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Abstract

Minimality, a highly desirable consistency property of Constraint
Satisfaction Problems (CSPs), is in general too expensive to enforce.
Previous work has shown the practical benefits of restricting minimal-
ity to the clusters of a tree decomposition, allowing us to solve many
difficult problems in a backtrack-free manner. We explore two alter-
native algorithms for enforcing minimality whose performance widely
vary from one instance to another. We advocate a fine-grain portfolio
approach to dynamically choose, during lookahead, the most appro-
priate algorithm for a cluster. Our strategy operates by selecting
among two algorithms for enforcing minimality and an algorithm that
enforces the lowest-level of consistency, which, in our setting, is Gener-
alized Arc Consistency. Empirical evaluation on benchmark problems
shows a significant improvement both in terms of the number of in-
stances solved and CPU time.
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1 Introduction

Local consistency techniques are at the heart of Constraint Programming
and constitute an invaluable tool for solving Constraint Satisfaction Prob-
lems (CSPs). On many problems, enforcing simple consistency properties,
such as Generalized Arc Consistency (GAC) [Mackworth, 1977], during back-
track search can be sufficient to reduce the problem to a manageable state.
However, some problems are more resilient and require stronger consistency
properties to effectively filter them.

In this paper, we focus on constraint minimality as one such consistency
property. A constraint is considered minimal if every tuple of the constraint
can be extended to a complete solution to the CSP. Enforcing constraint
minimality is prohibitively expensive because it involves enumerating many,
if not all, of the solutions to the problem. However, it can be applied locally
(that is, to a given subproblem) with some success [Freuder and Elfe, 1996;
Karakashian et al., 2013]. Following Karakashian et al. [Karakashian et al.,
2013], we consider enforcing the property on clusters of the tree decomposi-
tion of the problem. This restriction (or localization) to the clusters of a tree
decomposition can result in a strong filtering power at a manageable cost.

Previous work has proposed two algorithms for enforcing minimality:
PerTuple [Karakashian et al., 2010] and AllSol [Karakashian, 2013]. Our
contribution is the development of a portfolio approach for choosing between
these two algorithms, as well as identifying when to forego both algorithms
and instead use an algorithm for GAC [Mackworth, 1977; Bessière et al.,
2005]. Our empirical evaluation shows that such a portfolio can solve signif-
icantly more problem instances than GAC, AllSol, or PerTuple alone,
and in less runtime on average.

The paper is organized as follows. Section 2 reviews some necessary back-
ground material. Section 3 outlines related work. Section 4 discusses enforc-
ing minimality on the clusters of a tree decomposition. Section 5 discusses
the construction of the portfolio. Section 6 describes experimental evalua-
tions of the portfolio on benchmark problems. Finally, Section 7 presents our
conclusions.

2 Background

Here we provide a summary of the background material relevant to our work.
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2.1 The Constraint Satisfaction Problem

The Constraint Satisfaction Problem (CSP) is denoted by P = (X ,D, C).
X = {x1, ..., xn} is a set of n variables, each associated with a finite domain
from D = {D1, ..., Dn}. C = {C1, ..., Ce} is the set of constraints restricting
how values may be assigned to variables. Each constraint covers some subset
of the variables, known as the scope of the constraint. A solution to a CSP
is an assignment to each variable a value from its domain such that all con-
straints are satisfied. Deciding the existence of a solution is an NP-complete
problem.

A constraint Ci is defined by relation Ri over the scope(Ci). In this paper,
we consider relations expressed as a set of allowed tuples.1 Each relation Ri

is a subset of the Cartesian product of the domains of the variables in the
scope(Ci). Each tuple in the relations represents an assignment of values
to the respective variables that is consistent with the constraint. A set of
variable assignments constitutes a consistent partial solution if it satisfies
all the constraints defined on the variables. The arity of a constraint is the
cardinality of its scope. In a binary CSP, the constraints have arity two.

Several graphical representations of a CSP exist. The constraint network
of a binary CSP is a graph where the vertices represent the variables and the
edges the binary constraints. The constraint network of a non-binary CSP is
a hypergraph. In the hypergraph, the vertices represent the variables and the
hyperedges the scopes of the constraints (Figure 1). In the primal graph, the
vertices represent the variables, and the edges connect every two variables
that appear in the scope of some constraint (Figure 2). In the dual graph, the
vertices represent the constraints of the CSP, and the edges connect vertices
corresponding to constraints whose scopes overlap (see Figure 3).

In fact, the dual graph represents a dual CSP (of the original CSP), where
the vertices represent dual variables whose domains are the tuples allowed
by the corresponding original relations. The edges of the dual graph are
equality constraints, indicating that tuples assigned to two dual variables
must necessarily agree on the values given to the CSP variables that appear
on the edge label. A feature of the dual CSP is that all of its constraints
are binary. Finally, the incidence graph of a CSP is a bipartite graph where
one set contains all the variables and the other all the constraints (Figure 4).

1Our approach remains applicable to constraints defined in intension. For example,
Bayer et al. enforce domain minimality in the presence of constraints defined in intension
and also global constraints [Bayer et al., 2007].
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Figure 4: Incidence

An edge connects a variable and constraint if the variable appears in the
scope of the constraint. The incidence graph is the same graph used in the
hidden-variable encoding [Rossi et al., 1990].

