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Abstract

The minimal constraint network of a constraint satisfaction problem (CSP)
is a compiled version of the problem where every tuple in a constraint’s re-
lation appears in at least one solution to the CSP. Recently, Gottlob argued
that, when a CSP has this property, a number of NP-hard queries can be
answered in polynomial time, but he also showed that deciding whether or
not a given network is minimal is NP-complete [Gottlob, 2011]. We pro-
pose two search-based algorithms for computing the minimal network of a
CSP. We investigate the performance of the two algorithms and propose a
classifier to select the appropriate algorithm that minimizes the CPU time,
using a number of parameters. Our approach constitutes a significant contri-
bution towards the automation of the selection of the appropriate algorithms
for computing the minimal network of a CSP. In most cases that we stud-
ied, we achieved classifier accuracy of above 90%, which allowed us realize
significant time savings.
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1 Introduction
The minimal network of a constraint satisfaction problem is the network where
each tuple in the relation of a constraint appears in at least one solution to the
problem [Montanari, 1974]. Gottlob argued that, when a CSP has this property, a
number of NP-hard queries can be answered in polynomial time, but also showed
that deciding whether or not a constraint network is minimal is NP-complete [Got-
tlob, 2011].

In [Karakashian et al., 2010], we introduced an algorithm for enforcing a re-
lational consistency property called R(∗,m)C, also known as m-wise consistency
in relational databases. In essence, the algorithm computes the minimal graph of
the problem induced by every set of m relations of the CSP. We showed that this
algorithm is particularly effective, when used for full lookahead in a backtrack
search, for solving difficult CSPs.

In this paper, we examine the algorithm described in [Karakashian et al., 2010]
and use it to compute the minimal network of a CSP. We refer to that algorithm
as PERTUPLE. We also explore an alternative search algorithm for enforcing the
same property and call it ALLSOL. Both algorithms use backtrack search to verify
whether or not a given tuple appears in a solution to the problem. However, the
former repeats a ‘satisfiability’ search (i.e., stopping after finding the first solu-
tion), for every tuple in every relation, in the worst case, whereas the latter carries
out a single ‘solution counting’ search (i.e., exploring the entire space).

In order to select which algorithm is more appropriate to minimize the CPU
time in a given context, we propose a set of parameters that attempt to charac-
terize the ‘interactions’ among the relations in the problem. Our set includes the
parameter κ introduced by Gent et al. in [Gent et al., 1996]. We use machine
learning algorithms to generate classifiers that determine whether to use PERTU-
PLE or ALLSOL. In most cases that we studied, we achieved classifier accuracy
of above 90%, which allowed us realize average time savings of more than 100
seconds.

The contributions of this paper are as follows: the presentation of two algo-
rithms for computing the minimal network of a CSP, identification of CSP param-
eters that can be computed in polynomial time, and their use in building a decision
tree that predicts the appropriate algorithm.

This paper is structured as follows. Section 2 gives background information,
Section 3 presents the two algorithms, and Section 4 describes and evaluates the
classifier used for predicting the appropriate algorithm. Section 5 discusses related
work. Section 6 concludes with future work.
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2 Background
A constraint satisfaction problem (CSP) is defined by (X ,D, C), where X is a set
of variables, D is a set of domains, and C is a set of constraints. Each variable
Ai∈X has a finite domain Di∈D, and is constrained by a subset of the constraints
in C. Each constraint Ci ∈ C is defined by a relationRi specified over the scope of
the constraint, scope(Ci), which are the variables to which the constraint applies,
as a subset of the Cartesian product of the domains of those variables. The arity
of a constraint is the cardinality of its scope. A tuple ti∈Ri is thus a combination
of values for the variables in the scope of the constraint that is either allowed
(i.e., support) or forbidden (i.e., conflict). In this paper, we consider only allowed
tuples. A solution to the CSP is an assignment, to each variable, of a value taken
from its domain such that all the constraints are satisfied. Solving a CSP consists
of finding one or all solutions.

