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Abstract

Counting the exact number of solutions of a Constraint Satisfaction Prob-
lem (CSP) is an important but difficult task. To overcome this difficulty, the
techniques proposed in the literature organize the search process along a
tree decomposition of the CSP, where all the extensions of a given partial
solution over different branches of the tree are first independently counted
in each branch before their numbers can be multiplied. We observe that this
count is zero when any of the branches has no solution. We propose witness-
based search, which first ensures the existence of a solution (i.e., witness)
in each branch before starting the counting. We empirically establish the
benefits of our technique in the context of the BTD and AND/OR search
graphs.
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1 Introduction
Counting the number of solutions of a Constraint Satisfaction Problem (CSP),
an important task in verification and automated reasoning, is known to be #P-
complete [Valiant, 1979]. Current techniques for solving this problem exploit
some tree structure of the constraint network of the CSP in order to reduce the
search and counting efforts [Dechter and Pearl, 1988; Gogate and Dechter, 2008;
Favier et al., 2009].

Indeed, in a tree-structured problem, the number of solutions at any node in
the tree is computed by simple algebraic operations (i.e., summation and product)
from the number of solutions of the children of the node and information at the
node itself, following a pre-order traversal. In a non-parallel implementation, all
the solutions in one branch of the tree are counted before the solutions in another
branch with the same parent. In case the latter branch has no solution, the effort
spent counting the solutions in the first branch are wasted. We propose to first find
a witness solution in every branch of a given node in the tree before proceeding
to counting the number of solutions in any given branch. We call this scheme
witness-based search.

Further, tree-structured methods typically and heavily exploit a caching mech-
anism. This mechanism maintains, at some nodes of the search space, results that
were derived during search in order to reduce the amount of repetitive and re-
dundant work done during search. The information cached includes (portions of)
partial solutions that yielded inconsistencies (i.e., nogoods) and also those that
yielded solutions (i.e., goods) along with the count of solutions found.

We apply witness-based search to two solution-counting methods, namely, the
Backtrack Search with Tree Decomposition (BTD) [Jégou and Terrioux, 2003]
and the AND/OR search tree [Dechter and Mateescu, 2004]. Our empirical eval-
uations show a reduction of the search effort, and, importantly, the space used for
caching, which is a major bottleneck in those techniques.

This paper is structured as follows. Section 2 recalls main concepts and def-
initions. Section 3 discusses solution-counting methods based on tree structures.
Section 4 describes and discusses witness-based solution counting. Section 5 de-
scribes our experiments, and Section 6 concludes.

2 Main Definitions
We first summarize the main concepts and definitions used.
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2.1 Constraint Satisfaction Problem
A Constraint Satisfaction Problem (CSP) is defined by (X ,D, C), whereX is a set
of variables, D is a set of domains, and C is a set of constraints. Each variable in
X has a finite domain in D, and is constrained by a subset of the constraints in C.
Each constraint Ci ∈ C is defined by a relation Ri specified over the scope of the
constraint, scope(Ci), which are the variables to which the constraint applies, as a
subset of the Cartesian product of the domains of those variables. A tuple ti∈Ri

is a combination of values for the variables in the scope of the constraint that is
either allowed (i.e., support) or forbidden (i.e., conflict). A solution to the CSP is
an assignment to each variable of a value taken from its domain such that all the
constraints are satisfied. In general, finding a solution to a CSP is NP-complete,
and counting its number of solutions is #P-complete.

Backtrack search is a sound and complete algorithm commonly used to solve
CSPs. To improve the performance of search and reduce the severity of the com-
binatorial explosion, we enforce a given local consistency level. One common
such property is Generalized Arc Consistency (GAC). A CSP is GAC iff for every
constraint, any value in the domain of any variable in the scope of the constraint
can be extended to a tuple satisfying the constraint.