2.2 Tree Decomposition

A tree decomposition of a CSP is a tree embedding of its constraint network.
The tree nodes are clusters of variables and constraints from the CSP. A tree
decomposition must satisfy two conditions: a) each constraint appears in at
least one cluster and the variables in its scope must appear in this cluster;
and b) for every variable, the clusters where the variable appears induce a
connected subtree. Many techniques for generating a tree decomposition
of a CSP exist [Dechter and Pearl, 1989; Jeavons et al., 1994; Gottlob et
al., 1999]. We use an adaption for non-binary CSPs of the tree-clustering
technique [Dechter and Pearl, 1989]. First, we triangulate the primal graph
of the CSP using the min-fill heuristic [Kjærulff, 1990]. Then, we identify
the maximal cliques in the resulting chordal graph using the MaxCliques
algorithm [Golumbic, 1980], and use the identified maximal cliques to form
the clusters of the tree decomposition. We build the tree by connecting the
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clusters using the JoinTree algorithm [Dechter, 2003]. While any cluster
can be chosen as the root of the tree, we choose the cluster that minimizes the
longest chain from the root to a leaf. Figure 5 shows a triangulated primal
graph of the example in Figure 2. The dotted edges (B,H) and (A, I) in
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Figure 5: Triangulated primal graph
and its maximal cliques
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Figure 6: Tree decomposition

Figure 5 are fill-in edges generated by the triangulation algorithm. The ten
maximal cliques of the triangulated graph are highlighted with ‘blobs.’ The
resulting tree decomposition is shown in Figure 6.

A separator of two adjacent clusters is the set of variables that are as-
sociated with both clusters. A given tree decomposition is characterized by
its treewidth, which is the maximum number of variables in a cluster minus
one. The complexity of solving a CSP using a given tree decomposition can
be bound in time by the treewidth of the decomposition and in space by
the size of its largest separator. The treewidth of a constraint network is the
minimum treewidth of all its decompositions; computing it is known to be
NP-hard [Arnborg, 1985]. In order to guarantee perfect ‘message passing’
across clusters, one would have to generate a unique constraint over all the
variables of a separator, which is prohibitively expensive in space. As an
approximation, and in order to enhance constraint propagation between two
adjacent clusters, we use the projection schema described by Karakashian
et al. [Karakashian et al., 2013]. According to this bolstering strategy, we
add to each cluster the projection on the variables of the cluster of all the
constraints (from outside the cluster), then we normalize the constraints in
the cluster by merging all two constraints where the scope of one is a subset
the other’s.
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2.3 Consistency Properties

We first discuss global consistency properties, then local ones. A CSP is
said to be globally consistent iff every consistent instantiation of any number
of variables can be extended to a complete solution [Dechter, 2003]. This
property is also called decomposability [Dechter et al., 1991] and strong n-
consistency [Freuder, 1978]. It guarantees not only the existence of a solution,
but also that the solution can be found in a backtrack-free manner, thus,
tractability. Minimality , a strictly weaker property than global consistency,
requires that any tuple that satisfies a constraint appears in at least one
solution to the CSP [Montanari, 1974]. (Thus, the constraints are minimal.)
Gottlob argued that although computing the minimal network and solving
the minimal CSP are both NP-hard, the former is still useful for knowledge
compilation [Gottlob, 2011]. Minimality, which was initially proposed as a
property of the constraints of a CSP, can also be used for the variables’
domains, which are in fact unary constraints.2 Finally, consistency (i.e.,
satisfiability) guarantees that the CSP has a solution.

In contrast to global properties, local properties focus on subproblems
of a fixed size (e.g., every subset of k variables or every subset of m con-
straints). Thus, they can usually be efficiently enforced (i.e., in polynomial
time) while still yielding substantial filtering of inconsistent values/tuples.
Arc consistency (AC) is the most common local property: A CSP is AC
if every value has a supporting value in all neighboring variables. A simi-
lar property for non-binary constraints is generalized arc consistency (GAC)
[Mackworth, 1977]. Our experiments use the GAC-2001 algorithm [Bessière
et al., 2005].

2.4 Algorithms for enforcing minimality

Bayer et al. enforce domain minimality in two different ways: enumerating all
solutions or finding a single solution for every variable-value pair in the CSP
[Bayer et al., 2007]. They compare the effectiveness of the two algorithms
for a spatial-reasoning application where constraints are defined in exten-
sion, intension, as well as a global all-diff constraint [Régin, 1994]. Bessiere
et al. report a similar algorithm in the context of an interactive configu-
ration application [Bessiere et al., 2013]. Karakashian et al. introduce the
PerTuple algorithm, which enforces any level of relational consistency up

2Domain minimality is also called global inverse consistency [Bessiere et al., 2013].
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to constraint minimality (then domain minimality by projection on the do-
mains) [Karakashian et al., 2010; 2013]. They demonstrate the effectiveness
of PerTuple for lookahead during search and its ability to solve difficult
classes of CSPs in a backtrack-free manner.