A CSP can be represented by several types of graphs: in the hypergraph of a
CSP, as shown in Figure 1, the vertices represent the variables of the CSP and the
hyperedges represent the scopes of the constraints. The primal graph of a CSP
is a graph whose vertices represent the variables and the edges connect every two
variables that appear in the scope of some constraint as shown in Figure 2. The
dual graph of a CSP is a graph whose vertices represent the constraints of the
CSP, and whose edges connect two vertices corresponding to constraints whose
scopes overlap as in Figure 3. The dual CSP, PD, is thus a binary CSP where:
(1) variables are the constraints of the original CSP; (2) the variables’ domains are
the tuples of the corresponding relations; and (3) the constraints enforce equalities
over the shared variables.
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Figure 1: Hypergraph.
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Figure 2: Primal graph.
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Figure 3: Dual graph.

Montanari [Montanari, 1974] introduced the minimal network of a CSP. Stated
informally, the network is the one where the relations are as tight as can be, that
is, each tuple in a relation can be extended to a solution to the CSP. The formal
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definition from [Dechter, 2003] is given next.

Definition 2.1. Given a CSP P0, let {P1, . . . ,Pl} be the set of all networks equiv-
alent to P0. Then the minimal network M of P0 is defined by M(P0) = ∩li=1Pi.

Finally, π, σ and ./ denote the relational operators project, select and natural
join respectively.

3 Computing the Minimal Network of a CSP
In this section, we present two search-based algorithms for computing the min-
imal network of a CSP. The first algorithm is called PERTUPLE and the second
ALLSOL. As the names indicate, the former conducts a search for a consistent
solution for each tuple, and the latter conducts a single backtrack search generat-
ing a sufficient number of solutions to cover all the tuples of the minimal network.
Below, we informally describe both search algorithms.

3.1 PERTUPLE: Solving Several Satisfiability Problems
As stated in Section 1, PERTUPLE is the algorithm presented in [Karakashian et
al., 2010]. The pseudocode is given in Algorithm 1. Given a CSP with e relations,
t tuples per relation, where the total number of tuples is T = et, PERTUPLE con-
ducts a sequence of backtrack searches on dual CSP, PD. It proceeds as follows.
First, it initializes the tuple marks to ‘false’. Then it considers the T tuples in
some sequence. For each tuple τi of a relation Ri, it conducts in Line 7 a back-
track search in the space defined by the relations in the CSP (i.e., the variables
of PD) excluding Ri. It attempts to find in that space a solution that is consistent
with τi. As soon as a first solution is found, search is interrupted successfully (i.e.,
satisfiability search). τi and all the tuples appearing in that solution are marked
as belonging to the minimal network in Line 9. If no solution is found, τi is re-
moved from Ri in Line 8 because it is inconsistent and cannot be in the minimal
network. All tuples in the e relations of the CSP are considered unless they have
been already marked. PERTUPLE executes at most T backtrack searches, each of
worst-case time complexity O(te−1). The performance of the search is enhanced
by forward checking. Checking the consistency of two tuples during search is
facilitated by the index-tree data structure, also introduced in [Karakashian et al.,
2010].
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Algorithm 1: PERTUPLE(PD)
Input: PD
Output: Minimal Network of PD
foreach Ri ∈ PD do1

foreach τi ∈ Ri do SETMARK(τi, false)2

foreach Ri ∈ PD do3

foreach τi ∈ Ri, do4

if MARKED(τi) = false then5

ASSIGN(Ri, τi)6

/* Backtrack search for a solution */
sol←BTSEARCHONESOL(PD)7

if sol = false then DELETE(τi)8

else foreach τj ∈ sol do SETMARK(τj, true);9

3.2 ALLSOL: Solving a single Counting Problem
We introduce the alternative algorithm ALLSOL which conducts a single back-
track search on the e variables of PD, and its worst-case time complexity is
thus O(te). It is outlined in Algorithm 2. First, it initializes the tuple marks to
‘false’. Then it proceeds with the single backtrack search by calling BTSEARCH-
NEXTSOL in Line 5. However, it does not stop after the first solution, it continues
in the loop of Line 4 until all the solutions are found. Note that only the first call
to BTSEARCHNEXTSOL starts a backtrack search, and the subsequent calls only
advance the backtrack search to the next solution. Every time a solution is found,
all the tuples in the solution are marked as belonging to the minimal network in
Line 7. Like PERTUPLE, ALLSOL uses forward checking. Finally, it deletes all
the tuples that were not marked in Line 10.

