
Cycle-Based Singleton Local Consistencies

Robert J. Woodward1,2 Berthe Y. Choueiry1

Christian Bessiere2

1Constraint Systems Laboratory
University of Nebraska-Lincoln, USA

{rwoodwar|choueiry}@cse.unl.edu

2LIRMM-CNRS
University of Montpellier, France

bessiere@lirmm.fr

UNL-CSE-2016-0004

September 22, 2016

Abstract

We propose to exploit cycles in the constraint network of a Constraint
Satisfaction Problem (CSP) to vehicle constraint propagation and improve
the effectiveness of local consistency algorithms. We focus our attention on
the consistency property Partition-One Arc-Consistency (POAC), which is a
stronger variant of Singleton Arc-Consistency (SAC). We introduce rPOAC,
a relational variant of POAC, defined on the relations of the CSP. We modify
the algorithm for enforcing POAC and the algorithm’s adaptive version to
operate on a minimum cycle basis (MCB) of the incidence graph of the CSP
for POAC and the CSP’s minimal dual graph for rPOAC. We empirically
show that our approach improves the performance of problem solving and
constitutes a novel and effective localization of consistency algorithms.

1

1 Introduction

While Singleton Arc-Consistency (SAC) is a strong form of consistency [De-
bruyne and Bessière, 1997], the cost of enforcing it on a Constraint Satisfaction
Problem (CSP) during search is prohibitive in practice. The algorithm for SAC
operates by assigning a value to a variable then enforcing arc consistency (AC) on
the entire CSP. That operation is called the singleton test. If the problem is found
to be inconsistent, the value is removed from the domain of the tested variable.
Wallace [2015] proposed NSAC, which reduces the cost of enforcing SAC by re-
stricting AC to the neighborhood of the variable. Bennaceur and Affane [2001]
proposed Partition-One Arc-Consistency (POAC), an extension of SAC, to prune
values anywhere in the problem as soon as a variable has been completely sin-
gleton tested. POAC can both reduce the cost of SAC and increase its filtering.
Balafrej et al. [2014] showed that the cost of POAC, when used for real-full looka-
head (RFL) during search, can be further reduced by interrupting it before a fixed
point is reached. They proposed APOAC as an adaptive version of POAC, where
the “number of times variables are processed for singleton tests on their values is
dynamically and automatically adapted during search.”

In this paper, we explore using localization to improve the performance of
POAC. As a first step, we replicate the approach of Wallace [2015] for SAC and
restrict POAC to the direct neighborhood of each variable. Then, we explore a
completely new direction: we restrict POAC to cycles in which a variable par-
ticipates, the rationale being that cycles are likely to expose inconsistencies. We
explore the use of a Minimum Cycle Basis (MCB) of a variable, which can be ef-
ficiently computed [Horton, 1987], generating MCBs on the incidence graph and
a minimal dual graph of the CSP. Finally, we empirically validate our approach.

Although this paper focuses on POAC, we believe that exploiting cycles, such
as MCBs, is applicable to other consistency algorithms, and that our study opens
a new direction in the design of consistency algorithms.

This paper is structured as follows. Section 2 reviews background informa-
tion about CSPs. Section 3 introduces our localized variant of POAC that uses a
minimum cycle basis to define the subproblem over which POAC singleton tests.
Section 4 empirically compares the performance of algorithms for POAC. Finally,
Section 5 concludes this paper.

2

2 Background
Below, we review the basic concepts used in this paper.

2.1 Constraint Satisfaction Problem
A Constraint Satisfaction Problem (CSP) is defined by P = (X ,D, C). X is a
set of variables, and each variable xi ∈ X has a finite domain dom(xi) ∈ D.
Let (xi, vi) denote a variable-value pair, (xi, vi) ∈ P if vi ∈ dom(xi). Each
constraint ci ∈ C is specified by its scope, scope(ci), which is the set of vari-
ables to which ci applies, and by a relation Ri, which is a set of allowed tu-
ples (Ri ⊆

∏
xi∈scope(ci) dom(xi)). We denote by neigh(ci) the set of constraints

whose scopes intersect with that of ci, cons(xi) the set of constraints that apply
to xi, and neigh(xi) = ∪c∈cons(xi)scope(c) \ {xi}. A binary CSP is a CSP whose
constraints are over two variables. A solution to the CSP assigns, to each variable,
a value taken from its domain such that all the constraints are satisfied. Deciding
the existence of a solution for a CSP is NP-complete.

The dual encoding of a CSP P is a binary CSP, PD, where the variables are
the relations of P , and their domains are the tuples of those relations. A con-
straint exists between two variables in PD if their corresponding relations’ scopes
intersect, and enforces equality over the shared variables. The graphical repre-
sentation of PD is the dual graph. In the dual graph, an edge between two ver-
tices is redundant if there exists an alternate path between the two vertices such
that the shared variables appear in every edge in the path [Janssen et al., 1989;
Dechter, 2003]. Redundant edges can be removed without changing the set of
solutions. A minimal dual graph, a dual graph with no redundant edges, can be
efficiently computed [Janssen et al., 1989], but is not unique.

The incidence graph of a CSP is a bipartite graph where one set of vertices
contains the variables of the CSP and the other set the constraints. An edge con-
nects a variable and a constraint if and only if the variable appears in the scope of
the constraint. The incidence graph is the same graph used in the hidden-variable
encoding [Rossi et al., 1990].