The two algorithms, AllSol and PerTuple, proposed by Karakashian
[Karakashian, 2013], which both compute the minimal relations, can be
thought of as the relational versions of the two domain-minimality algo-
rithms of Bayer et al. [Bayer et al., 2007]. Our portfolio exploits AllSol
and PerTuple. To compute the minimal constraints, PerTuple performs
a backtrack search on every tuple in every relation, trying to consistently
extend it to a tuple in each other relation in the CSP. The process is illus-
trated in Figure 7. If the search fails, the tuple is removed. Otherwise, the

t1 

ti 
t2 

t3 

Figure 7: PerTuple performs a
new solution search for every tuple

Figure 8: AllSol performs a sin-
gle exhaustive search, finding all so-
lutions

search stops after finding the first solution. Further, the solution is used
as a support structure for all the tuples that appear in the solution, which
are marked as ‘minimal.’ In contrast, AllSol conducts a single backtrack
search over the tuples of the relations, finding all the solutions and mark-
ing as ‘minimal’ every tuple that appears in any solution (see Figure 8). If
PerTuple is interrupted at any point, any deleted tuple is guaranteed to
be inconsistent. However, when interrupted, the effort invested by AllSol
is lost. Whereas the space used for storing support structures in PerTuple
constitutes a tradeoff between time and space, AllSol does not incur such
an overhead.

Intuitively, AllSol may perform better when solutions are very sparse
and searching for even a single solution is a costly process. PerTuple may
perform better when solutions are plentiful and costly to enumerate. In
practice, their performance is complex and difficult to predict.
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3 Related Work

Lately, there has been much research for ‘opportunistically’ choosing the
most appropriate ‘method’ for solving a CSP. We distinguish two main di-
rections, namely, algorithm portfolio and dynamic selection of consistency
properties. While portfolio approaches rely on machine-learning classifiers
to select the algorithm best suited to a given instance, the second direction
chooses between two or more consistency properties to enforce for lookahead
during search.

The portfolio approach has roots in the Algorithm Selection Problem
[Rice, 1976], which involves selecting the best algorithm to apply to a partic-
ular instance to maximize some performance metric. Early work by Gomes
and Selman used a portfolio of several algorithms running in parallel to ex-
ploit their complementarity [Gomes and Selman, 2001]. Portfolios gained
in popularity for both SAT and CSPs through solver competitions, with
SATZilla [Xu et al., 2008] winning the SAT Challenge 2012 and CPHydra
[O’Mahony et al., 2008] winning the 2008 Constraint Solver Competition.
More recent use of portfolio techniques include the solvers Proteus [Hurley
et al., 2014] and sunny-cp2 [Amadini et al., 2015]. Proteus’ portfolio selects
both a solver and a problem representation, converting the problem to one
of several SAT/CSP encodings. sunny-cp2 selects a schedule of multiple
solvers from a portfolio to run in parallel that can cooperate and outper-
form the individual solvers. Our approach is perhaps the first one to adopt
a portfolio strategy for choosing between consistency algorithms.

As for dynamically enforcing different levels of consistency, the earliest
approach is perhaps the adaptive-consistency algorithm of Dechter and Pearl
[Dechter and Pearl, 1988], which adapts the level of consistency enforced to
the number of the parents of a variable in an ordering of the variables to guar-
antee backtrack-free search. The Adaptive Constraint Engine of Epstein et al.
trains on a set of problems and learns a propagation policy of several consis-
tency algorithms and parameters specifying how and when they are applied to
the problems [Epstein et al., 2005]. Several approaches have been proposed
to choose between two or more levels of consistency during search. Such
approaches are probabilistic [Mehta and van Dongen, 2007], heuristic [Ster-
giou, 2009; Paparrizou and Stergiou, 2012], adaptive [Balafrej et al., 2013;
Woodward et al., 2014], or based on multi-armed bandits [Balafrej et al.,
2015]. An orthogonal approach was adopted by Woodward et al. where the
topology of the dual graph of a CSP is modified before search resulting in
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different filtering levels of the same consistency algorithm [Woodward et al.,
2011]. Our research is likely the first one to consider algorithms for minimal-
ity and to operate dynamically on the clusters of a tree decomposition.

4 Enforcing Minimality in a Tree Decompo-

sition

Karakashian never compared the performance of PerTuple and AllSol
during search, but only on individual clusters [Karakashian, 2013] collected
from tree decompositions of CSP instances. When exploiting a tree de-
composition for lookahead, Karakashian et al. exclusively used PerTuple
[Karakashian et al., 2013]. We consider three variations of their basic process:

1. During lookahead, we include the option of whether or not to enforce
GAC over the entire CSP prior to processing any given cluster.

2. Every time a cluster is considered for consistency, we can call a specific
consistency algorithm, or use a classifier to determine whether to call
AllSol or PerTuple on the cluster or to do ‘Neither.’

3. Finally, we include an optional ‘timeout’ setting for processing indi-
vidual clusters. This timeout interrupts the consistency algorithm cur-
rently operating on the cluster when the set threshold is reached. In
the case of GAC and PerTuple, the filtering done so far is preserved.
For AllSol, it is lost.

