be
a very effective tool for introducing fundamental principles
of programming. Program visualization and a drag-and-drop
editor made it possible to introduce object-oriented topics
including inheritance in just 3 weeks. We believe this intro-
duction will lay a foundation for further study in CS1. The
students found Alice to be a fun way to learn and expressed
an increased interest in computer science.

ACKNOWLEDGMENT

This work was partially supported by NSF grant DUE-
0126833.

REFERENCES

[1] H. R. Coward, C. P. Ailes, and R. Bardon. (2000, July) Progress
of the engineering education coalitions. [Online]. Available: http:
//www.nsf.gov/pubs/2000/nsf00116/nsf00116.pdf

[2] (2003) The Foundation Coalition website. [Online]. Available: http:
//www.foundationcoalition.org/

[3] (2003) The alice website. [Online]. Available: http://alice.org/
[4] S. Cooper, W. Dann, and R. Pausch, “Alice: A 3D tool for introductory

programming concepts,” inProceedings of the 5th Annual CCSC North-
eastern Conference 2000, Ramapo, NJ, 2000.

[5] ——, “Using animated 3D graphics to prepare novices for CS1,”Com-
puter Science Education Journal, 2003, (to appear).

[6] (2003) The squeak website. [Online]. Available: http://squeak.org/
[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to

the future: The story of squeak, a practical smalltalk written in itself,”
in ACM SIGPLAN Notices, Proceedings of the 1997 ACM SIGPLAN
conference on Object-oriented programming systems, languages and
applications, vol. 32, no. 10, oct 1997, pp. 318–326. [Online]. Available:
http://users.ipa.net/∼dwighth/squeak/oopslasqueak.html

[8] M. Guzdial, Squeak: Object-Oriented Design with Multimedia Applica-
tions. Prentice-Hall, 2001.


