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Abstract

Local consistency properties and algorithms for enforcing them are
central to the success of Constraint Processing. In this paper, we ex-
plore how to exploit the structure of the problem on the performance
of the algorithm for enforcing consistency. We propose various strate-
gies for managing the propagation queue of an algorithm for enforcing
consistency, and empirically compare their effectiveness for solving
CSPs with backtrack search and full lookahead. We focus our inves-
tigations on consistency algorithms that operate on the dual graph of
a CSP and demonstrate the importance of exploiting a tree decompo-
sition of the dual graph. Further, we note that exploiting structure
is particularly striking on unsatisfiable instances. We conjecture that
the approach for queue-management strategies benefits virtually all
other propagation algorithms.
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1 Introduction

Constraint Satisfaction Problems (CSPs) are in general NP-complete, and
backtrack search is the only known sound and complete algorithm for solving
them. A common, and useful, technique to prune the search space of a CSP
is by enforcing some consistency property. Algorithms for enforcing consis-
tency typically maintain a queue of the variables or constraints that need to
be revised. However, the ordering of those elements in the queue is usually
random. Information specific to a problem, such as its structure, is typically
neglected. One avenue to improve the performance of a propagation algo-
rithm without affecting the consistency level enforced is to ‘direct’ propaga-
tion along the structure of the constraint network. In this paper, we show the
benefits of using structure-based approaches for managing the propagation
queue of the algorithm for enforcing Relational Neighborhood Inverse Con-
sistency (RNIC) [Woodward et al., 2011]. We propose four structure-based
strategies, and, show that the one based on a tree-decomposition [Dechter,
2003] of the dual graph is advantageous. We show that our approach is par-
ticularly beneficial on unsatisfiable instances because it allows us to hasten
the detection of an inconsistency, and argue that this research direction is
useful and deserves more attention.

This paper is structured as follows. Section 2 reviews background infor-
mation about CSPs. Section 3 introduces the four new queue-management
strategies (two exact and two approximative). Section 4 discusses our ex-
perimental results, where we conclude that exploiting the structure in the
queue has significant benefit. Section 5 reviews the state of the art in queue-
management strategies. Finally, Section 6 concludes this paper.

2 Background

A Constraint Satisfaction Problem (CSP) is defined by P = (V ,D, C) where
V is a set of variables, D is a set of domains, and C is a set of constraints. Each
variable Vi ∈ V has a finite domain Di ∈ D, and is constrained by a subset
of the constraints in C. Each constraint Ci ∈ C is specified by a relation Ri

defined on a subset of the variables, called the scope of the relation. Given
a relation Ri, a tuple τi ∈ Ri is a vector of allowed values for the variables
in the scope of Ri. Solving a CSP corresponds to finding an assignment of a
value to each variable such that all the constraints are satisfied.
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2.1 Graphical representations

A binary CSP is represented by its constraint graph where the vertices are
the variables of the CSP and the edges represent the constraints. A non-
binary CSP is similarly represented by its hypergraph where the hyperedges
represent the non-binary constraints. Another graphical representation of a
non-binary CSP is the primal graph, where the vertices are the CSP variables
and edges connect every two vertices corresponding to variables in the scope
of a relation [Dechter, 2003]. The dual encoding of a CSP, P , is a binary CSP
whose variables are the relations of P , their domains are the tuples of those
relations, and the constraints enforce equalities over the shared variables.
The representation of this encoding as a graph is the dual graph of the CSP.
Figure 1, illustrates the hyper, primal, and dual graphs of a small non-binary
CSP where V = {A, . . . , F} and the relations are R1, . . . , R6.
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Figure 1: Hyper, primal, and dual graphs of a small CSP.

2.2 Triangulation & tree decomposition

Graph triangulation adds an edge (a chord) between two non-adjacent ver-
tices in every cycle of length four or more [Golumbic, 2004]. While minimizing
the number of edges added by the triangulation process is NP-hard, Min-
Fill is an efficient heuristic commonly used for this purpose [Kjærulff, 1990;
Dechter, 2003].