An important improvement allows us to interrupt search before traversing the
entire space (which would be necessary in search for solution counting). After
every step in the search and after executing forward checking, the domains of the
future ‘variables’ (in fact, the relations of the original CSP) are considered. If all
the ‘surviving’ tuples are marked as belonging to the minimal network, as well as
all the tuples in the current path, then the search resumes from that path as if it
was a dead-end. At the end of search, which may or may not cover all solutions,
all unmarked tuples are removed from the relations.
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Algorithm 2: ALLSOL(PD)
Input: PD
Output: Minimal Network of PD
foreach Ri ∈ PD do1

foreach τi ∈ Ri do SETMARK(τi, false)2

sol← false3

while sol = false do4

sol←BTSEARCHNEXTSOL(PD)5

if sol 6= false then6

foreach τi ∈ sol do SETMARK(τi, true)7

foreach Ri ∈ PD do8

foreach τi ∈ Ri do9

if MARKED(τi) = false then DELETE(τi)10

3.3 Improving Forward Checking
Another practical improvement in this work attempts to reduce the effort neces-
sary for executing forward checking. Given that the size of relations can be large,
it becomes important to check the consistency of two tuples without scanning all
the relations. We have already mentioned that we use the index-tree data struc-
ture for checking the consistency of two tuples from two relations whose scope
overlap. Forward checking operates by removing from the ‘future’ relations those
tuples that are not consistent with the current path. We call the tuples that are
consistent ‘valid’ and those that are not ‘invalid.’

For a given tuple ti in a given relation Ri, the index-tree data structure re-
turns all the tuples in an ‘adjacent’ relation that are consistent with ti. The set
of such tuples includes both valid and invalid tuples because the index-tree is not
updated when forward checking invalidates tuples in future relations. Thus, the
returned tuples must be scanned and only the ones considered to be valid should
be considered. At some point, during the backtrack search, most of the tuples
may become invalid. Hence, it may be more efficient to check the valid tuples for
consistency with ti than to check for validity of the consistent tuples returned by
the index-tree. For this purpose, each relation keeps a counter of the number of
‘valid’ tuples and the index-tree data structure keeps a counter of the number of
(valid and invalid) tuples consistent with ti. We compare the two counters, and
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the smaller set is examined.

3.4 Correctness and Efficiency
The algorithms PERTUPLE and ALLSOL compute the minimal network by finding
at most T solutions, T being the total number of tuples in all relations of the
minimal CSP. We first show that the bound on the number of solutions found is
a tight bound on the minimum number of solutions needed, then we prove this
bound.

Theorem 3.1. Given a CSP, the problem that answers the following question is
NP-Complete: is there a set of at most k solutions such that every tuple appears
in at least one solution?

Proof sketch. We reduce Minimum Set Cover [Garey and Johnson, 1979] to this
problem in polynomial time. Given a collection C of subsets of a finite set S
and a positive integer k, a set cover of size k or less exists iff a set of at most
(2 · |S| + k) solutions exists. The reduction is accomplished by constructing a
CSP with a variable for each element in S, and domains and relations to have a
solution corresponding to each subset in C. The details of the construction are
outside the scope of this paper. �
Therefore, we will likely have to find more than the minimum number of solutions
necessary for ‘covering’ the tuples in the minimal network.

Theorem 3.2. Given PD the dual encoding of a CSP, PERTUPLE finds at most
T solutions, where T is the total number of tuples in the relations of the minimal
network.

Proof sketch. Clearly PERTUPLE starts a backtrack search for each tuple ti, after
assigning ti to its corresponding relation, and deletes ti if no solution is found.
Therefore, no tuple that appears in some solution is deleted. Moreover, at most
T solutions are found. However, our ‘marking’ mechanism saves us the effort
of search for solutions for those tuples encountered in solutions during search.
Therefore, every tuple in the minimal network appears in at least one solution. �
We next prove that ALLSOL also finds at most T solutions and computes the
minimal network with the improvement discussed in Section 3.2.

Theorem 3.3. Given PD the dual encoding of a CSP, ALLSOL finds at most T
solutions, where T is the total number of tuples in the relations of the minimal
network.
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Proof sketch. ALLSOL marks the tuples that appear in a solution, and deletes
all the tuples that were not marked, thus guarantees that all the remaining tuples
appear in at least one solution. Moreover, whenever the backtrack search finds a
solution, at least one tuple in the solution must be unmarked. Otherwise, the back-
track search will resume as if a dead end was discovered and will not continue to
the solution. This is due to the improvement discussed in Section 3.2. Therefore,
at least one tuple is marked for each solution found by ALLSOL, and as a result,
there can not be more solutions than marked tuples.