Several graphical representations of a CSP exist. In the hypergraph, the ver-
tices represent the variables of the CSP, and the hyperedges represent the scopes
of the constraints (see Figure 1). In the primal graph, the vertices represent the
CSP variables, and the edges connect every two variables that appear in the scope
of some constraint (see Figure 2).
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Figure 1: A hypergraph
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Figure 2: The primal graph

2.2 Backtrack Search with Tree Decomposition
A tree decomposition of a CSP is a tree embedding of its constraint network.
The tree nodes are clusters of variables and constraints from the CSP. The set of
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variables of a cluster cl is denoted χ(cl) ⊆ X , and the set of constraints ψ(cl) ⊆ C.
A tree decomposition must satisfy two conditions:

1. Each constraint appears in at least one cluster and the variables in its scope
must appear in this cluster; and

2. For every variable, the clusters where the variable appears induce a con-
nected subtree.

Many techniques for generating a tree decomposition of a CSP exist [Dechter and
Pearl, 1989; Jeavons et al., 1994; Gottlob et al., 2000]. We use here the tree-
clustering technique [Dechter and Pearl, 1989]. First, we triangulate the primal
graph of the CSP using the min-fill heuristic [Kjærulff, 1990]. Second, using the
perfect elimination ordering given by the MAXCARDINALITY algorithm [Tarjan
and Yannakakis, 1984], we identify the maximal cliques in the resulting chordal
graph using the MAXCLIQUES algorithm [Golumbic, 1980], and use the identified
maximal cliques to form the clusters of the tree decomposition. Figure 3 shows a
triangulated primal graph of the example in Figure 1. The dotted edges (B,H) and
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Figure 3: Triangulated primal graph and its maximal cliques

(A,I) in Figure 3 are fill-in edges generated by the triangulation algorithm. The ten
maximal cliques of the triangulated graph are highlighted with ‘blobs.’ Third, we
build the tree by connecting the clusters using the JOINTREE algorithm [Dechter,
2003]. While any cluster can be chosen as the root of the tree, we choose the
cluster that minimizes the longest chain from the root to a leaf. Figure 4 shows
the tree after connecting the maximal cliques of Figure 3. Finally, we determine
the variables and constraints of each cluster as follows: a) The variables of a
cluster cl, χ(cl), are the variables in the maximal clique that yields the cluster;

5



{A,B,C,N},{R1}	  

{A,I,N},{}	   {B,C,D,H},{R6}	  

{I,M,N},{R2}	   {B,D,F,H},{}	  

C1 

C2 

C3 

C7 

C8 

{A,I,K},{}	  

C4 

{I,J,K},{R3}	  
C5 

{A,K,L},{R4}	  
C6 

{B,D,E,F},{R5}	  
C9 

{F,G,H},{R7}	  
C10 

Figure 4: A tree decomposition of the CSP in Figure 1

and b) The constraints of a cluster cl, ψ(cl), are all the constraints Ri, such that
scope(Ri) ⊆ χ(cl). Figure 4 shows a tree decomposition for the example of
Figure 1. Note that we may end up with clusters with no constraints (e.g., C2, C4

and C8). A separator of two adjacent clusters is the set of variables that are
associated with both clusters.

2.3 AND/OR Tree Search
AND/OR tree search was proposed by Dechter [2004] as a generalization of
search in graphical models. AND/OR tree search exploits (in)dependencies in
the model to exponentially reduce the search effort, binding it exponentially by,
instead of the number of variables, the depth of a pseudo-tree [Freuder and Quinn,
1987], which is a tree spanning of the model. Dechter also extended the AND/OR
search space from a tree to a graph, further reducing the time effort albeit at the
cost of increased memory space [2004]. The detailed definitions and characteri-
zations are accessible in the original papers; below we illustrate this process with
a simple example.

Consider a CSP with the constraint graph shown in Figure 5. The domain of

W	  X	  

Z	  Y	  
T	  

R	  

Figure 5: A constraint graph
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Figure 6: A pseudo-tree of the example from Figure 5
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the variable Y is {2, 3}. The domains of W,X,Z, T,R are {1, 2}. The constraints
are as follows: W = Z, W = R, W ≥ X , 0 ≤ T − X ≤ 1, and X < Y .
The constraint between Y and T forbids only the tuple 〈(Y, 2), (T, 1)〉. Similarly,
the constraint between Y and R forbids only the tuple 〈(Y, 2), (R, 1)〉). Figure 6
gives a pseudo-tree of this CSP where the dependencies between variables are
shown as the tree edges (full lines) and back-edges (dotted lines). Figure 7 shows
the AND/OR search tree of the example in Figure 5 using the pseudo-tree of
Figure 6. An AND/OR search tree alternates between OR nodes (variables) and
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Figure 7: An AND/OR search tree of the example from Figure 5

AND nodes (variable assignments). The structure of the AND/OR search tree is
based on the pseudo-tree. The root of the AND/OR search tree is an OR node for
the variable at the root of the pseudo-tree. The children of an OR node are AND
nodes corresponding to the value assignments of the variable of the OR node. The
children of an AND node are OR nodes, corresponding to the variables that are
the children of the AND node’s variable in the pseudo-tree.