2.2 Consistency Properties and Algorithms
A CSP is globally consistent iff “any consistent instantiation of a subset of the
variables can be extended to a consistent instantiation of all the variables without
encountering any dead-ends” [Dechter, 2003]. Because guaranteeing a globally

3

consistent CSP is in general exponential in time and space [Bessiere, 2006], we
focus in practice on local consistency properties, which are in general tractable.
Local consistency properties can be enforced on a CSP to filter values from the
variables’ domains or tuples from the constraints’ relations to reduce the size
of the search space. These properties can be enforced either before (i.e., pre-
processing) or during search. Below, we informally review the consistency prop-
erties discussed in this paper.

The most common property is Arc Consistency (AC) for binary CSPs, or Gen-
eralized Arc Consistency (GAC) for non-binary CSPs [Mackworth, 1977]. A CSP
is GAC iff, for every constraint ci, and every variable x ∈ scope(ci), every value
v ∈ dom(x) is consistent with ci (i.e., appears in some consistent tuple of Ri).
Pairwise Consistency (PWC) is a relational consistency property that guarantees
that every tuple consistent with a constraint ci is consistent with every constraint
in neigh(ci) [Gyssens, 1986]. Singleton Arc-Consistency (SAC) ensures that the
CSP remains arc consistent after assigning a value to a variable [Debruyne and
Bessière, 1997]. Neighborhood SAC (NSAC), a localized form of SAC, ensures
that, for any assignment of a value to a variable x, the CSP induced by x and its
neighborhood is arc consistent [Wallace, 2015]. Neighborhood Inverse Consis-
tency (NIC) ensures that each value in the domain of a variable x can be extended
to a solution in the subproblem induced by x and its neighborhood [Freuder and
Elfe, 1996].

A constraint network P = (X ,D, C) is Partition-One Arc-Consistent (POAC)
iff P is SAC and for all xi ∈ X , for all vi ∈ dom(xi), for all xj ∈ X , there exists
vj ∈ dom(xj) such that (xi, vi) ∈ AC(P ∪ {xj ← vj}), where AC(P ∪ {xj ←
vj}) is the CSP after assigning xj ← vj and running AC [Bennaceur and Affane,
2001].

Using the terminology of Debruyne and Bessière [1997], we say that a con-
sistency property p is stronger than p′ if in any CSP where p holds p′ also holds.
Further, we say that p is strictly stronger than p′ if p is stronger than p′, and there
exists at least one CSP in which p′ holds but p does not. We say that p and p′ are
equivalent if p is stronger than p′, and vice versa. Finally, we say that p and p′ are
incomparable when there exists at least one CSP in which p holds but p′ does not,
and vice versa. In practice, when a consistency property p is stronger than another
p′, enforcing p never yields less pruning than enforcing p′ on the same problem.

Following this terminology, POAC is strictly stronger than SAC, which is
strictly stronger than GAC. Further, NIC is strictly stronger than NSAC [Wallace,
2015].

POAC-1, the algorithm proposed by Balafrej et al. [2014] for enforcing POAC,

4

operates by enforcing SAC while using counters on domain values to determine
when more filtering can be obtained. They also propose APOAC, an adaptive
version of POAC-1. In POAC-1, all the CSP variables are singleton tested, and the
process is repeated over all the variables until a fixed point is reached. In APOAC,
the first iteration is interrupted as soon as a given number of variables is processed.
This number is learned and updated during search. Although not discussed by
the authors, the consistency property enforced by the adaptive algorithm APOAC
is strictly stronger than GAC, incomparable with SAC, and strictly weaker than
POAC.

2.3 Minimum Cycle Basis

The composition of two cycles is the symmetric difference (exclusive-or) between
the edges of the cycles. A cycle basis of a graph is a maximal set of cycles that
are linearly independent (i.e., cycles in the basis cannot be obtained by taking the
composition of other cycles in the basis) [Horton, 1987]. In a weighted graph the
weight of a cycle in the graph is the sum of the weights of the edges in the cycle.
A minimum cycle basis is a cycle basis where the sum of the weights of the cycles
in the cycle basis is minimum. Informally, a minimum cycle basis is a minimum
set of cycles that can generate all of the cycles of the graph. In the case of an
unweighted graph, the weights of each edge is one, a minimum cycle basis has a
minimum total length.1 Algorithms for finding a minimum cycle basis are either
exact or approximate, finding the minimum within some bound [Horton, 1987;
Kavitha et al., 2007; Mehlhorn and Michail, 2009; Amaldi et al., 2010]. The
complexity of the exact algorithm is O(e2n/ log(n)) where n is the number of
vertices and e the number of edges in the graph [Amaldi et al., 2010]. That of the
approximate algorithm isO(eω

√
n log(n)) where ω is the best exponent of matrix

multiplication (ω < 2.376) [Kavitha et al., 2007].
Figure 1 shows the incidence graph of a CSP, where the circles denote the

variables and the squares the constraints. This graph has three cycles: (B, ABC,
C, CD, D, BD), (C, CD, D, DF , F , EF , E, CE), and (B, ABC, C, CE,
E, EF , F , DF , D, BD). The third cycle can be obtained from the first two by
symmetric difference. Thus, the first two cycles constitute a minimal cycle basis
for this graph. Incidentally, note that variable A does not appear in any cycle.

1Note that an MCB is not unique.