3.5 Rationale for Operating on the Dual Encoding
Computing the minimal network of a CSP requires checking that tuples of the
relations appear in some solution to the CSP and removing those that do not.
Thus, operating on the dual CSP seems to be a natural choice. The constraints in
the dual CSP are equality constraints and enforce that the values of the variables
common to the scope of two constraints be the same. Typically, the number and
size of the dual constraints are large in practice. We do not explicitly generate the
dual constraints and thus, their size or number do not cause any space overhead.

Moreover, given the nature and the number of the dual constraints, a partial
look-ahead strategy such as forward checking (FC) on the dual graph proved to
be sufficient in practice. We tested the full-lookahead strategy known as ‘Main-
taining Arc Consistency’ (MAC) [Sabin and Freuder, 1994], and it performed sig-
nificantly worse than FC. Domain sizes is another problem of the dual variables
which could be very large. Our algorithms scale well with the domain sizes of
the dual variable (i.e., the number of support tuples in the relations) by using the
index-tree structures [Karakashian et al., 2010]. We could easily handle relations
with 150,000 tuples.

3.6 Qualitative Comparison of PERTUPLE and ALLSOL

Consider a network of e relations, and t tuples per relation. In order to compute
the minimal network, PERTUPLE solves O(et) times a satisfiability problem of
size O(te−1). Thus, its time complexity is O(ete). In contrast, ALLSOL solves
once a solution counting problem of size O(te), and its time complexity is O(te).
Relating the worst-case time complexities of the two algorithms, their behaviors
may be more clearly characterized thanks to the phase transition phenomenon
observed on CSPs [Cheeseman et al., 1991].

9



First, let us notice that ALLSOL and PERTUPLE differ in two main aspects:
(1) the cost of each backtrack search, and (2) the number times a new search is
started. ALLSOL starts a single search, but searches the entire space. PERTUPLE

starts a search once for each tuple in the problem, but each search stops after
finding the first solution. Now, back to the phase-transition. According to that
macro-characterization of CSPs,

• When a problem instance is located in the area where the existence of a
solution is highly likely, solutions abound and are easy to find. In those
conditions, each call to PERTUPLE is likely to terminate successfully and
quickly. Even with repetitive calls to search, PERTUPLE remains quick.
On the other hand, although it is sweeping only once through the search
space, ALLSOL is likely to easily get ‘overwhelmed,’ enumerating the large
number of solutions. In that area, PERTUPLE is likely significantly more
efficient than ALLSOL.

• When a problem instance is located in the area where the existence of a so-
lution is highly unlikely, a search procedure with decent lookahead is likely
to effectively prune the tree, quickly terminating the search. Even though
PERTUPLE starts many more searches than ALLSOL does, both algorithms
are likely to quickly traverse the same ‘barren’ space and their performance
is comparable.

• The difference between the two algorithms arises around the area of the
phase transition. An instance in that area is likely to have many ‘almost’
solutions [Cheeseman et al., 1991]. ALLSOL traverses the space once, may
struggle to find the few solutions, if any, as one expects to be the case at the
phase transition. The real misfortune is for PERTUPLE, because it may have
to repeat the same costly process for every tuple in each relation, which may
render totally unusable in practice.

In summary, while PERTUPLE is likely to be quite cheap more often than ALL-
SOL, when it encounters instances around the phase transition, it is unlikely to
terminate even when ALLSOL does. The experiments reported below confirm the
above interpretation.
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4 Building a Hybrid Solver
As stated above, we expect, grossly speaking, the two algorithms to be ‘comple-
mentary’ in terms of their effectiveness in practice despite the fact that, obviously,
there are problems too hard for either algorithm, and others easy for both. Our
goal is to build a hybrid solver that, adaptively, chooses the ‘best’ algorithm to
use or, at least, avoids the algorithm that does not terminate. The hybrid solver
consists of the two algorithms (ALLSOL and PERTUPLE), a set of parameters to
compute for each problem instance given in input (Section 4.2), and a ‘quick’ but
discriminating classifier (Section 4.3). The hybrid solver computes the values of
the parameters, gives them to the classifier, which determines whether to use PER-
TUPLE or ALLSOL. Below, we describe the sample data, the problem parameters
and features used, and the classifiers built. We then discuss the evaluation of the
two resulting hybrid solvers on the benchmarks used to build the classifiers and
on randomly generated problems that were not part of the training data.