The parents of an OR node V are the ancestors of V in the pseudo-tree that
are connected in the constraint graph to V or to descendants of V . The parent-
separator of an OR node V (or an AND node 〈V, v〉) is the set containing V and its
ancestors in the pseudo-tree that are connected in the original graph to descendants
of V . The context of an AND node is the assignments of the variables in the node’s
parent-separator. The context of an OR node is the assignments of the variables
in the node’s parents. Two nodes can be merged together if their context is the
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same, thus yielding a search graph. Figure 8 shows the AND/OR search graph of
our example using OR context-merging. Note that we could merge nodes on both
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Figure 8: The AND/OR search graph by merging OR contexts

the OR context and AND context; however, merging with one context makes the
other unnecessary [Dechter and Mateescu, 2006].

3 Tree-Based Solution Counting
Below, we discuss solution-counting methods and provide a pseudo-code that op-
erates on binary tree-structured CSPs, the BTD, and AND/OR search graphs. In
Section 4, we modify this pseudo-code to incorporate our witness mechanism.
Our pseudo-code is specified recursively for readability, but our implementation
is iterative. Further, the pseudo-code relies on back-checking for extending con-
sistent partial solutions, whereas our implementation uses look-ahead.

3.1 Solution Counting in a Tree-Structured Binary CSP
Dechter and Pearl [1988] noted that the number of solutions in a tree-structured
binary CSP can be computed in O(nd2) where n is the number of variables and d
the maximum domain size. It computes the number of solutions of a given CSP
variable from the number of solutions of its children in the tree. In summary,
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1. the number of solutions rooted at a given variable in the tree-structured CSP
is the summation of the number of solutions ‘rooted’ at each value in the
domain of the variable; and,

2. the number of solutions at a given value of the domain is the product of
the numbers of solutions of the value’s consistent extensions in each of the
children of the variable.

We wrote Algorithm 1 to loosely accommodate all three solution methods dis-
cussed in this section. The algorithm is started by running #SOLS(root,∅), where
root is the root of the tree. SolCache(child ,A) is the cache of a node given a par-
tial assignment A, and stores, when bound, the number of solutions rooted at the
node. ntotal stores the number of solutions at the root , and nc stores the number
of solutions rooted at the assignment root ← v. Whenever nc = 0 within the loop
of Lines 4–11, we exit the loop. This test is omitted for readability. The original
procedure of Dechter and Pearl [1988] is easily obtained by ignoring the cache
(Lines 5, 6, 7, 9, and 10).

Algorithm 1: #SOLS(root ,A)
Input: root of a tree structure of a CSP

A: A current partial solution
Output: Number of solutions at root
ntotal ← 01

foreach v ∈ Domain(root) s.t. v is consistent with A do2

nc ← 1; Acur ← A∪ {root ← v}3

foreach child ∈ Children(root) do4

if SolCache(child ,Acur) is bound then5

cache ← SolCache(child ,Acur)6

else7

cache ← #SOLS(child, Acur)8

SolCache(child ,Acur)← cache9

Cache good, no-good10

nc ← nc × cache11

ntotal ← ntotal + nc12

return ntotal13
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3.2 Solution Counting in the BTD
In the case of the BTD, Algorithm 1 operates on a tree decomposition of the CSP.
Line 2 is called on the last unassigned variable in the root cluster as root . The child
in Line 4 is the first unassigned variable in a child cluster. Before the recursive
call in Line 8 is done on the last unassigned variable in the child cluster, we must
first consistently extend the partial solution over the unassigned variables in the
child cluster except for one variable.