5

A

B

ABC

BD

CE

DF

E

F

EF

D

C

CD

Figure 1: The incidence graph of a CSP

3 Localizing POAC
The algorithm POAC-1, which enforces POAC, runs a singleton test on each
variable-value pair of the CSP [Balafrej et al., 2014]. In each test, it enforces
arc consistency on the entire CSP. Whenever the domain of any variable is up-
dated, the entire process is repeated (i.e., POAC-1 runs the singleton test on all
the variables again). We propose to reduce the cost of POAC-1 in two ways. First,
at a singleton test on a given variable x, we restrict arc consistency to the variables
in the cycles in which x appears. Second, whenever the domain of any variable,
x or a variable that appears in a cycle of x, is updated as the result of this test, we
repeat the singleton tests on all the variables in the cycles of the affected variable.

Incidentally, note that SAC and POAC are equivalent on cycles. Indeed, con-
sider the network of the binary CSP shown in Figure 2. A singleton test on any of

Figure 2: The constraint graph of the CSP is a cycle

the variables breaks the cycle into a chain and arc consistency guarantees global
consistency [Freuder, 1982].

Proposition 1 POAC is equivalent to SAC on a cycle.

Sketch of proof: After breaking the cycle with a singleton test, arc consistency
ensures global consistency. �

6

Below, we formalize the consistency property that results from our approach,
then introduce the algorithms NPOACQ and ∪cycPOACQ (Algorithms 1 and 5),
which implements our idea. Then, we extend, in a trivial manner, our approach to
relations. Finally, we discuss the use of POAC algorithms during search.

3.1 NPOAC: Localization to Neighborhoods
We define Neighborhood Partition-One Arc-Consistency (NPOAC) similarly to
neighborhood SAC (NSAC) [Wallace, 2015]. Informally, neighborhood POAC
localizes the singleton test to the neighborhood of the variable. Given a CSP P
and V a subset of the variables of P , we denote P|V the subproblem induced by
V on P . The constraints included in P|V are all those constraints whose scope
contains a variable in V .

Definition 1 A constraint network P = (X ,D, C) is Neighborhood Partition-One
Arc-Consistent (NPOAC) iff P is neighborhood SAC (NSAC), and for all xi ∈ X ,
for all xj ∈ neigh(xi), for all vj ∈ dom(xj), there exists vi ∈ dom(xi) such that
vj ∈ AC(P|{xi}∪neigh(xi) ∪ {xi ← vi}).

Theorem 2 Neighborhood Inverse Consistency (NIC) is incomparable to Neigh-
borhood POAC (NPOAC).

Proof: Figure 3 shows a CSP that is NPOAC but variable v is not NIC. Figure 4
shows a CSP that is NIC but X4 ← 1 is not NPOAC (X4 ← 1 is removed in
every singleton test for X1). This example was first proposed to show that POAC
is strictly stronger than SAC [Bennaceur and Affane, 2001]. �

3.2 ∪cycPOAC: Localization to MCBs
For each singleton test for a given variable xi, we propose to enforce arc con-
sistency on the subproblem induced by the union of the variables of a minimum
cycle basis (MCB) of xi, where a MCB of xi is computed on the incidence graph
of the CSP.

First, we introduce some notations. Let MCB denote the set of cycles of a
minimum cycle basis of the constraint network. For any given cycle φ ∈ MCB,
we denote vars(φ) the set of variables that appear in φ. For a given variable xi,
we denote MCB(xi) ⊆ MCB the set of cycles in which xi appears. We define
vars(MCB(xi)) as follows:

vars(MCB(xi)) = {xi} ∪ neigh(xi) ∪φ∈MCB(xi) vars(φ).

7

y

v

w

x z

Figure 3: NPOAC but not NIC

R12

X1 X2

v1 v1

v2 v2

v3 v1

v3 v2

R13

X1 X3

v1 v1

v1 v3

v2 v2

v2 v3

v3 v1

v3 v2

v3 v3

R14

X1 X4

v1 v1

v1 v2

v2 v1

v2 v2

v3 v2

R23

X2 X3

v1 v2

v1 v3

v2 v1

v2 v3

R34

X3 X4

v1 v1

v1 v2

v2 v1

v2 v2

v3 v2

Figure 4: NIC but not NPOAC

This definition allows us to include variables that do not appear in a cycle (e.g., A
does not appear in any cycle in Figure 1).

Now, we formulate the consistency property Union-Cycle Partition-One Arc-
Consistency (∪cycPOAC). It is similar to POAC but restricts the propagation of
arc consistency during a singleton test for a variable xi to the subproblem induced
on the CSP by the variables in vars(MCB(xi)). Like POAC, the property must
hold for all the variables of the CSP.

Definition 2 Given a minimum-cycle basis MCB of a CSP P = (X ,D, C), P
is Union-Cycle Partition-One Arc-Consistent (∪cycPOAC) iff for all xi ∈ X , the
CSP P is AC for all vi ∈ dom(xi) on P|vars(MCB(xi)) ∪ {xi ← vi}, and for all
xj ∈ vars(MCB(xi)), for all vj ∈ dom(xj), there exists vi ∈ dom(xi) such that
vj ∈ AC(P|vars(MCB(xi))) ∪ {xi ← vi}).

It is easy to see that ∪cycPOAC is strictly stronger than GAC, not comparable with
SAC, and strictly weaker than POAC.