4.1 Data Used for Building the Classifiers
We drew the sample data from 1,616 instances from 61 benchmarks of the CSP
Solver Competition.1 Because the ultimate goal of this research endeavor is
to compute the minimal network of each cluster of a tree decomposition of a
CSP [Dechter, 2003], we generated a tree decomposition of each problem in-
stance, and considered each cluster in the tree decomposition as an independent
problem instance. The characteristics of the instances extracted from the bench-
marks and those used are shown in Table 1.

We computed the minimal network of all 65,894 instances extracted using
PERTUPLE and ALLSOL, and recorded the time taken by each algorithm. Nei-
ther algorithm consistently outperformed the other, but PERTUPLE was faster for
more instances than ALLSOL was (10,283 versus 3,791). We chose to ignore
all instances on which the execution of the two algorithms differed by less than
256 milliseconds, which we estimate to be, in our context, an insignificant time
difference. Typically, the ignored instances are ‘easily’ solved by both algorithms
or not solved by both. In this section, when we say ‘solved’ we mean computed the
minimal network within the time limit of 30 minutes. To avoid overshadowing the
differences between the two algorithms caused by the benchmark distribution, we
partitioned the 8,319 remaining instances into two sets. P is the set of instances

1http://www.cril.univ-artois.fr/CPAI08/
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Table 1: Summary of data used.
Original Data

Number of instances drawn from benchmarks 65,894
Number of instances solved by ALLSOL 32,702
Number of instances solved by PERTUPLE 37,379

Data Used in Study (|δtime| ≥ 256 msec)
Timeout per instance 30 minutes
Number of instances solved by ALLSOL: A 3,618
Number of instances solved by PERTUPLE: P 8,295
Number of instances in A \ P 24
Number of instances in P \ A 4,701
Total number of instances used: A ∪ P 8,319

Min Max Avg Median
Number of variables 4 145 20.40 15
Domain size 2 1001 85.16 20
Number of relations 2 947 63.35 35
Arity of relations 2 16 3.90 3
Number of tuples per relation 1 150,000 7,187.00 992

on which PERTUPLE was faster than ALLSOL by more than 256 milliseconds;
A is the set on which ALLSOL runs faster than PERTUPLE by more than 256
milliseconds.

The left-hand side of Table 2 reports the number of instances solved from each
set (A and P) by each algorithm (ALLSOL and PERTUPLE). The right-hand side
of the table reports the corresponding average CPU times in seconds. To compute
the average, we consider only the instances solved by both algorithms (i.e., 456
instances from A and 3,135 instance from P). On the instances solved by both

Table 2: Number of instances solved and the corresponding average times.
#Instances in solved by. . . Average CPU (sec)

ALLSOL PERTUPLE Both ALLSOL PERTUPLE

A 483 459 459 31.51 58.66
P 3,135 7,836 3,135 190.9 8.08

algorithms, ALLSOL is 46% faster than PERTUPLE on the instances in A, and
while PERTUPLE is 96% faster than ALLSOL on the instances in P . Incidentally,
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the average time for PERTUPLE is small (8.08 seconds) on the particular subset of
instances in P that were solved by ALLSOL (3,135). The average time of PER-
TUPLE on all the instances of P (8,295) is in fact much larger (76.22 seconds)
as reported in Table 4. Table 2 shows that ALLSOL and PERTUPLE clearly out-
perform each other in their respective ‘niche’ (here, the instance sets A and P
respectively). In practice, we need to determine from the outset which algorithm
to use, which motivates us to build a classifier with machine learning techniques.

4.2 Parameters and Features
The topology of the constraint network (e.g., degree of a variable) and the def-
initions of the constraints (e.g., tightness of a relation) heavily impact the per-
formance of the algorithms for solving CSPs (PERTUPLE) and counting their
solutions (ALLSOL). We suspect that the relative performance of ALLSOL and
PERTUPLE is also affected by the density of solutions in the space. Thus, we
considered the following CSP parameters:

1. κ is a known parameter to predict that an instance is at the phase transi-
tion [Gent et al., 1996]. It is defined for CSPs as κ = −

∑
R∈C log2(1−pR)∑

x∈X log2(domain(x))
,

where pR is the tightness of the constraint.