When search succeeds, the BTD caches the instantiation of the variables at the
separators as a ‘good’ along with the number of solutions rooted at this instantia-
tion. Otherwise, the instantiations at the separator is cached as a ‘no-good.’

3.3 Solution Counting in an AND/OR Search Tree
In the case of an AND/OR search tree, Algorithm 1 operates on the pseudo-tree.
To count the solutions, the AND nodes multiply the numbers of solutions of their
children (leaf AND nodes are considered to have one solution); OR nodes add
the number of solutions of their children (leaf OR nodes are considered to have 0
solutions).

The cached information is similar to that cached by the BTD, except that it
is for the instantiations of the variables in the contexts (not at the separators).
The performance of this method is improved by the detection of dead-caches,
which are caches that will never be hit [Darwiche, 2001; Marinescu and Dechter,
2006], and, thus, need not be recorded. In the presence of a dead-cache, the
assignment of SolCache(child ,A) in Line 9 is not executed, and goods/no-goods
are not stored in Line 10. Note that, the space needed for caching is a major
bottleneck in tree-based solution-counting methods. Other techniques for dealing
with this bottleneck exist (e.g., naive-caching and adaptive-caching [Marinescu
and Dechter, 2006]) and are orthogonal to our approach.

4 Solution Counting in Witness-Based Search
The idea of our witness-based search is to refrain from counting solutions in any
branch off a node in a tree structure before ensuring that the current partial solu-
tion at the node1 can be consistently extended over the variables in each branch

1An AND node in the case of an AND/OR search tree.
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off the node. Indeed, if the solution fails to extend consistently over the vari-
ables of a single branch, then all the counting effort in the branches is wasted by
multiplication by 0.

4.1 A Generic Pseudo-Code for Witness-Based Search
We specify witness-based search in the generic pseudo-code of Algorithm 2, and
claim that it is applicable to any tree-based solution-counting method. Our tech-
nique interacts too tightly with the solution-counting strategies for it to be imple-
mented as a separate component of a Constraint Solver. Indeed, the caching infor-
mation stored by the various solution-counting strategies depend on the strategy
itself. Based on our experience with two such strategies (i.e., BTD and AND/OR
tree search), we found that the code of such strategies must be directly modified
to incorporate witness-based search.

Algorithm 2 differs from Algorithm 1 by the use of a switch variable mode,
which takes one of two values sat or count to determine whether search should
check for satisfiability (i.e., find a witness) or do solution counting, respectively.
The algorithm is started by running W#SOLS(root ,∅,count), where root is the
root of the tree. In Line 2, the algorithm examines all the children, either finding
a witness in the cache (Line 5) or doing the search to find a witness (Line 8). If
mode=sat, then 1 is returned (Line 12). Ifmode=count and a witness is found, the
algorithm proceeds to counting the number of solutions (Lines 14 to 23). Com-
paring Line 10 and Line 21 only goods are cached when mode=count because
satisfiability is guaranteed by the witness mechanism.

4.2 Analysis of Witness-Based Search
In order to save on the search effort, the implementation of the algorithm should
preserve the state of the search space in a branch where a witness is found so
that, when the same branch is revisited again to count the remaining solutions, the
effort to find the first solution is not repeated and the search can proceed from the
witness. Below, we discuss two implementation strategies for handling the state
of the search space where a witness solution was found. The first strategy does
not always preserve the state of this space, whereas the second does.

In the first implementation strategy, after finding a witness in a branch bri, we
maintain the instantiations of the variables in this branch (i.e., freeze the search
space in bri) while checking on the other branches (which are independent of
bri). Thus, the recursive call in Line 19 to count solutions in bri can continue
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Algorithm 2: W#SOLS(root ,A,mode)
Input: root of a tree structure of a CSP

A: A current partial solution
mode: Either sat for satisfiability or count for solution counting