3.3 NPOACQ: A Variable-Based Algorithm
POAC-1, the original algorithm for POAC, uses a list of all the CSP variables,
ordered by some heuristic such as decreasing values of dom/wdeg [Balafrej et
al., 2014]. After processing once every variable in the list, it repeats the process
again whenever any domain is updated. Importantly, POAC-1 does not reconsider
any variable for singleton testing before all the variables of the CSP have been

8

processed. The size of the list does not change. To implement a similar behavior,
our algorithm NPOACQ (Algorithm 1) uses three queues: Q stores the variables
to be processed by singleton testing, Qseen stores the variables that have been
processed during the current iteration, and QtoRevisit stores the variables affected
by change during the current iteration. Only when all the variables inQ have been
processed (Q is empty), the variables inQtoRevisit are moved toQ to be processed.

Q is handled as a priority list using the same heuristic as POAC-1 (Line 4 of
Algorithm 1). The popped variable is stored inQseen (Line 5) so that no variable is
re-processed for singleton testing beforeQ is empty. varNPOACQ (Algorithm 3)
is then called (Line 6 of Algorithm 1) to execute singleton tests for the popped
variable. In Lines 9 and 19, varNPOACQ calls REQUEUE (Algorithm 2) on
all the variables in the neighborhood of any variable whose domain was updated.
REQUEUE adds those variables to QtoRevisit in case they were already singleton
tested during the current iteration (Line 1), otherwise it adds them to Q (Line 2).
When Q is empty, the variables in QtoRevisit are moved to Q, and Qseen is cleared
(Lines 7 and 8 of Algorithm 1).

Algorithm 1: NPOACQ(P)
Input: P = (V,D, C): A CSP instance
Output: true when P is ∪cycPOAC, otherwise false

1 Q← V , QtoRevisit ← ∅, Qseen ← ∅
2 consistent ← ENFORCEAC(P, ∅)
3 while consistent and Q 6= ∅ do
4 xi ← POP(Q)
5 Qseen ← Qseen ∪ {xi}
6 if not varNPOACQ(xi,P) then return false
7 if Q = ∅ and QtoRevisit 6= ∅ then
8 Q← QtoRevisit, QtoRevisit ← ∅, Qseen ← ∅

9 return true

Algorithm 2: REQUEUE(xi)
Input: xi: a variable to requeue
Output: Adds xi to either Q or QtoRevisit

1 if xi ∈ Qseen then QtoRevisit ← QtoRevisit ∪ {xi}
2 else Q← Q ∪ {xi},

9

varNPOACQ (Algorithm 3) runs singleton tests on a given CSP variable by
calling TESTAC (Algorithm 4) which enforces arc consistency on the subprob-
lem induced on the CSP by the variables in neigh(xi) (Line 4). As in POAC-1,
whenever a value is removed from a variable’s domain, varNPOACQ enforces
AC on the CSP (Lines 6 and 20).

Algorithm 3: varNPOACQ(xi,P)
Input: xi: Variable to instantiate; P = (V,D, C): A CSP instance; Q: The

propagation queue
Output: true if consistent, else false

1 ∀xj ∈ V, vj ∈ dom(xj), counter(xj , vj)← 0
2 size← |dom(xi)|
3 foreach vi ∈ dom(xi) do
4 if not TESTAC({xi} ∪ neigh(xi),D, cons(xi) ∪ {xi ← vi}, counter(·, ·))

then
5 dom(xi)← dom(xi) \ {vi}
6 if not ENFORCEAC(P, L) then return false

7 if dom(xi) = ∅ then return false
8 if |dom(xi)| 6= size then
9 foreach xk ∈ neigh(xi) do REQUEUE(xk)

10 change ← false
11 foreach xj ∈ neigh(xi) do
12 size← |dom(xj)|
13 foreach vj ∈ dom(xj) do
14 if counter(xj , vj) = |dom(xi)| then
15 dom(xj)← dom(xj) \ {vj}, change ← true

16 counter(xj , vj)← 0

17 if dom(xj) = ∅ then return false
18 if |dom(xj)| 6= size then
19 foreach xk ∈ neigh(xj) \ {xi} do REQUEUE(xk)

20 if change and not ENFORCEAC(P, ∅) then return false
21 return true

Like POAC-1, we use the data structure counter(·, ·). counter(xj, vj) records
how many times value vj of variable xj was pruned during the singleton tests for
another variable xi. If, after running all the singleton tests for xi, counter(xj, vj) =
|dom(xi)|, then we know that (xj, vj) is necessarily inconsistent and can be safely

10

removed. TESTAC (Algorithm 4) implements the singleton test for xi ← vi and
updates counter(·, ·). ENFORCEAC(P , L) allows running any arc consistency al-
gorithm. It stores in L the list of variable-value pairs that were removed as a
result of enforcing AC. TESTAC (Algorithm 4) updates the counters only when
the problem is arc consistent (Line 6).

Algorithm 4: TESTAC(P, counter(·, ·))
Input: P: A CSP instance; counter(·, ·): the counter data structure
Output: true if consistent, else false

1 L← ∅
2 consistent ← ENFORCEAC(P , L)
3 foreach (xj , vj) ∈ L do
4 dom(xj)← dom(xj) ∪ {vj}
5 if consistent then
6 counter(xj , vj)← counter(xj , vj) + 1

7 return consistent

3.4 ∪cycPOACQ: A Variable-Based Algorithm
∪cycPOACQ (Algorithm 5 is similar to NPOACQ (Algorithm 1). The major dif-
ference is in Line 6, where var∪cycPOACQ (Algorithm 6) is called to execute
singleton tests for the popped variable.

var∪cycPOACQ (Algorithm 6) is similar to varNPOACQ (Algorithm 3),
which runs singleton tests on a given CSP. The major difference is in Line 4,
where TESTAC is induced on the MCB of a variable, rather than its neighbor-
hood. var∪cycPOACQ does not restrict how MCBs are generated (i.e., using
exact or approximate algorithms) or the graphs (i.e., incidence or dual) on which
they are computed.