Notice, the dual graph of Figure 1 has a cycle of length four (R1, R2,
R3, and R4). One possible triangulation of the dual graph would be to add
an edge from R1 to R4, as illustrated in Figure 2. This triangulation is not
unique, and the edges added depends on the heuristic used.

A perfect elimination ordering on a graph is an ordering of the vertices
such that, for each vertex v, v and the neighbors of v that occur after v in
the ordering form a clique. If a graph is triangulated, then it is guaranteed
to have a perfect elimination ordering [Fulkerson and Gross, 1965].

A tree decomposition of a CSP is an encoding of the constraint network
[Dechter, 2003]. The tree decomposition is defined by a triple 〈T, χ, ψ〉 of a
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Figure 2: Triangulating a dual graph.

CSP P = (X,D,C), where T = (V,E) is a tree, and for each node v ∈ V in
the tree, χ is the variable labeling function, χ(v) ⊆ X, and ψ is the relation
labeling function, ψ(v) ⊆ C. These labeling functions determine which CSP
variables and constraints appear in which nodes of the tree. The tree nodes
are thus clusters of variables and constraints. A tree decomposition must
satisfy two conditions:

1. Each constraints c ∈ C appears in at least one node v ∈ V in the tree
where all of its variables are in that vertex, scope(c) ⊆ χ(v).

2. All the vertices where a variable x ∈ X appears, {v ∈ V |x ∈ χ(v)},
induces a subtree of T .

2.3 Local consistency properties

CSPs are in general NP-complete and solved by search. To reduce the sever-
ity of the combinatorial explosion, they are usually ‘filtered’ by enforcing a
given local consistency property [Bessiere, 2006]. One such property is Neigh-
borhood Inverse Consistency (NIC) introduced in [Freuder and Elfe, 1996]

for binary CSPs. NIC ensures that every value in the domain of a variable
can be extended to a solution of the subproblem induced by the variable and
all the constraints in its neighborhood. Algorithms for enforcing NIC oper-
ate by filtering the domains of the variables. These consistency properties
are called domain consistency properties, as they are filtering the domains of
the variables. In [Woodward et al., 2011], we extended the definition to NIC
to Relational Neighborhood Inverse Consistency (RNIC), which ensures that
every tuple in every relation can be extended in a consistent assignment to all
the relations in its neighborhood. Algorithms for enforcing RNIC operate by
filtering the tuples of the relations. Because RNIC is filtering the relations
instead of the domains, this type of consistency property is called a rela-
tional consistency property. We also introduced three variations of RNIC:
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enforcing on the minimal dual graph1 (wRNIC), a triangulation of the dual
graph (triRNIC), or doing both (wtriRNIC). We also proposed a selection
strategy (selRNIC) for selecting which variation of RNIC to use based on
the density of the dual graph.2 We showed that in a statistically significant
manner selRNIC is able to select the correct variation of RNIC to enforce
on a given problem. In [Woodward et al., 2011], we also showed that enforc-
ing higher-level consistency, such as selRNIC, is beneficial to solving difficult
problems.

3 Queue-Management Strategies (QMS)

We explore the following three directions for ordering the relations:

1. Random ordering of the relations in the propagation queue, as in [Wood-
ward et al., 2011],

2. Using a perfect elimination ordering (PEO) of the vertices of some
triangulation of the dual graph, and

3. Using an ordering of the maximal cliques of some triangulation of the
dual graph, which corresponds to a tree-decomposition ordering (TD).

For the example of Figure 3, a perfect elimination ordering obtained by
applying the max-cardinality ordering is: 〈R6, R5, R3, R4, R2, R1〉 and the
maximal cliques ordering is: 〈C1, C2, C3〉, where C1 = {R3, R4, R5, R6}, C2 =
{R1, R3, R4}, and C3 = {R1, R2, R4}.

If the graph is not already triangulated, we first triangulate the dual
graph. In this step, the effect of the triangulation does not effect the neigh-
borhoods of the dual variables as the triangulation is used only in the com-
putation of the queue ordering. In order to triangulate the dual graph, we
use the MinFill heuristic [Kjærulff, 1990; Dechter, 2003]. We use a perfect
elimination ordering (PEO) obtained by applying the max-cardinality order-
ing (MCO) of [Tarjan and Yannakakis, 1984] to the triangulated dual graph.
Using this PEO, we find the sequence of maximal cliques [Gavril, 1972].