2. relLinkage is an approximate measure of how a ‘tuple at the overlap of
two relations’ is likely to appear in a solution. We propose to compute it as
follows. For every two relations Ri, Rj , let Vij = scope(Ri) ∩ scope(Rj).
∀Rk, scope(Rk) ⊇ Vij, x ∈ scope(Rk) \ Vij , relLinkage for every tuple
t ∈ πVij(Ri ./ Rj) is computed as

∏
Rk

|σt(Rk)|∏
x |domain(x)|

,

3. tupPerVvp is the sum of all tuples in which a given variable-value pair
vvp appears,

∑
Ri∈R |σvvp(Ri)|.

4. tupPerVvpNorm is the value of tupPerVvp normalized to the size of
each relation,

∑
Ri∈R

|σvvp(Ri)|
|Ri| .

5. tupPerVvpNormProd is similar to tupPerVvpNorm using the product
instead of the sum,

∏
Ri∈R

|σvvp(Ri)|
|Ri| .

6. relPerVar is the number of relations per variable v, |{Ri | v ∈ scope(Ri)}|,
which is its degree in the primal graph.
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For a given CSP instance, each parameter yields a set of numbers, which we com-
bine into a single value using different statistical aggregations to obtain the fol-
lowing 12 features for training our classifiers:

1. κ

2. log2(avg(relLinkage))

3. log2(stDev(relLinkage))

4. stDev(relLinkage)/avg(relLinkage)

5. stDev(tupPerVvp)/avg(tupPerVvp)

6. avg(tupPerVvpNorm)

7. stDev(tupPerVvpNorm)

8. stDev(tupPerVvpNormProd)

9. stDev(tupPerVvpNormProd)/avg(tupPerVvpNormProd)

10. avg(relPerVar)

11. stDev(relPerVar)

12. stDev(relPerVar)/avg(relPerVar)

We originally considered 34 combinations of CSP parameters (e.g., product of
domain sizes, relations sizes, the entropy of constraint definitions) and ways to
aggregate the corresponding values (e.g., sums and products, their ratios and log-
arithms, averages, and standard deviations). After constructing different decision
trees produced by the learning algorithms used (i.e., C4.5 and Random Forest, see
Section 4.3), the above-listed 12 features appeared constantly at the top levels of
the produced trees. It is commonly acknowledged by the machine learning com-
munity that the features appearing at the top levels of decision trees are likely the
most significant ones. Thus, we settled with this set of 12 features.
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4.3 Building the Classifiers
To build the classifier, we used ‘off-the-shelf’ learning algorithms, the sample
instances described in Section 4.1, the values of the set of features listed in Sec-
tion 4.2 on the sample data, and the CPU times for solving the sample instances
with both algorithms (i.e., PERTUPLE ALLSOL).

• Learning algorithms. We experimented with ten different learning algo-
rithms from the open-source data-mining tool Weka [Hall et al., 2009]. The
two algorithms that yielded the best results were J48 and RF, which are Java
implementations of C4.5 [Quinlan, 1993] and Random Forests [Breiman,
2001], respectively. In our experiments, we used the default parameters
for each algorithm (e.g., ten trees for RF). The advantage of C4.5 is that
it outputs a single decision tree, which when limited to around 20 nodes,
seemed to provide a good trade-off between classification precision and
‘transparency’ to a human user. We tuned the C4.5 algorithm to output
heavily pruned trees by reducing the pruning confidence to one percent.

• The feature sets. We evaluated two feature sets: the set of 12 features listed
in Section 4.2, and a subset of it consisting of the features #1, #4, #5 and #8.
The four features of the latter consistently appeared at the top three levels
of the decision trees that we constructed on ten different partitions of the
training set. Thus, they are likely the most significant ones.

• Classes. We classified the data into two classes: the first class is for the
instances on which PERTUPLE is faster than ALLSOL by more than 256
milliseconds, and the second class is for the instances on which ALLSOL is
faster than PERTUPLE by more than 256 milliseconds.