FilterClusters (Algorithm 1) implements the above strategies and con-
trols how consistency is enforced and propagated. In addition to the clus-
ters, FilterClusters takes three parameters that implement the above
described variations of the basic process. Table 1 lists the parameter set-
tings that yield six algorithms. Other variations were tested, but these were
selected to show the most meaningful comparisons.

FilterClusters filters both the domains of the variables and the tuples
of the relations. It may be applied as a preprocessing step as well as a look-
ahead procedure during search. The foreach loop (line 6) processes clusters
from the specified clusterOrder. In our setting, this ordering corresponds to
the MaxCliques ordering of the clusters (see Section 2.2), but we will in-
vestigate other priority orderings in the future. The outer while-loop (line 4)

10



Table 1: Parameter variations of FilterClusters

Algorithm classifier interleaveGAC timeout

AllSol Always select ‘AllSol’ false ∞
PerTuple Always select ‘PerTuple’ false ∞
AllSol+ Always select ‘AllSol’ true 1 (s)
PerTuple+ Always select ‘PerTuple’ true 1 (s)
Random Randomly select ‘AllSol’,

‘PerTuple’, or ‘Neither’
true 1 (s)

DecTree Decision tree selects ‘All-
Sol’, ‘PerTuple’, or ‘Neither’

true 1 (s)

iterates until no further filtering can be achieved. At each pass, the direction
of the cluster ordering is reversed to facilitate propagation (line 19). The clas-
sifier allows the selection of the most appropriate algorithm on a cluster by
cluster basis (line 11). The option to run GAC (i.e., interleaveGAC = true)
allows ‘easy and quick’ filtering, which may trigger rapid and effective prop-
agation throughout the problem. The timeout option, which specifies a time
limit in seconds, ensures that excessive time is not wasted on a single cluster,
allowing us to quickly recover from an unfortunate classification error.

5 Building a Portfolio

Our algorithm portfolio must decide which of the two minimality algorithms
to enforce on a cluster given that the performance of the two algorithms vary
widely. Because both algorithms enforce the same consistency, the portfolio
must select the fastest algorithm based on features extracted from the cluster
being processed or, when both algorithms are too costly, it must choose to
run neither.

In order to train a classifier for the portfolio, we collected a large data set
of runtimes for both algorithms. We took instances from 175 benchmarks
and broke them down into clusters of a tree decomposition. We then sampled
9362 individual instances from these clusters, either randomly selecting 70
clusters (70 provided a manageable set of training data to collect) from each
of the 175 benchmarks or taking all the clusters of a benchmark when it has

11



Algorithm 1: FilterClusters(clusterOrder , classifier , interleaveGAC , timeout)

Input: clusterOrder ,classifier , interleaveGAC , timeout
Output: Entire problem is GAC with potentially minimal clusters

1 didFiltering ← true
2 passDidFiltering ← true
3 consistent ← true
4 (consistent , didFiltering)← GAC()
5 if consistent = false then return false
6 while passDidFiltering do
7 passDidFiltering ← false
8 foreach cluster ∈ clusterOrder do
9 algo ← Classify(cluster , classifier)

10 if algo =‘AllSol’ then
11 (consistent , didFiltering)← AllSol(cluster , timeout)
12 else if algo =‘PerTuple’ then
13 (consistent , didFiltering)← PerTuple(cluster , timeout)
14 else didFiltering ← false
15 if consistent = false then return false
16 if didFiltering then passDidFiltering ← true
17 if interleaveGAC and didFiltering then
18 (consistent , didFiltering)← GAC()
19 if consistent = false then return false

20 clusterOrder ← Reverse(clusterOrder)

21 if interleaveGAC = false then
22 (consistent , didFiltering)← GAC()
23 if consistent = false then return false

24 return true

less than 70 clusters. We ran both AllSol and PerTuple on every cluster,
while recording (for each cluster) a set of features (see Section 5.1) as well
as the runtimes of the algorithms. Figure 9 shows the runtime distribution
of the training instances. Although there are substantially more instances
favoring PerTuple, AllSol does have its niche of instances on which it
completes in up to two orders of magnitude faster.
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Figure 9: Distribution of algorithm runtimes on single clusters

5.1 Features

Inspired by features that appeared in the literature [Karakashian et al., 2012;
Amadini et al., 2014], we identified a selection of 73 features that attempt
to capture the constraint-network structure and the relation properties of
a problem instance. The majority of the features that we collect are ag-
gregations of many data points. In general, we aggregate using the mean,
coefficient of variation (CV), minimum, maximum, and entropy. The coef-
ficient of variation is the ratio of the standard deviation to the mean. The
entropy of a multiset X = 〈X,m〉 (the set X is the possible values in X
and for all x ∈ X, m(x) is the multiplicity of x in X ) is calculated by

H(X ) = −
∑

x∈X
m(x)
|X | log

(
m(x)
|X |

)
. For the number of tuples and values, we

also report a total sum. For relational linkage (defined below), we report the
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log10 of the mean as well. We first list the collected features, then explain
them:

• CSP parameters: number of variables; number of relations; number of
tuples per relation (total, mean, CV, min, max, entropy); domain size
(total, mean, CV, min, max, entropy); arity of relations (mean, CV,
min, max, entropy); tightness of relations (mean, CV, min, max, en-
tropy); relational linkage (log10 mean, mean, CV, min, max, entropy).