1The minimal dual graph is a dual graph where no alternate path exists between any
two vertices such that the shared variables appear in every vertex in the path [Janssen et
al., 1989].

2The density of a graph of n vertices is equal to the ratio of the number edges in the

graph over the maximum number of edges possible (n(n−1)
2 ).
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Figure 3: A triangulated dual graph (left) along with a perfect elimination order-
ing (center) and a maximal cliques ordering (right) where the orderings proceed
from bottom to top.

We study the impact of the above orderings in three exact strategies and
two approximate strategies (lazy) for managing the propagation queue of the
RNIC algorithm in a backtrack search for finding the first solution of a CSP.
Below, we describe three exact strategies and two lazy strategies.

3.1 Exact strategies

ProcessQ [Woodward et al., 2011] uses two types of queues: A queue of the
relations to be revised (QR, which was denoted as Q in [Woodward et al.,
2011]), and for each relation, a queue of tuples for which a support must be
found (Qt(R)). Note that QR is static.3 However, a relation R is processed
only when its Qt(R) is not empty. We consider the three exact following
strategies:

1. The random ordering (QMSr): The order of the relations in QR is
random.

2. The perfect elimination ordering (QMSPEO): This ordering aligns the
relations in QR following the perfect elimination ordering explained
above, and processes them back and forth in that order until quiescence
(i.e., until all the tuples in the relations have appropriate supports).

3As in AC-1 [Mackworth, 1977] and unlike the queues of most modern consistency
algorithms.
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3. The tree decomposition ordering (QMSTD): This strategy maintains an
additional queue, QC , that is formed as follows:

• For each maximal clique, C, a queue of the relations in this clique,
QR(C), where the relations are stored in an arbitrary order.

• Relations are listed in the queues of all the maximal cliques where
they appear.

• The queue QC is a queue of the queues of those maximal-cliques,
QR(C), aligned in the tree-decomposition ordering introduced above.

• A relation R is revised only when its queue of tuples, Qt(R), is
not empty.

The cliques are processed back forth in the order they are listed in
QC until quiescence. Each time that a clique is considered, its queue
is processed in an arbitrary ordering until quiescence before we can
move to the next clique in the sequence. During search, QC starts
at the shallowest clique that the relations on the instantiated variable
participates in.

Note that all three strategies above enforce the same consistency property,
RNIC where the neighborhoods are from the original CSP. When the problem
is unsolvable, the strategies may differ in the amount of tuples removed before
discovering the problem is inconsistent.

3.2 Lazy strategies

The QMSTD strategy, described in Section 3.1 enforces RNIC, it:

1. processes each clique in the order considered,

2. iterates over the relations in the clique in an arbitrary order until qui-
escence,

3. then moves to the next cliques,

4. while traversing the ordering back and forth until quiescence.

In this section, we investigate if and when weakening the filtering of QMSTD

can reduce the solving time of the CSP. We examine weakening this strategy
in two different ways, resulting in two ‘lazy’ strategies:
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1. QMSLTD: QMSLTD relaxes Step 4 above, traversing the cliques only
once, from bottom to top.

2. QMSL2TD: QMSL2TD relaxes Step 2 and 4 above, that is, it traverses
the relations in the cliques only once, in a random order, and traverses
the cliques also only once, from bottom to top.

The two lazy strategies are strictly weaker than the exact strategies.

4 Experimental Results

We study the impact, on the CPU time, of the queue-management strate-
gies (QMS) of Table 1 when enforcing RNIC-based consistency in a pre-
processing step and as full lookahead during backtrack search. We com-

Table 1: Proposed queue-management strategies.

E
x
a
ct

QMSr The relations are ordered arbitrarily in the propagation
queue.

QMSPEO The relations are ordered using a perfect elimination or-
dering. The order is traversed back and forth until qui-
escence.