Output: If mode=count, number of solutions at root . Otherwise
(mode=sat), 1 if a witness was found, 0 otherwise

ntotal ← 01

foreach v ∈ Domain(root) s.t. v is consistent with A do2

nc ← 1; Acur ← A∪ {root ← v}3

foreach child ∈ Children(root) do4

if SolWitnessCache(child ,Acur) is bound then5

cache ← SolWitnessCache(child ,Acur)6

else7

cache ←W#SOLS(child, Acur, sat)8

SolWitnessCache(child ,Acur)← cache9

Cache good, no-good10

nc ← nc × cache11

if mode=sat and nc > 0 then return 112

if mode=count and nc > 0 then13

nc ← 114

foreach child ∈ Children(root) do15

if SolCache(child ,Acur) is bound then16

cache ← SolCache(child ,Acur)17

else18

cache ←W#SOLS(child, Acur, count)19

SolCache(child ,Acur)← cache20

Cache good21

nc ← nc × cache22

ntotal ← ntotal + nc23

return ntotal24

from the current (frozen) state of the search. However, when backtracking occurs
in the search above bri, the variables in bri and up to the backtrack level are
uninstantiated (i.e., the search space in bri is reset). When search resumes, and
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if the current path ‘conditions’ bri in the same way as it did earlier,2 we know,
because of the stored good, that bri has a witness. However, the state of the search
space in bri was reset because of backtracking. Thus, solution counting will have
to restart from scratch. The advantage of this implementation is that it does not add
to the memory space requirements. Its disadvantage is that, upon backtracking,
the effort to find this first-solution has to be repeated.

The second implementation strategy is similar to the first, except that the
caching is enhanced to also store the variable-value assignments of the witness
(i.e., the first solution in bri). Thus, upon backtracking, the state of the search
space in bri is restored and search can continue from that state when counting the
number of solutions in bri (Line 19). The advantage of this strategy is that the
effort to find the first-solution need not be repeated. However, the storage size
for each cached good is increased linearly in the number of the variables in the
branch.

While the first implementation strategy cannot guarantee that witness-based
search does not increase the number of nodes visited by search, the second strategy
does. We implemented both strategies: the first for the BTD, and the second
for AND/OR tree search. We found them both to be advantageous on the tested
instances despite the occasional and slight increase in the number of nodes visited
by the witness-based BTD.

5 Empirical Evaluations
Our experiments assess the improvement brought about by the witness mechanism
on solution-counting methods. We show that adding witness to both the BTD and
AND/OR tree search results in significant improvements of both time and space
on both unsatisfiable and satisfiable CSP instances.

5.1 Experimental Set-Up
We integrate GAC (GAC2001 [Bessière et al., 2005]) in all our search algorithms
as a real full look-ahead strategy. We find the pseudo-tree using the technique
described by Bayardo and Mirankar [1996]. We instantiate the variables in the
order of the pseudo-tree.

2Determined by the instantiations of the variables in the separators/contexts.
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The experiments are conducted on the benchmarks of the CSP Solver Com-
petition3 with a time limit of two hours per instance and 8 GB of memory. We
provide plenty of time and memory, to the extent possible, to avoid tainting our
experiments with censored data. We use benchmarks4 that are difficult for BTD
and AND/OR tree search to illustrate the advantage of using the witness technique
in a challenging context. We split our analysis on the 479 unsatisfiable and 200
satisfiable instances tested.

It is not our goal to compare the performances of BTD with AND/OR tree
search, but to evaluate the improvement brought about by witness-based search
on each of them. For each of the two solution-counting methods, we focus our
analysis on instances that were completed by search with and without the witness
technique. Of the original 679 instances, the number of those instances is 308 for
BTD and 239 for AND/OR search tree.5 Further, we ignore the instances where
the performance did not change in terms of nodes visited (on those instances the
CPU time difference was within less than 0.1% and they used the same caching
space). We end up with 106 instances for BTD and 95 instances for AND/OR
search tree.6 We analyze the performance by reporting the following measure-
ments: a) the number of nodes visited, b) the CPU run time in seconds, and c) the
space requirement in terms of number of goods and no-goods stored. The infor-
mation about the witness needed to restore the state of the search space is included
in the goods measurement. We show that witness-based search is advantageous
by all three measurements.