• Training data (T ). At the training stage, we used data from the partitions
A and P . We generated the training data, denoted by T , by including all
the instances of A and sampling a maximum of 30 instances from P for
every benchmark represented in it. To select the 30 instances from P , we
chose the 15 instances with the largest time difference between ALLSOL

and PERTUPLE, randomly selecting the rest from the remaining instances
in the benchmark. We sampled instances from P instead of including all of
them in order to balance and number of instances in each class. We balanced
the number of instances so that the classifier does not bias one class over the
other in its attempt to reduce the overall error rate.
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We evaluated various configurations of the learning algorithms according to the
transparency of classification process and the error rate. We consider the six con-
figurations listed in Table 3.

Table 3: Main learning algorithms and configurations tested.
Classifier Learning #Trees Avg. Setting #Features Avg.

Algorithm #Nodes Error
Rate

DT1 C4.5 1 27.20 Heavy pruning 12 0.07
DT2 C4.5 1 65.00 Default pruning 12 0.06
RF1 Random Forests 10 174.42 Default 12 0.05
DT3 C4.5 1 23.40 Heavy pruning 4 0.08
DT4 C4.5 1 45.80 Default pruning 4 0.05
RF2 Random Forests 10 166.78 Default 4 0.04

We partitioned the training set T described above into ten partitions, and cross-
validated each configuration by testing each partition on a classifier trained on
the other nine partitions. Only the decision trees produced by C4.5 with heavy
pruning were deemed to be transparent enough for readability. The number of
nodes and the error rates reported in Table 3 are the averages across all ten folds
of the cross-validation.

As for the classification error-rate, we performed a paired t-test and found no
statistically significant difference between the classifiers produced by C4.5, under
default pruning, using the set of 12 features and the set of four features (DT2
versus DT4). Also, we observed no statistically significant difference between the
classifiers produced by C4.5 using the 12 feature set with pruning and the default
pruning (DT1 and DT2).

However, we discovered that applying heavy pruning on C4.5 with the four
feature set increases the classification error, as well as changing from the 12 fea-
ture set to four feature set does, on the heavily pruned trees, with more than 98%
confidence. Moreover, we did not find any statistically significant difference be-
tween Random Forests and C4.5 for both four and 12 feature sets. Therefore, we
chose to use the set with 12 features for the rest of the analysis and for generating
the production classifier since it is human readable and performs as well or better
than the others.
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4.4 The Hybrid Solvers
We propose two hybrid solvers: SOLVERC4.5 and SOLVERRF based on each of the
two classifiers DT1 and RF1 of Table 3.

As described above, at the training stage, in order to avoid biasing the classifier
while exploiting all the data available, we partitioned T into ten partitions, and did
a cross-validation by testing each partition using the classifier trained on the other
nine partitions. Subsequently, in an experiment separate from the cross-validation,
we trained a ‘production classifier’ on all the instances in T , and used it to evaluate
the instances in P that were not included in T . Therefore, all the instances in A
and P are validated with unbiased classifiers. The decision tree of the production
classifier output by C4.5 is given in Figure 4.
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Yes 

No 

 #11≤3.18  No 

#1≤1.01  No 

 #6≤0.37   #11≤2.63  
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No 
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PERTUPLE ALLSOL 

ALLSOL 

PERTUPLE ALLSOL ALLSOL 

PERTUPLE ALLSOL 

ALLSOL 

ALLSOL 

Yes No 

Yes 

Yes 

Yes Yes 
ALLSOL 

Yes 

Figure 4: Decision tree of SOLVERC4.5.

Table 4 lists, to the left, the number of instances solved by each algorithm
(ALLSOL, PERTUPLE, SOLVERC4.5 and SOLVERRF ), as well as the number of
instances solved by all four algorithms. Because ALLSOL solves so few instances
from rows 2 and 3, the numbers of instances solved by all four solvers are signif-
icantly reduced (from around 8,000 down to around 3,000, that is less than half
the instances). When we next compute the average CPU times of each solver on
the instances computed by all four solvers (at the right of Table 4), we ignore
the impact of ALLSOL altogether in rows 2 and 3 in order to maintain a decent
number of instances on which to compute the averages (i.e., 7,771 and 8,230).
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Table 4: Comparing the performance of all four algorithms.
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1 A 483 459 477 479 459 459 (ideal) 31.51 58.66 39.87 36.11
2 P 3,135 7,836 7,784 7,785 3,135 7,771 - (ideal) 77.26 79.42 79.00
3 A ∪ P 3,618 8,295 8,261 8,264 3,594 8,230 - 76.22 77.21 76.60