QMSTD The propagation queue is the sequence of maximal cliques
[Gavril, 1972]. Each clique, which is a list of relations,
is revised until quiescence; the cliques are revised in se-
quence, back and forth until quiescence.

L
a
zy

QMSLTD Same as QMSTD, however, the sequence of cliques is tra-
versed only once.

QMSL2TD Same as QMSTD, but traversing each clique only once
and the relations in a clique only once and in a random
order.

pute the orderings during the pre-processing step, and use the same ordering
throughout search. Our search procedure uses dynamic variable ordering
(domain/degree) and stops after finding the first solution. We consider the
following consistency properties: RNIC, wRNIC, triRNIC, wtriRNIC. We
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also include selRNIC, which is nothing but one of the preceding four prop-
erties determined by an automatic selection policy [Woodward et al., 2011].
Thus, in practice, the performance of only selRNIC matters . The results of
the four properties are reported to facilitate a finer analysis. For each strat-
egy, the reported CPU time is the sum of the time for pre-processing and
finding the first solution.

We ran our experiments on benchmark problems from the CSP Solver
Competition,4 testing 1128 CSP instances (613 non-binary and 515 binary)5.
The tested problems varied in size, ranging from 5 dual variables (constraints
in the hypergraph) with 10 dual edges, to 5,714 dual variables with 291,734
dual edges. The time limit per instance was 90 minutes and the memory
limit 7 GB. In this paper, we present our results separately for non-binary
and binary CSPs, and satisfiable and unsatisfiable ones.

When used at the pre-processing stage, we noticed that the lazy ap-
proaches, QMSLTD and QMSL2TD, ran consistently quicker than the exact
strategies because they executed fewer revisions. However, they provided
less filtering and yielded larger search spaces. Extensive testing showed that
the saving in CPU time during pre-processing that the lazy strategies pro-
vided was insignificant compared with the loss of filtering power. Therefore,
in the results reported in this paper, the problems for evaluating QMSLTD

and QMSL2TD were pre-processed with QMSTD, and the lazy strategies were
applied as lookahead.

4.1 Number of completed instances

Tables 2 and 3 show the number of instances completed within the allotted
time for non-binary and binary CSPs, respectively. On non-binary CSPs,
clearly selRNIC using QMSTD solves the most number of instances. Thus, it
appears that selecting the correct algorithm (which is done by selRNIC) is
the most significant decision, and the choice of the queue-management strat-
egy becomes critical when the best algorithm is chosen. On binary CSPs,

4All constraints are normalized, http://www.cril.univ-artois.fr/CPAI09/
5The non-binary benchmarks tested are: aim-50/100/200, dag-rand, dubois,

jnhSat/Unsat, lexVg, modifiedRenault, ogdVg, pret, rand-10-20-10, rand-3-20-20(-fcd),
ssa, ukVg, varDimacs, and wordsVg. The binary benchmarks tested are: bqwh-15-
106, coloring, composed-25-1-2/25/40/80, composed-25-10-2/20/25/40/80, domino, geom,
graphColoring-mug/myciel, graphColoring-sgb-book/miles, hanoi, langford/2, QCP-
10/15, and QWH-10/15.
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Table 2: Non-binary CSPs: Number of completed instances, out of 613 instances
tested.

Satisfiable Unsatisfiable
∑

S
tr
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te
g
y
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IC

w
R
N
IC

tr
iR

N
IC

w
tr
iR

N
IC

se
lR

N
IC

R
N
IC
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IC

tr
iR

N
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N
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N
IC

QMSr 93 98 54 79 101 164 167 178 199 209 310

QMSPEO 94 81 81 50 113 176 202 202 194 213 326

QMSTD 90 79 79 51 114 181 211 211 205 221 335

QMSLTD 90 80 80 51 107 181 210 210 205 219 326

QMSL2TD 88 78 78 51 109 179 211 211 203 220 329

Table 3: Binary CSPs: Number of completed instances, out of 515 instances
tested.