3.5 Extension to Relations
First, we extend the definition of POAC to relations.

Definition 3 A CSP P = (X ,D, C) is Relational Partition-One Arc-Consistent
(rPOAC) iff the CSP is singleton PWC, and for all ci ∈ C, for all τi ∈ Ri, for all
cj ∈ C, there exists τj ∈ Rj such that (ci, τi) ∈ PWC(P ∪ {Ri ← τi}).

11

Algorithm 5: ∪cycPOACQ(P,MCB)
Input: P = (V,D, C): A CSP instance; MCB: a minimum cycle basis of P
Output: true when P is ∪cycPOAC, otherwise false

1 Q← V , QtoRevisit ← ∅, Qseen ← ∅
2 consistent ← ENFORCEAC(P, ∅)
3 while consistent and Q 6= ∅ do
4 xi ← POP(Q)
5 Qseen ← Qseen ∪ {xi}
6 if not var∪cycPOACQ(xi,P,MCB) then
7 return false

8 if Q = ∅ and QtoRevisit 6= ∅ then
9 Q← QtoRevisit, QtoRevisit ← ∅, Qseen ← ∅

10 return true

The algorithm to enforce rPOAC is a trivial adaptation of the variable-based
POAC algorithm: it operates on relations’ tuples instead of variables’ values.
Further, instead of AC, we enforce pair-wise consistency (PWC). We denote rN-
POACQ and ∪cycrPOACQ the adaptation of NPOACQ and ∪cycPOACQ, respec-
tively, to relations.

3.6 Observations and Comments

Below, we make some observations useful in practice.

Singleton domains. Because the algorithms for enforcing POAC-like properties
(e.g., POAC-1 and ∪cycPOACQ) enforce GAC whenever singleton testing a vari-
able yields a domain update, variables with a singleton domain never need to be
singleton tested. We do not include this test in our pseudocode to avoid reducing
readability.

Proposition 3 On a CSP that is GAC, singleton testing a variable xwith |dom(x)| =
1 yields no filtering.

Proof: After assigning x to the unique value in its domain, the CSP remains GAC.
�

12

Algorithm 6: var∪cycPOACQ(xi,P,MCB)
Input: xi: Variable to instantiate; P: A CSP instance; MCB: a minimum cycle

basis of P
Output: true if consistent, else false

1 ∀xj ∈ V, vj ∈ dom(xj), counter(xj , vj)← 0
2 size← |dom(xi)|
3 foreach vi ∈ dom(xi) do
4 if not TESTAC(P|vars(MCB(xi)) ∪ {xi ← vi}, counter(·, ·)) then
5 dom(xi)← dom(xi) \ {vi}
6 if not ENFORCEAC(P, ∅) then return false

7 if dom(xi) = ∅ then return false
8 if |dom(xi)| 6= size then
9 foreach xk ∈ vars(MCB(xi)) \ {xi} do REQUEUE(xk)

10 change ← false
11 foreach xj ∈ vars(MCB(xi)) \ {xi} do
12 size← |dom(xj)|
13 foreach vj ∈ dom(xj) do
14 if counter(xj , vj) = |dom(xi)| then
15 dom(xj)← dom(xj) \ {vj}, change ← true

16 counter(xj , vj)← 0

17 if dom(xj) = ∅ then return false
18 if |dom(xj)| 6= size then
19 foreach xk ∈ vars(MCB(xj)) \ {xj} do REQUEUE(xk)

20 if change and not ENFORCEAC(P, ∅) then return false
21 return true

Domino effect. This observation allows us, during backtrack search using a POAC-
like algorithm for real-full lookahead, to instantiate all variables with singleton
domains (i.e., domino effect) without re-enforcing consistency because no further
filtering can be obtained, thus saving on effort. Note that the same behavior is
implicitly guaranteed for consistency algorithms using supports.

Q initialization. After an assignment x ← v during search, Q is initialized to
vars(MCB(x)) \ {x}.

Large variable domains. On small variable domains singleton testing is quicker

13

and empirically yields more filtering than on larger variables’ domains. The ob-
servation explains why using dom/wdeg to order the variables for singleton testing
yields good performance in practice. It also explains the good performance of the
adaptive algorithm APOAC, which avoids singleton testing variables with large
domains, a costly process that rarely yields any filtering.

4 Experimental Evaluation
The goal of the section is to assess the effectiveness of localizing POAC to neigh-
borhoods and cycles when used for real-full lookahead during search. To that
end, we evaluate finding a single solution to a CSP using backtrack search, real-
full lookahead, and the dom/wdeg variable ordering heuristic [Boussemart et al.,
2004]. We also use dom/wdeg to select the variable for singleton testing in the
POAC-based algorithms.

We first compared NPOACQ (Algorithm 1) and ∪cycPOACQ (Algorithm 5).
∪cycPOACQ outperformed NPOACQ on the majority of tested problems. Thus
we consider only ∪cycPOACQ in our evaluation.