• Dual-graph parameters: density; vertex degree (mean, CV, min, max,
entropy); vertex eccentricity (mean, CV, min, max, entropy); vertex-
clustering coefficient (mean, CV, min, max, entropy).

• Incidence-graph parameters: density; vertex degree (mean, CV, min,
max, entropy); vertex eccentricity (mean, CV, min, max, entropy).

• Primal-graph parameters: density; vertex degree (mean, CV, min, max,
entropy); vertex eccentricity (mean, CV, min, max, entropy); vertex-
clustering coefficient (mean, CV, min, max, entropy).

The first five features are obvious. The tightness is the ratio of conflicting
tuples over the product of the domain sizes of the variables in the scope
of the constraint. The relational linkage estimates how likely a tuple at
the overlap of two relations is to appear in a solution, and is computed as
follows. For every two relations Ri, Rj, let Vij = scope(Ri) ∩ scope(Rj).
∀Rk, scope(Rk) ⊇ Vij,∀x ∈ scope(Rk) \ Vij, the relational linkage of every

tuple t ∈ πVij(Ri ./ Rj) is computed as minRk

(
|σt(Rk)|∏

x |domain(x)|

)
where ./, σ, π

are the relational operators join, selection, and projection, respectively.
We consider structural properties of three types of graphs (i.e., the dual,

primal, and incidence), collecting the density, degree, eccentricity, and (ex-
cept for the incidence graph) clustering coefficient. Eccentricity of a vertex
is the longest shortest-path to another vertex. Its clustering coefficient is the
edge density of the vertex’s induced neighborhood (excluding edges incident
to itself).

5.2 Classifier

After collecting data from 9362 individual clusters, we trained a decision tree
using the J48 algorithm of the Weka machine learning software suite [Hall
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et al., 2009]. Using the 9362 clusters as a training set, we labeled each clus-
ter ‘AllSol’ when AllSol was the fastest, ‘PerTuple’ when PerTuple was
fastest, and ‘Neither’ when neither algorithm completed within ten minutes.
Further, we weighted our instances to increase the importance of instances
with a large difference in runtimes, computing the weight of an instance i
using Equation (1) where allSol(i), perTuple(i) are the running time on i of
AllSol and PerTuple, respectively.

weight(i) =

⌈∣∣∣∣log10

(
allSol(i)

perTuple(i)

)∣∣∣∣ · |log10 (|allSol(i)− perTuple(i)|+ 0.01)|
⌉

(1)
We designed this weighting scheme to give more importance to instances
where the execution times differ greatly, both in the ratio and in the difference
of their values. After weighting the ‘AllSol’ and ‘PerTuple’ instances, we
computed their average weight to be 6. We then chose a weight of 20 for the
‘Neither’ instances to emphasize the importance of skipping costly clusters.

Table 2 shows the results of evaluating our classifier (trained on the
weighted data) by performing a ten-fold cross validation on both the weighted
and unweighted (all weight 1) instances. The F-Measure ranges from 0 to
1, with 1 being perfect classification. It is calculated by F = 2TP

2TP+FP+FN

where TP (true positives) is the number of instances of the given class that
are correctly labeled, FP (false positives) is the number of instances from
other classes that are incorrectly labeled as the given class, and FN (false
negatives) is the number of instances of the given class that were incorrectly
labeled as other classes. The fact that the results of the weighted data set

Table 2: Performance of the decision tree classifier

weighted unweighted

Accuracy 90.8% 80.1%
F-Measure

‘AllSol’ 0.50 0.40
‘PerTuple’ 0.89 0.85

‘Neither’ 0.93 0.93

are better than those of the unweighted data set clearly indicates that the
classifier is correctly handling the more important instances. The values of
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the F-Measure of ‘PerTuple’ and ‘Neither’ are both near 1, however, that of
‘AllSol’ is quite small, which can likely be explained by the relatively reduced
number and small weights of the ‘AllSol’-labeled instances.

6 Experimental Evaluation

In our evaluation, we use the six algorithms obtained by setting the param-
eters of FilterClusters alongside GAC for real-full lookahead [Haralick
and Elliott, 1980] in a backtrack search on a set of 1055 instances taken from
42 benchmarks from the XCSP library, which includes a mix of random,
academic, and real-world instances.3 Our search procedure terminates after
finding the first solution and uses the dom/deg dynamic ordering heuris-
tic. Although dom/wdeg [Boussemart et al., 2004] can improve performance
across the board, FilterClusters is not yet equipped to take advantage
of this heuristic. Our experiments run on a cluster computer with Intel
Xeon E5-2650 v3 2.30GHz processors. Search is allowed to run for two hours
(7200 sec) and given 12 GB of memory. To account for load variations on
the cluster computer, we measure instruction count and convert it to runtime
using a standardized measure of instructions per cycle and clock speed. We
use a timeout of 1 second per cluster because, based on the data from the
9362 clusters shown in Figure 9, this value strikes a good balance between
completing clusters and not spending excessive time on any one cluster.