Satisfiable Unsatisfiable
∑
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QMSr 155 166 40 74 154 105 63 15 96 105 259

QMSPEO 156 163 40 82 156 102 63 23 95 102 258

QMSTD 152 155 38 68 153 102 63 51 95 102 255

QMSLTD 112 140 38 69 113 102 59 50 96 102 215

QMSL2TD 150 140 38 75 151 102 58 50 96 102 253

the result is not as clear. On satisfiable instances, wRNIC using QMSr solves
the largest number of instances, whereas, RNIC and selRNIC using QMSr

show a tie. The table shows that wRNIC is not competitive because of its
poor performance on unsatisfiable instances (wRNIC is too weak to detect
inconsistency), and the selection policy of selRNIC is immune to this weak-
ness. Again, we conclude that selecting the right correct algorithm is the
most significant decision. Focusing on selRNIC, there is not a significant dif-
ference between the queue-management strategies (except QMSLTD). Thus,
the choice of the queue-management strategy is not as crucial for binary as
it is for non-binary CSPs (the one additional instance QMSr solved was near
the time-threshold, and as we will see later, the average CPU time for using
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QMSr was indeed higher).

4.2 CPU time results

We report the CPU time results in Tables 4 to 7. Our goal is to analyze
the effect of the new queue-management strategies on a given consistency
algorithm. The comparison across algorithms is irrelevant for the objectives
of this study and was already investigated in [Woodward et al., 2011], where
selRNIC was shown to be the winner. Indeed, selRNIC (highlighted in gray
in Table 4 to 7) is itself a portfolio of the four other algorithms. Thus, the
reader should examine the results in Tables 4, 5, 6, and 7 for each consistency
algorithm separately from all others , comparing the numbers that are in the
same column and not the numbers across columns.

• CPU time: The results are shown in Table 4 (non-binary) and Table 6
(binary). When search fails to complete within the time limit, the cor-
responding data point is considered to be right-censored. It is then
appropriate to run a survival data analysis on the results [Lee, 1992].
It would be statistically unsound to ‘penalize’ failed runs by some ar-
bitrary factor of the timeout limit. We chose to analyze the data using
right-censored data with the Kaplan-Meier estimator to estimate the
survival function (the probability that a given algorithm and strategy
have finished running after a given time) [Kaplan and Meier, 1958].
The Kaplan-Meier estimator does not make any assumption about the
distribution of the data. The mean CPU times are computed by
estimating the area under each of survival functions [Allison, 1995].

• Significance rankings: The strategies are ranked by statistical signifi-
cance into equivalence classes of CPU-time performance. The likelihood
ratio-test as well as the non-parametric Wilcoxon test were used to test
differences between the strategies for a given algorithm [Lawless, 1982;
Klein and Moeschberger, 1997]. We used a significance level of 0.05
after using Sidak’s method for adjusting the probabilities to account
for error in multiple comparisons [Sidak, 1967]. These pair-wise differ-
ences are testing if the survival functions for each strategy for a given
algorithm are statistically different. The results are reported in Ta-
bles 5 and 7, where entries must be compared along the same column.
Rank A indicates the best performance, and rank D the worse.

12



4.3 Summary of results

Below we summarize our findings before discussing them:

1. Exploiting the structure of the problem (here the dual graph) in the
management of the propagation queue of a consistency algorithm is
beneficial in general and should not be ignored.

2. Lazy strategies are less effective or equivalent than their exact counter-
parts,6 thus, they do not constitute an interesting alternative.

3. While improvements are visible on both binary and non-binary CSPs,
they are more compelling on the latter than on the former.

4. The benefit of exploiting the structure during constraint propagation
is particularly striking on unsatisfiable instances. We believe that the
identification of this benefit is an important contribution.