We study the performance of the following variable-based algorithms: GAC
(GAC2001 [Bessière et al., 2005]), POAC (POAC-1 [Balafrej et al., 2014]),
APOAC (adaptive POAC [Balafrej et al., 2014]), ∪cycPOACQ (Section 3.2), and
A∪cycPOACQ (an adaptive version of our new algorithm). The MCB is computed
on the incidence graph. For the relational versions, we study the performance
of the following algorithms: PW-AC2 (an improved version of the algorithm
for pairwise consistency of Samaras and Stergiou [2005]), rPOAC, ArPOACQ,
∪cycrPOACQ, and A∪cycrPOACQ. The MCB is computed on a minimal dual
graph.

For pre-processing, we run POAC-1 until quiescence for the non-adaptive ver-
sions of the algorithms and POAC-1 once through all the variables for the adap-
tive versions. This strategy was advocated as the most effective by Balafrej et
al. [2014]. The singleton testing in the adaptive algorithms is interrupted after a
given number of variables has been processed. This cutoff values is learned dur-
ing search. We use the best adaptive version reported by Balafrej et al. [2014],
where the maximum number of singleton calls, maxK, is initialized to the num-
ber of variables in the problem. The algorithm spends 1/10 of its time learning2 a
maxK threshold and 9/10 of its time exploiting the learned maxK.

2Using the terminology of Balafrej et al. [2014], maxK = n, last drop with β = 0.05, and
70%-PER.

14

We conducted the experiments on the following benchmark problems from
Lecoutre’s webpage:3 TSP-25, ukVg, QCP-15, cril, QWH-20, k-insertions, mug,
TSP-20, renault, myciel, lexVg, varDimacs, and rand-2-40-19. Those benchmark
include all those reported by Balafrej et al. [2014]. We set a time limit of four
hours per instance with 8GB of memory.

Table 1 shows the average CPU time in seconds to generate an MCB for the
evaluated benchmarks.4 This time is insignificant except for the following bench-
marks: QCP-15, cril, QWH-20, k-insertions, myciel, and varDimacs. We believe
that the algorithm used [Amaldi et al., 2010], written for weighted graphs, can
be improved for unweighted graphs. Also, one could look for alternative tech-
niques for generating cycles. This issue deserves further investigation. The time
to generate the cycles is included in the results of Tables 2 and 3.

Table 1: Average CPU time (seconds) to generate MCB

T
SP

-2
5

uk
V

g

Q
C

P-
15

cr
il

Q
W

H
-2

0

k-
in

se
rt

io
ns

m
ug

T
SP

-2
0

re
na

ul
t

m
yc

ie
l

le
xV

g

va
rD

im
ac

s

ra
nd

-2
-4

0-
19

incidence 0.07 0.09 6.56 6.58 36.85 21.42 0.02 0.03 0.03 1.39 0.06 6.76 0.08
min. dual 0.11 0.01 17.67 62.34 116.79 82.74 0.01 0.04 0.03 20.70 0.00 3.64 0.29

In Tables 2 and 3, we report, for each benchmark, the total number of instances
in the benchmark (total) and the number of instances completed by at least one
algorithm (solv-by-1). For each algorithm, we report the number of instances
solved (# solv) and the sum of the CPU time in seconds (ΣCPU (s)) computed
over the instances of solv-by-1. When an algorithm does not terminate within
four hours, we add 14,400 seconds to the CPU time, and indicate with a > sign
that the time reported is a lower bound. A value is bold face in the table if it is the
best value in the row.

4.1 Variable-Based Algorithms
This experiment shows that, when a POAC-like algorithm exploits cycles, its per-
formance is almost always improved. Comparing columns APOAC and A∪cycPOACQ,

3http://www.cril.univ-artois.fr/˜lecoutre/benchmarks.html
4We extended the memory allocation to 16GB for the generation of the MCBs of the k-insertion

and QWH-20 benchmarks.

15

we notice that A∪cycPOACQ is faster than, and solves at least as many instances
as, APOAC except on k-insertions and mug. Concerning k-insertions, Table 1
shows that the amount of time to generate the MCB is not insignificant. This cost
partially explains the CPU increase over APOAC. As for mug, the adaptive algo-
rithms were already shown in the original paper not to win over the non adaptive
versions [Balafrej et al., 2014]. Further, our new algorithm ∪cycPOACQ, beats
POAC on mug and shows the best overall performance on this benchmark. More-
over, note that on the first three benchmarks of Table 1 (i.e., TSP-25, ukVg, QCP-
15), APOAC is actually slower than GAC. However, our algorithm A∪cycPOACQ
outperforms both GAC and APOAC.

As was highlighted by Balafrej et al. [2014], there are benchmarks where GAC
remains the winner (e.g., TSP-20, renault, myciel, lexVg, varDimacs, and rand-2-
40-19). However, A∪cycPOACQ reduces the gap between GAC and APOAC.