6.1 Results

Figure 10 shows the number of instances completed by each solver as the time
increases. The ordering of the lines generally remains consistent throughout
the time axis and the instance completion gap expands proportionally. Ex-
ceptions include: GAC starts ahead on easy problems but has fewer com-
pletions on difficult instances and Random steadily rises as the stabilizing
effect of the per-cluster timeout becomes stronger over a longer total runtime.

Table 3 summarizes the results (top) on 1055 benchmark instances and
provides detailed results per benchmark (bottom). In this table,

• We consider only instances where at least one solver completes.

3http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
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Figure 10: Instance completions over time

• The number of instances per benchmark is denoted by ‘solved by one/total’.

• ‘Data Summary’ gives the number of completions, average, and total
CPU time. The lower sections give the number of completions and
average CPU time per benchmark.

• ‘>’ indicates that at least one instance did not complete. ‘?’ indicates
that at least one instance caused a memout. The ‘>’ and ‘?’ are omitted
from ‘Data Summary’ for readability.

• Columns ‘A%,’ ‘P%,’ and ‘N%’ indicate DecTree’s average percent-
age of selecting ‘AllSol,’ ‘PerTuple,’ and ‘Neither,’ respectively.

• The columns do not always sum to 100 due to rounding.
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Table 3: Experimental results of the seven solvers

GAC AllSol PerTuple AllSol+ PerTuple+ Random DecTree

Data Summary
#Completed 770/1055 550 472 567 514 633 643 685
Average CPU time 2,471.6 3,075.3 2,081.9 2,789.4 1,622.7 1,427.4 1,121.3
Sum of CPU time 1,900,653.4 2,364,878.9 1,601,010.4 2,145,062.1 1,247,840.7 1,097,633.8 862,259.9

Benchmark Hybrid solvers are best A%P%N%
aim-100 21/2417 >1,857.111 >3,984.0 20 >631.0 11 >3,741.421 559.3 16 >1,754.1 21 512.4 0 99 1
aim-200 17/24 8 >3,942.3 2 >6,494.0 8 >3,815.9 6 >5,208.710 >3,166.8 3 >5,990.8 14 >1,647.3 0 92 8
cmpsd-25-1-25 10/10 0 >7,200.0 9 >720.110 11.7 10 53.710 18.4 10 0.1 10 0.1 0100 0
cmpsd-25-1-40 10/10 0 >7,200.0 8 >1,440.1 10 36.4 10 121.610 50.0 10 0.1 10 0.1 0100 0
cmpsd-25-1-80 10/10 4 >4,445.6 6 >3,046.1 10 24.2 10 205.210 33.8 10 2.2 10 6.7 0100 0
cmpsd-25-10-20 10/10 6 >2,892.7 0 >7,200.0 9 >2,208.1 0 >7,200.010 2,821.4 10 404.8 9 >2,202.6 0 96 4
cmpsd-75-1-25 10/10 0 >7,200.0 8 >1,440.4 8 >1,440.5 10 212.810 217.5 10 3.1 10 11.9 0 92 8
cmpsd-75-1-40 10/10 0 >7,200.0 6 >2,880.4 6 >2,880.4 10 611.510 454.0 10 5.6 10 64.4 0 93 7
cmpsd-75-1-80 10/10 3 >5,040.0 1 >6,480.1 2 >5,761.1 9 >2,241.410 1,176.6 10 15.9 10 123.5 0 99 1
cril 6/8 3 >3,968.4 3 >3,605.2 3?>3,604.8 3 >3,606.0 4?>2,459.2 4?>2,999.9 3 ?>3,604.9 2 66 32
ehi-90 100/10084 >2,372.243 >4,456.8 72 >2,103.5 28 >5,259.481 >1,484.3100 61.2100 136.5 0 98 2
GC-hos 10/14 6 >2,882.3 0?>7,200.0 3?>5,129.9 2?>6,360.4 7 ?>3,401.4 8?>2,693.5 8?>2,309.2 0 98 2
GC-full-ins 24/4117 >2,105.7 4?>6,004.0 17?>2,440.0 8?>5,266.718 ?>2,146.5 15?>3,008.7 22?>1,010.9 0 99 1
GC-mug 8/8 4 >3,600.0 6 >2,182.2 6 >2,156.0 8 47.8 8 41.5 4 >3,600.0 8 102.6 0 97 3
pseudo-aim 42/4825 >2,917.520 >3,867.3 28 >2,406.8 24 >3,676.837 >1,054.0 28 >2,515.5 42 265.4 0 94 6
QCP-15 15/1510 >3,023.7 2 >6,241.1 2 >6,241.4 2 >6,250.4 3 >6,041.4 8 >3,973.8 15 533.3 0 80 20
rand-8-20-5 20/2019 >1,532.7 3 >6,551.8 0 >7,200.0 18 >2,333.3 3 >6,811.0 20 587.8 20 605.2 35 59 7
rlfapGraphsMod 11/12 5 >3,975.5 4 >4,582.2 5 >4,180.5 7 >4,015.7 9 >1,878.8 11 843.3 8 >2,043.0 0 88 12
rlfapScens11 7/12 0 >7,200.0 3 >4,199.1 4 >3,373.2 5 >3,528.1 7 1,016.4 6 >1,371.2 1 >6,183.0 15 60 25
rlfapScensMod 13/13 7 >3,323.4 8 >3,103.4 9 >2,316.1 8 >3,227.510 >2,008.9 12>1,249.1 10 >2,227.1 7 81 12