4.4 Non-binary CSPs

Table 4 gives the results of the CPU time for non-binary CSPs. The analysis

Table 4: Average CPU time (ms) for non-binary CSPs.
Satisfiable instances

Strategy RNIC wRNIC triRNIC wtriRNIC selRNIC

QMSr 3,196,905 3,005,325 4,209,710 2,987,451 2,993,836

QMSPEO 2,829,078 3,534,640 3,534,640 4,236,640 2,944,574

QMSTD 3,216,125 3,443,329 3,443,329 4,127,530 2,887,435

QMSLTD 3,315,147 3,535,693 3,535,693 4,218,954 3,029,751

QMSL2TD 3,369,269 3,551,685 3,551,685 4,128,261 3,024,953

Unsatisfiable instances

QMSr 2,890,903 2,316,135 2,585,909 2,102,904 1,968,668

QMSPEO 2,409,765 2,098,659 2,098,659 2,315,073 1,968,376

QMSTD 2,566,678 1,983,243 1,983,243 2,282,629 1,849,360

QMSLTD 2,573,975 1,970,401 1,970,401 2,290,885 1,838,448

QMSL2TD 2,509,176 1,974,085 1,974,085 2,228,188 1,848,069

was executed for the various queue strategies of each algorithm separately

6With one exception for triRNIC for unsatisfiable binary CSPs, see Table 7.
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from all other algorithms. Thus, the numbers must be compared only along
the same column, and values across the columns are not comparable. The
numerical results shown in Table 4 is reported for reference. The discussion
focuses on the statistical analysis of the data.

Table 5 shows the impact of the various queue-management strategies
on the performance of an individual consistency algorithm (ranking along a
column).

Table 5: Significance rankings for non-binary CSPs.
Satisfiable Unsatisfiable
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QMSr A A C A A C B B A B

QMSPEO A B A B A A A A B A

QMSTD B B A B A B A A A A

QMSLTD B B A B B B A A B A

QMSL2TD B B B B B B A A A A

• For selRNIC on unsatisfiable instances any of the strategies that exploit
the structure are significantly better than the arbitrary strategy. For
selRNIC on satisfiable instances, the exact strategies, QMSPEO and
QMSTD, are equivalent to the random strategy, QMSr. Therefore, the
benefit of exploiting the structure is more advantageous on unsatisfiable
instances, but does not degrade its quality on satisfiable instances.

• On satisfiable and unsatisfiable instances, either QMSPEO or QMSTD

are statistically better than, or equivalent to, QMSr, with the exception
of wRNIC and wtriRNIC on satisfiable instances.

• The lazy strategies, QMSLTD and QMSL2TD, do not show significant
improvement over QMSTD. (The lazy strategies are either statistically
equivalent or worse.) Therefore, there is no significant benefit for using
the lazy strategies.

Looking at the number of instances completed in Table 2, selRNIC and
QMSTD can solve the largest number of instances. The CPU time for selR-
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NIC and QMSTD confirm our claim that selRNIC using QMSTD essentially
outperforms all strategies.

4.5 Binary CSPs

The CPU times for binary CSPs are given in Table 6 and the significance
classes in Table 7.

Table 6: Average CPU time (ms) for binary CSPs.
Satisfiable instances

Strategy RNIC wRNIC triRNIC wtriRNIC selRNIC

QMSr 8,726,586 655,795 1,940,681 3,607,532 8,916,430

QMSPEO 6,118,663 695,165 1,902,550 3,622,475 6,186,426

QMSTD 2,319,532 849,787 2,134,283 3,538,485 2,299,738

QMSLTD 2,943,891 1,504,313 2,053,600 3,707,704 2,295,135

QMSL2TD 2,321,664 1,463,449 1,936,013 3,558,812 2,302,040

Unsatisfiable instances

QMSr 1,438,841 1,813,683 2,184,951 1,890,259 1,432,093

QMSPEO 896,639 2,412,611 3,282,667 1,728,061 850,289

QMSTD 1,585,428 2,144,222 2,886,106 1,823,050 1,579,925

QMSLTD 1,789,383 2,868,932 1,850,859 1,694,733 1,679,963

QMSL2TD 1,491,684 3,300,720 1,809,207 2,005,330 1,502,701

Table 7: Significance rankings for binary CSPs.
Satisfiable Unsatisfiable
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QMSr C A B C B B A B A B

QMSPEO C B A C B A C B A A

QMSTD A C C A A B B B A B

QMSLTD A D C B A B D A A B

QMSL2TD A D B B A B D A B B
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• Interestingly, on binary instances, selRNIC performs best using QMSPEO

for unsatisfiable instances. However, selRNIC performs best on QMSTD

for satisfiable instances.