5.2 Comparing Witness-BTD with BTD
In Tables 1-3, we abbreviate Witness-BTD as W-BTD.

Number of nodes visited: Table 1 shows the number of instances that a given
technique visits fewer nodes than the other, and the average number of nodes vis-

3http://www.cril.univ-artois.fr/CPAI08/
4aim-(50, 100, 200), composed-(25-10-20, 25-1-2, 25-1-25, 25-1-40, 25-1-80, 75-1-2, 75-1-25,

75-1-40, 75-1-80), dag-rand, dubois, graphColoring-(hos, mug, register-mulsol, register-zeroin,
sgb-book, sgb-games, sgb-miles, sgb-queen), hanoi, modifiedRenault, QCP-15, rand-(10-20-10,
8-20-5), rlfap(GraphsMod, Scens11, ScensMod), ssa, and tightness0.9

5For BTD: 197 unsatisfiable, 111 satisfiable. For AND/OR search tree: 155 unsatisfiable, 84
satisfiable.

6For BTD: 69 unsatisfiable, 37 satisfiable. For AND/OR search tree: 59 unsatisfiable, 36
satisfiable.
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ited by each algorithm. Note that BTD never outperforms Witness-BTD on un-

Table 1: Number of instances with fewer #NV, and average #NV

BTD W-BTD
Fewest #NV

UNSAT (69) 0 69
SAT (37) 8 29

Average #NV
UNSAT (69) 1,431,275.77 616,502.46
SAT (37) 8,235,685.41 8,166,271.57

satisfiable instances. On satisfiable instances, Witness-BTD wins more often than
BTD (29 instances). However, there are instances where BTD visits fewer nodes
than Witness-BTD (8 instances). The reason is because the implementation of
Witness-BTD does not restore the search space for cached witnesses, but instead
searches again for the first solution, as discussed in Section 4.2. Witness-BTD
clearly outperforms BTD on unsatisfiable instances, showing substantial savings
of not searching partial solutions that never participate in a global solution. On
satisfiable instances, the difference is not as significant, albeit it shows an improve-
ment. Notice, that although some search effort was wasted in our implementation
of Witness-BTD (BTD visited fewer nodes on 8 instances than Witness-BTD),
Witness-BTD still always saves on average on the number of nodes visited.

Run time: The savings in the number of nodes visited match those exhibited
by the CPU time. Table 2 reports the number of instances on which a given al-
gorithm completed fastest within the CPU clock-resolution of 100 ms (thus, with
occasional ties), and the average CPU time. On unsatisfiable instances, Witness-
BTD solves more instances fastest than BTD and has a smaller average CPU time.
On satisfiable instances, BTD is fastest on more instances than Witness-BTD (21
vs. 17 instances). However, the average CPU time is slightly less for the Witness-
BTD. Thus, Witness-BTD yields savings (on unsatisfiable instances) while caus-
ing no significant overhead (on satisfiable instances).

Space requirements: Table 3 gives the average number of stored goods and no-
goods. Notice that the number of no-goods for Witness-BTD and BTD are almost
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Table 2: #Instances completed fastest and average time

#Fastest Avg. time (sec.)
BTD W-BTD BTD W-BTD

UNSAT (69) 21 55 135.28 110.01
SAT (37) 21 17 724.51 723.97

Table 3: Average number of goods and no-goods stored

BTD W-BTD
Average #no-goods

UNSAT(69) 43,675.77 43,675.74
SAT(37) 449,633.21 449,516.29

Average #goods
UNSAT(69) 24,104.52 10,611.10

SAT(37) 160,025.63 148,739.58

identical, which is to be expected given that Witness-BTD finds the same no-
goods, only earlier. However, the number of goods stored is significantly reduced
by Witness-BTD. This fact illustrates how Witness-BTD avoids storing partial so-
lutions that cannot be completed to global solutions, which is exactly our intended
design.

In summary, Witness-BTD achieves its goal: it saves on the number of nodes
visited, time, and space, and never yields any overheads. It is a safe and robust
strategy to implement in all circumstances, and clearly improves BTD. Therefore,
it can be safely applied at all times.

5.3 Comparing Witness-AND/OR with AND/OR Tree Search
In Tables 4-6, we abbreviate AND/OR tree search as AO and witness-AND/OR
tree-search as W-A/O.

Number of nodes visited: As stated in Section 4.2, Witness-AND/OR tree
search is guaranteed to never visit more nodes than AND/OR tree search does.
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The variable-value assignments of the witness are cached so that the state of the
search space can be restored to allow solution counting to resume from the wit-
ness. Table 4 gives the average number of nodes visited by each strategy and
shows a large reduction on both satisfiable and unsatisfiable instances.