No clear winner
aim-50 24/2424 0.624 6.224 2.3 24 53.924 0.7 24 4.7 24 0.6 0100 0
cmpsd-25-1-2 10/10 0 >7,200.010 0.110 0.1 10 0.110 0.1 10 0.1 9 >720.1 0 94 6
cmpsd-75-1-2 10/10 0 >7,200.010 0.510 0.6 10 0.510 0.6 10 0.6 10 0.6 0 86 14
hanoi 5/5 5 1.8 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 0100 0
knights 11/1910>1,098.3 7 >2,716.0 8 >2,485.4 10>1,144.410 >1,138.0 10>1,128.6 10 >1,131.3 0 64 36
modRenault 50/5027 >3,439.250 2.150 3.1 50 2.450 3.2 50 2.6 48 >290.7 12 84 3
rand-10-20-10 20/2020 3.720 1.020 1.1 20 1.020 1.1 20 1.1 20 1.3 0100 0
ssa 7/8 6>1,029.3 6>1,058.6 6>1,058.8 6>1,052.3 6 >1,052.5 5 >2,058.1 6 >1,065.3 0 96 4

Basic solvers are best
dag-rand 25/2525 2,467.625 21.025 21.7 25 45.225 38.2 25 24.7 24 >1,423.5 3 96 1
dubois 7/13 7 1,959.6 6 >2,191.7 7 2,099.1 6 >2,175.1 6 >2,085.8 5 >3,388.8 6 >2,457.6 0100 0
GC-reg-fpsol 8/37 6>1,814.4 4?>4,237.4 4?>4,238.9 2?>5,407.9 2 ?>5,408.1 2?>5,408.1 2 ?>5,408.2 0 99 1
GC-reg-inithx 7/32 5>2,129.3 4?>3,915.8 2?>5,160.2 2?>5,159.6 2 ?>5,160.1 2?>5,160.2 2 ?>5,160.1 0100 0
GC-reg-mulsol 13/49 9>2,218.0 9 >2,928.4 9?>2,928.9 5 >4,440.2 5 ?>4,440.5 5?>4,440.5 5 ?>4,440.5 0 99 1
GC-reg-zeroin 8/31 6>1,801.6 5 >3,249.9 5?>3,251.2 3 >4,519.0 3 ?>4,519.5 3?>4,519.5 3 ?>4,519.6 0 90 10
GC-sgb-book 23/2618 >1,818.319 >1,657.5 23 256.2 16 >3,106.722 >737.5 20 >1,321.6 22 >657.4 0 94 6
GC-sgb-games 4/4 2 >3,600.2 2 >3,600.2 4 26.0 2 >3,600.2 4 46.4 3 >1,999.1 4 46.4 0 99 1
GC-sgb-miles 13/4211>1,411.7 9?>2,749.8 8?>3,109.3 6?>3,902.3 6 ?>3,883.6 7?>3,488.3 7 ?>3,652.3 0 87 13
GC-sgb-queen 14/5010>2,619.2 6 >4,676.4 7?>3,874.8 3 >5,852.4 6 ?>4,421.7 6?>4,315.4 9 ?>3,415.8 0 76 24
haystacks 8/51 5 >2,786.7 7 >1,055.8 8 228.6 5 >2,700.9 7 >1,043.3 5 >2,716.0 7 >934.3 0100 0
marc 10/1010 16.810 253.6 0?>7,200.0 10 1,321.7 0 ?>7,200.0 0?>7,200.0 0 ?>7,200.0 - - -
os-taillard-4 29/3027 >887.8 2 >6,704.7 2 >6,704.7 21 >2,427.024 >2,967.6 23 >1,876.7 23 >2,681.4 15 83 1
tightness0.9 99/10099 352.685 >1,946.3 98 >489.7 84 >1,950.598 >561.8 98 >741.6 98 >549.5 0 99 0
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In Table 3, we place the solvers into two categories. On one hand, the
basic solvers, which include GAC, AllSol, and PerTuple. On the other
hand, hybrid solvers, which include AllSol+, PerTuple+, Random, and
DecTree. We compute the average CPU time only over instances completed
by at least one of the solvers. Both timeouts and memouts (memory out) are
considered 7200 seconds. Due to the randomness of Random, we perform
ten runs for each instance and report the median.

Overall, it is clear that DecTree outperforms all solvers both in terms
of the number of completed instances, and average and sum CPU time. It
solves instances 2.2 times faster than GAC on average, and completes 135
more instances than GAC out of the 1055 tested.