Table 2: Lookahead with POAC-based algorithms (MCB on the incidence graph)

Benchmark # Instances GAC POAC ∪cycPOACQ APOAC A∪cycPOACQ

TSP-25 total: 15 # solv 15 14 15 15 15
solv-by-1: 15 ΣCPU (s) 4,303.12 >41,382.27 32,654.67 6,152.91 2,418.41

ukVg total: 65 # solv 40 34 25 38 41
solv-by-1: 41 ΣCPU (s) >52,776.77 >134,534.24 >253,718.99 >72,950.60 36,137.13

QCP-15 total: 15 # solv 15 15 15 15 15
solv-by-1: 15 ΣCPU (s) 1,172.59 4,704.29 2,513.27 1,237.20 948.35

cril total: 8 # solv 6 7 7 8 8
solv-by-1: 8 ΣCPU (s) >30,458.10 >16,282.45 >16,651.04 2,321.96 1,831.60

QWH-20 total: 10 # solv 10 10 10 10 10
solv-by-1: 10 ΣCPU (s) 2,256.61 6,154.43 3,007.98 2,236.32 2,061.63

k-insertions total: 32 # solv 17 17 18 18 18
solv-by-1: 18 ΣCPU (s) >17,034.30 >21,639.31 11,814.83 6,129.92 8,940.59

mug total: 8 # solv 6 6 8 6 6
solv-by-1: 8 ΣCPU (s) >54,724.38 >29,385.02 13,655.87 >34,207.98 >41,583.97

TSP-20 total: 15 # solv 15 15 15 15 15
solv-by-1: 15 ΣCPU (s) 302.21 2,750.90 3,096.07 593.04 384.13

renault total: 50 # solv 50 50 50 50 50
solv-by-1: 50 ΣCPU (s) 55.87 277.74 176.28 196.04 155.88

myciel total: 16 # solv 13 12 12 13 13
solv-by-1: 13 ΣCPU (s) 1,711.93 >21,564.06 >26,196.15 3,118.86 2,555.54

lexVg total: 63 # solv 63 63 60 63 63
solv-by-1: 63 ΣCPU (s) 3,413.70 20,652.58 >109,938.00 6,242.65 4,703.04

varDimacs total: 9 # solv 9 8 8 9 9
solv-by-1: 9 ΣCPU (s) 4,116.43 >15,208.70 >15,614.45 5,203.18 4,406.16

rand-2-40-19 total: 50 # solv 50 36 42 50 50
solv-by-1: 50 ΣCPU (s) 20,591.17 >339,527.03 >289,945.67 65,622.27 43,710.03

16

4.2 Relation-Based Algorithms

Comparing Tables 2 and 3, we notice that the variable-based algorithms outper-
form the relational versions except for ukVg and lexVg (both crossword puzzles),
where PW-AC2 is the fastest algorithm.

Table 3: Search results using rPOAC-based algorithms for lookahead (MCB computed
on the minimal dual graph)

Benchmark # Instances PW-AC2 rPOAC ∪cycrPOACQ ArPOAC A∪cycrPOACQ

TSP-25 total: 15 # solv 15 5 5 14 15
solv-by-1: 15 ΣCPU (s) 12,223.66 >151,095.28 >152,503.48 >32,178.91 13,474.89

ukVg total: 65 # solv 41 24 25 24 25
solv-by-1: 41 ΣCPU (s) 27,756.04 >270,995.87 >268,324.95 >268,850.65 >266,815.65

QCP-15 total: 15 # solv 14 15 15 15 14
solv-by-1: 15 ΣCPU (s) >18,111.36 17,157.06 33,854.40 8,159.52 >19,405.52

cril total: 8 # solv 4 6 6 5 6
solv-by-1: 7 ΣCPU (s) >47,413.74 >20,737.10 >28,066.46 >34,663.42 >22,413.73

QWH-20 total: 10 # solv 10 9 8 10 10
solv-by-1: 10 ΣCPU (s) 9,629.87 >48,522.86 >60,889.81 25,976.61 22,650.42

k-insertions total: 32 # solv 17 14 16 17 15
solv-by-1: 18 ΣCPU (s) >21,043.39 >67,578.37 >46,384.72 >24,622.72 >45,181.08

mug total: 8 # solv 4 7 5 6 4
solv-by-1: 7 ΣCPU (s) >43,200.11 11,297.27 >29,507.67 >25,399.39 >43,200.51

TSP-20 total: 15 # solv 15 14 13 15 15
solv-by-1: 15 ΣCPU (s) 531.92 >33,332.30 >60,507.05 2,834.57 1,950.34

renault total: 50 # solv 50 41 42 50 50
solv-by-1: 50 ΣCPU (s) 252.05 >168,307.39 >165,457.29 57,844.36 61,277.01

myciel total: 16 # solv 13 9 10 13 13
solv-by-1: 13 ΣCPU (s) 5,307.93 >62,439.79 >50,673.50 8,132.70 6,380.32

lexVg total: 63 # solv 63 58 55 59 58
solv-by-1: 63 ΣCPU (s) 3,341.66 >128,012.64 >156,491.63 >107,738.42 >128,771.50

varDimacs total: 9 # solv 9 7 7 9 9
solv-by-1: 9 ΣCPU (s) 7,371.85 >30,308.20 >30,467.75 10,848.36 9,461.34

rand-2-40-19 total: 50 # solv 49 0 0 12 50
solv-by-1: 50 ΣCPU (s) >132,509.05 >720,000.00 >720,000.00 >574,934.46 22,574.42

Examining Table 3, we notice that PW-AC2 is in general the fastest and can
solve the most benchmarks (except for QCP-15, cril, mug, and rand-2-40-19).
Further, we see that the adaptive mechanism is useful: both ArPOAC and A∪cycrPOACQ
are faster than rPOAC and ∪cycrPOACQ (except on cril and mug). We strongly be-
lieve that the adaptive mechanism could be further improved with better tuning of
the parameters, which is beyond the topic of this paper. Regardless, A∪cycrPOACQ
still outperforms ArPOAC on the majority of the benchmarks (except on QCP-15,
k-insertions, mug, renault, and lexVg). Most notably, A∪cycrPOACQ outperforms
all relational algorithms, including PW-AC2, on rand-2-40-19, which is encour-
aging. While it is too early to rule out the usefulness of the relational versions

17

of POAC, the effectiveness of propagation over cycles is noteworthy even in this
context.