• The lazy strategies were significantly better than the other strategies
only on unsatisfiable instances running triRNIC. The reason for the
boost in performance here is that the neighborhood sizes RNIC consid-
ers is very large after triangulation on these problems. Therefore, it is
becomes very costly to check the triangulated neighborhoods, and the
lazy strategies show their benefit.

• Generally speaking, the improvements brought about by queue-management
strategies on binary CSPs are not as dramatic as those on non-binary
CSPs, however the former do not contradict the latter.

5 Related Work

Wallace and Freuder investigated various ordering heuristics for the propaga-
tion queue of arc consistency showing a reduction of the number of constraint
checks [1992]. Unlike the strategies studied in this paper, which exploit
the structure of the (dual) network, their heuristics considered the proper-
ties of individual domains and constraints. Laburhe [2000] and Schulte and
Stuckey [2004] ordered propagation queues by prioritizing the constraints
based on the time complexity of their processing. Thus, the queue ordering
is based on cost and predefined rules, and not the structure of the prob-
lem, as we propose in this paper. Schulte and Stuckey in [2008] used the
semantics of the constraints/propagators in re-ordering the queue, but did
not exploit the structure of the problem. Lagerkvist and Schulte [2009] also
studied the propagation order of constraints, but required the user to specify
the ordering. Francis and Stuckey [2007] investigated propagation ordering
on problems with articulation points, which is less general than tree decom-
position.

Freuder linked the width of the constraint network to the consistency level
necessary in a relation that guarantees a backtrack-free search [1982]. This
approach was extended by Dechter and Pearl to directional path consistency
(DPC) [1987] where propagation proceeds along a fixed ordering. Planken et
al. [2008] used DPC on a perfect elimination ordering of some triangulation
of the constraint graph of a binary CSP in order to propagate Partial Path
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Consistency (PPC) [Bliek and Sam-Haroud, 1999], which requires adding
constraints, thus modifying the constraint graph. Their work is restricted to
the Simple Temporal problem [Dechter et al., 1991]. The work presented in
this paper exploits the information gained from triangulation/tree decompo-
sition but does not alter the topology of the constraint network or add any
constraints to the problem.

6 Future Work & Conclusions

Exploiting the structure of the problem in the management of the propaga-
tion queue of a consistency algorithm is beneficial in general and should not
be ignored. Importantly, exploiting the structure during constraint propaga-
tion is particularly striking on unsatisfiable instances. This result is impor-
tant as it indicates that inconsistency can be detected locally in the problem,
instead of arbitrarily looking for the inconsistency.

Our approach of exploiting the structure for the propagation queues opens
the door to the investigation of other methods for detecting and exploiting
structure. Of the queue-management strategies we studied in this paper, we
experimentally determined the best strategy is the exact strategy using the
tree decomposition of the dual graph for selRNIC on both binary and non-
binary instances. The lazy strategies showed no significant improvement
during search. Future work is to evaluate if the exact tree-decomposition
strategy remains a significant improvement when applied to other consis-
tency algorithms, such as R(∗,m)C of [Karakashian et al., 2010]. The queue-
management strategies studied in this paper were all static queues, future
work is to study the effect of dynamic queue-management strategies. We be-
lieve that the use of queue-management strategies that exploit the structure
of the problem will benefit virtually all propagation algorithms.

Consistency properties and their algorithms are central to CP, and per-
haps best distinguish this discipline from other fields that study the same
problems. Research has focused on defining new properties, proposing new
algorithms, improving the performance of known ones, and theoretically char-
acterizing the relationship between the consistency level and the tractability
of the CSP. This work adds to the large body of literature on consistency
properties and improving their propagation algorithms, but investigating a
new dimension of the propagation algorithm: the queue. The use of more
sophisticated queue-management strategies shows that we are one step closer
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to dynamically recognizing the problems we have at hand, and exploit them
to our advantage.
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