Random is surprisingly competitive with DecTree. This fact is largely
due to the stabilizing effect of the per-cluster timeout, which minimizes the
time loss from poor classification decisions. We ran an experiment to assess
the extent of this effect. We compared the performance of Random and
DecTree with no per-cluster timeout. Random completes only 484 in-
stances whereas DecTree completes 649, with an average CPU time across
all instances completed by at least one solver of 2,955.9 seconds and 1,413.9
seconds, respectively. Thus, DecTree makes substantially better decisions
than a random choice.

The lower sections of Table 3 break down the performance of the seven
solvers by benchmark. We identify three categories: benchmarks where the
hybrid solvers outperform all others (top), those where hybrid and basic
solvers perform equally well (middle), and finally those on which the basic
solvers perform best (bottom). For each benchmark, we format in bold the
smallest average runtime and all runtimes within 1 second or 5% of the best
time.

In the top category, DecTree and Random are generally the best, but
are outperformed by PerTuple+ on two benchmarks. The benchmarks in
the middle category seem to be solvable relatively fast by most solvers and
have few timeouts (except GAC). The basic solvers outperform the others
on the benchmarks in the bottom-most category. Those benchmarks tend
to be memory intensive: indeed PerTuple, PerTuple+, and DecTree
have many memouts.

GAC never has memouts because it uses relatively light support struc-
tures. AllSol has a handful of memouts due to the added relations to
bolster propagation at the separators. PerTuple uses more memory than
AllSol for data structures to record and maintain tuple supports, and suf-
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fers from more memouts than AllSol. In our current implementation, all
solvers that can call PerTuple prepare for the option of running PerTu-
ple by creating the support data-structures for the tuples, at startup. As a
result, the memout occurs before the solver has even had the option to avoid
calling PerTuple. In the bottom-most category (i.e., the basic solvers), sev-
eral benchmarks, such as marc,4 have huge memory requirements allowing
GAC to outperform the hybrid solvers.

The right-most columns in Table 3 (i.e., A%, P%, and N%) show, as a
percentage, the average number of times the classifier returns the labels ‘All-
Sol,’ ‘PerTuple,’ and ‘Neither,’ respectively.5 Although DecTree heavily
favors ‘PerTuple,’ it chooses ‘AllSol’ and ‘Neither’ when necessary. The three
benchmarks cmpsd-25-1-25|40|80 exhibit an interesting anomaly: DecTree
selects 100% ‘PerTuple.’ One would expect the performance of DecTree to
be close to that of PerTuple+. In fact, the former significantly outperforms
the latter. This difference is due to non-deterministic cutoffs resulting from
the per-cluster timeout. Indeed, a close examination of the results reveals
that, in PerTuple+, a couple of instances hit the cutoff prior to reaching a
‘vital’ filtering stage.

6.2 Shapley Value

As an additional evaluation method, we calculate the Shapley Value [Shapley,
1952; Fréchette et al., 2016] of the seven solvers. This calculation determines
each solver’s contribution to a hypothetical portfolio constructed from all
considered solvers. The Shapley Value provides a means of comparing and
ranking the solvers. The calculation requires a scoring mechanism to eval-
uate a given coalition of solvers. In this case, we assign a solver a score of
1− CPU time

time limit
per instance. We assume that the coalition of solvers is an ora-

cle portfolio and always selects the best solver. Thus, it takes the maximum
score for each instance from among all solvers present. The total score for
a coalition is the sum of the coalition’s score on each instance. A solver’s
contribution to a coalition is the change in the coalition’s score when in-
cluding the solver. The Shapley value of an individual solver is its average
contribution to every possible permutation of every possible subset of the

4Upon examination, the unique large cluster of marc would have been correctly labelled
‘Neither’ and solved backtrack free by GAC.

5The percentage values are computed for each instance, then averaged across all the
instances in a given benchmark.
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solvers. Table 4 shows the Shapley values of the seven solvers. DecTree
contributes the most to this hypothetical portfolio, followed by GAC. GAC
scores highly because it is able to do well on instances on which the other
solvers do poorly, whereas the other solvers overlap more in their strengths.

Table 4: Shapley values of the seven solvers

Solver Shapley Value

DecTree 134.8
GAC 126.8
Random 120.9
PerTuple+ 109.3
PerTuple 96.9
AllSol+ 78.8
AllSol 75.4

7 Conclusions

We advocate a portfolio method for enforcing constraint minimality on the
clusters of a tree decomposition, making minimality even more beneficial in
practice by selectively applying it during problem solving. We provide three
improvements in the application of constraint minimality: a classifier for
choosing when to run AllSol, PerTuple, or neither, the use of GAC prior
to every cluster being processed, and a timeout mechanism to prevent getting
stuck on a single cluster. Our approach yields more problem completions and
faster runtimes than lookahead with a simple GAC, PerTuple, or AllSol.

As a continuation of our approach, we plan to use a classifier that esti-
mates the runtime of a consistency algorithm and the amount of filtering it
could achieve in order to dynamically set-up the timeout threshold. Such
a classifier would allow us to allocate more time for running the algorithm
when significant filtering can be expected and less time when there is little
prospect for filtering. We also want to extend our approach to estimating the
memory overhead for running a given consistency algorithm and for selecting
the most appropriate bolstering schema at the separators [Karakashian et al.,
2013].
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