5 Future Work & Conclusions
In this paper, we advocate the use of cycles to improve the performance of al-
gorithms for enforcing POAC and provide empirical evidence of the benefit of
our approach. Future work should improve the performance of the algorithms for
computing MCBs, and extend our approach to other consistency algorithms.

Acknowledgments: This research is supported by NSF Grant No. RI-111795
and RI-1619344. Experiments were conducted on the equipment of the Holland
Computing Center at the University of Nebraska-Lincoln.

References
[Amaldi et al., 2010] Edoardo Amaldi, Claudio Iuliano, and Romeo Rizzi. Effi-

cient Deterministic Algorithms for Finding a Minimum Cycle Basis in Undi-
rected Graphs. In Integer Programming and Combinatorial Optimization
(IPCO 2010), volume 6080 of LNCS, pages 397–410, 2010.

[Balafrej et al., 2014] Amine Balafrej, Christian Bessiere, El-Houssine
Bouyakhf, and Gilles Trombettoni. Adaptive Singleton-Based Consis-
tencies. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence (AAAI 2014), pages 2601–2607, 2014.

[Bennaceur and Affane, 2001] Hachemi Bennaceur and Mohamed-Salah Affane.
Partition-k-AC: An Efficient Filtering Technique Combining Domain Partition
and Arc Consistency. In Principles and Practice of Constraint Programming
(CP 2001), volume 2239 of LNCS, pages 560–564, 2001.

[Bessière et al., 2005] Christian Bessière, Jean-Charles Régin, Roland H.C. Yap,
and Yuanlin Zhang. An Optimal Coarse-Grained Arc Consistency Algorithm.
Artificial Intelligence, 165(2):165–185, 2005.

[Bessiere, 2006] Christian Bessiere. Handbook of Constraint Programming,
chapter Constraint Propagation, pages 29–83. Elsevier, 2006.

18

[Boussemart et al., 2004] Frédéric Boussemart, Fred Hemery, Christophe
Lecoutre, and Lakhdar Sais. Boosting Systematic Search by Weighting
Constraints. In Proc. ECAI 2004, pages 146–150, 2004.

[Debruyne and Bessière, 1997] Romuald Debruyne and Christian Bessière.
Some Practicable Filtering Techniques for the Constraint Satisfaction Prob-
lem. In Proceedings of the 15 th International Joint Conference on Artificial
Intelligence, pages 412–417, 1997.

[Dechter, 2003] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[Freuder and Elfe, 1996] Eugene C. Freuder and Charles D. Elfe. Neighborhood
Inverse Consistency Preprocessing. In Proceedings of AAAI-96, pages 202–
208, Portland, Oregon, 1996.

[Freuder, 1982] Eugene C. Freuder. A Sufficient Condition for Backtrack-Free
Search. JACM, 29 (1):24–32, 1982.

[Gyssens, 1986] M. Gyssens. On the Complexity of Join Dependencies. ACM
Trans. Database Systems, 11(1):81–108, 1986.

[Horton, 1987] Joseph D. Horton. A Polynomial-Time Algorithm to Find the
Shortest Cycle Basis of a Graph. SIAM Journal on Computing, 16(2):358–366,
1987.

[Janssen et al., 1989] P. Janssen, Philippe Jégou, B. Nougier, and M.C. Vilarem.
A Filtering Process for General Constraint-Satisfaction Problems: Achieving
Pairwise-Consistency Using an Associated Binary Representation. In IEEE
Workshop on Tools for AI, pages 420–427, 1989.

[Kavitha et al., 2007] Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios
Michail. New Approximation Algorithms for Minimum Cycle Bases
of Graphs. In Symposium on Theoretical Aspects of Computer Science
(STACS 2007), volume 4393 of LNCS, pages 512–523, 2007.

[Mackworth, 1977] Alan K. Mackworth. Consistency in Networks of Relations.
Artificial Intelligence, 8:99–118, 1977.

[Mehlhorn and Michail, 2009] Kurt Mehlhorn and Dimitrios Michail. Minimum
Cycle Bases: Faster and Simpler. ACM Trans. Algorithms, 6(1):1–13, Decem-
ber 2009.

19

[Rossi et al., 1990] Francesca Rossi, Charles Petrie, and Vasant Dhar. On the
Equivalence of Constraint Satisfaction Problems. In Proceedings of the Ninth
European Conference on Artificial Intelligence, pages 550–556, 1990.

[Samaras and Stergiou, 2005] Nikos Samaras and Kostas Stergiou. Binary En-
codings of Non-binary Constraint Satisfaction Problems: Algorithms and Ex-
perimental Results. Journal of Artificial Intelligence Research, 24:641–684,
2005.

[Wallace, 2015] Richard J. Wallace. SAC and Neighbourhood SAC. AI Commu-
nications, 28(2):345–364, January 2015.

20