Table 4: Average #NV

A/O W-A/O
UNSAT (59) 580,762.02 537,552.56
SAT (36) 24,314,616.44 19,521,667.08

Run time: Once again, the reduction of the nodes visited directly translates into
CPU time savings. Table 5 shows the number of instances on which a given al-
gorithm completed the fastest (within the CPU clock-resolution) and the average
CPU time. AND/OR tree search did complete a few instances fastest (19 unsat-

Table 5: #Instances completed fastest and average time

#Fastest Avg. time (sec.)
A/O W-A/O A/O W-A/O

UNSAT (59) 19 59 110.56 102.96
SAT (36) 10 29 693.16 569.73

isfiable and 10 satisfiable). However, note that the 19 unsatisfiable instances that
AND/OR tree search completed fastest tie with Witness-AND/OR tree search. In-
deed, Witness-AND/OR tree search was fastest on all 59 unsatisfiable instances.
Looking at the average CPU time, Witness-AND/OR outperformed AND/OR tree
search on both satisfiable and unsatisfiable instances.

Space requirements: Table 6 gives the average number of stored goods and
no-goods by AND/OR and Witness-AND/OR tree search. As discussed for the
case of BTD, there are roughly the same number of no-goods stored for Witness-
AND/OR and AND/OR tree search. However, the average number of goods stored
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Table 6: Average number of goods and no-goods stored

A/O W-A/O
Average #no-goods

UNSAT(59) 9,645.76 9,645.66
SAT(36) 725,561.92 711,190.75

Average #goods
UNSAT(59) 8,103.34 5,783.95

SAT(36) 103,506.00 47,470.53

is significantly reduced on both satisfiable and unsatisfiable instances. Because
witness-based search dramatically reduces the space needed for caching, it di-
rectly benefits adaptive caching schemes to maintain more information cached
than it would otherwise be possible [Marinescu and Dechter, 2006].

In summary, Witness-AND/OR tree search is a beneficial strategy to imple-
ment and use in all circumstances and clearly improves AND/OR tree search.

5.4 An example with extreme benefits
While the average values of the results reported above show a clear advantage of
the witness-based search, we explore below a situation where an extreme saving
can be obtained.

Inspired by the experiments reported by Otten and Dechter [2012], we man-
ually create an instance of a CSP that has a very large search space but is un-
solvable. We show how Witness-AND/OR search can yield extreme gains. In
practice, we proceed as follows. We connect a large search space many solutions
to another search space with no solutions as illustrated in Figure 9. To this end,
we generate the pseudo-tree of each problem independently. We identify the root
node of the barren search space. In the pseudo-tree of the solvable instance, we
identify a variable that appears at the ‘middle height’ of the tree. Then, we add an
arbitrary binary constraint between the two identified variables, thus linking the
two CSP instances. We solve the newly formed instance with both AND/OR and
Witness-AND/OR.

We generated one such problem by connecting an unsatisfiable aim-50 in-
stance (normalized-aim50-1-6-unsat1.xml) to a pseudo-garden instance (normalized-
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Figure 9: Connecting a tree with no solution to a tree with many solutions

g-9x9.xml) by adding an equality constraint between two variables (V53 of pseudo-
garden to V1 of aim-50). The results were as follows:

1. AND/OR search expanded 2,657,758 nodes and detected unsolvability in 31.61
seconds.

2. Witness-AND/OR search reduces the effort by over 90%, visiting 63,476
nodes for a total of 2.25 seconds CPU time.

This example illustrates the significant advantage witness-based techniques can
provide. Again, as stated earlier, this advantage does not cause any overhead.

6 Conclusions
In this paper, we proposed witness-based search as a strategy to improve the time
and space performance of solution-counting methods that operate on a tree struc-
ture. We empirically showed that our technique benefit solution-counting methods
based on the BTD and AND/OR tree search improving performance by all mea-
surements, especially the space needed for caching, which is a major bottleneck
in such methods. As future work, we plan to extend our approach to approximate
solution counting [Gogate and Dechter, 2008]. We believe that the space savings
obtained by our witness strategy will allow us to achieve better approximations.
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