On the instances solved by all algorithms, SOLVERRF is on average 38% faster
than PERTUPLE alone on the instances in partition A, and only 15% slower than
the ideal algorithm. On the instances in partition B, SOLVERC4.5 and SOLVERRF
solved more than twice the number of instances solved by ALLSOL, while being
slower than the ideal algorithm by less than 3%. The ideal algorithm is chosen by
the (non-existent) perfect solver that always knows which algorithm is faster. In
conclusion, we note that the performance of either of our hybrid algorithms are
comparable to that of the ideal situation.

The benchmark data used to build then validate our classifiers are rather struc-
tured data. One may rightfully worry that the features we selected, which attempt
to capture the characteristics of the structure of a CSP, and our classifiers trained
on structured data, may lose their ‘edge’ when used on ‘amorphous’ instances
such as randomly generated CSPs. For this reason, we tested our two hybrid
solvers SOLVER4.5 and SOLVERRF on three sets of random CSPs (model B) gen-
erated in a window around the phase transition. The hybrid solvers SOLVER4.5 and
SOLVERRF use the production classifiers trained on the benchmark data in set T ,
i.e. not trained on any instance from the three sets of random CSPs. This is also to
test how well the classifiers and solvers generalize to new CSP. The problem sets’
characteristics and the average times on the instances solved by both ALLSOL and
PERTUPLE are shown in Table 5. We notice that both hybrid solvers were able to
achieve times faster than both ALLSOL and PERTUPLE when taken individually,
and consequently outperform the algorithms that they are choosing from.

In Table 6, we compare the performance of our ‘production’ solvers SOLVERRF
and SOLVERC4.5 on the benchmark data as well as the randomly generated in-
stances, summarizing the following results:

• Fatal indicates the number of ‘fatal’ decisions corresponding to choosing
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Table 5: Randomly generated CSPs.
Set I Set II Set III

Number of variables 10 30 75
Domain size 10 6 5
Number of relations 100 75 120
Number of tuples per relation [100,900] [22,194] [12,112]
Constraint arity 3
Total number of instances 1000
Number of instances solved by ALLSOL 997 733 383
Number of instances solved by PERTUPLE 1,000 990 365
Number of instances solved by both 997 733 335

On the instances solved by both PERTUPLE and ALLSOL

Average time of ALLSOL in sec. 134.87 88.37 172.24
Average time of PERTUPLE in sec. 119.79 131.68 302.90
Average time of SOLVERRF in sec. 58.06 88.37 172.24
Average time of SOLVERC4.5 in sec. 58.25 85.53 172.24

the wrong solver (ALLSOL or PERTUPLE), that is, choosing a solver that
does not complete within the time threshold over another that does.

• Saved indicates the number of correct decisions corresponding to choosing
a solver that does complete within the time threshold over another that does
not. The number instances ‘saved’ justify the efforts of this research. While
the large numbers of ‘saved’ instances in the benchmark data can be justified
by the structure of the CSPs and the fact that the classifiers were trained on
similar data, the large numbers of ‘saved’ data on Sets II and III justifies our
endeavor by demonstrating how well our system generalizes to new types
of CSPs.

• Average savings indicates how much time on average is saved per instance
by the hybrid solver on the instances solved by both ALLSOL and PERTU-
PLE. Clearly both hybrid solvers yielded positive savings in all cases.

• Classification error indicates the rate of bad choices made by each hybrid
solver. A bad choice is when the chosen solver does not solve and the other
does, or the chosen solver is slower than the other. The highest error rate
is in Set II, which has resulted in high number of fatal instances. In this
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set we observe the biggest difference between SOLVERC4.5 and SOLVERRF ,
and the former seems to be better than the latter.

Table 6: Comparing the two new hybrid solvers.
#Instances Average savings Classification

Fatal Saved (sec) error
Benchmarks (8,319 instances)

SOLVERRF 55 4,670 154.26 0.04
SOLVERC4.5 58 4,667 151.46 0.04

Set I
SOLVERRF 0 3 138.53 0.00
SOLVERC4.5 0 3 138.15 0.04

Set II
SOLVERRF 188 69 43.30 0.40
SOLVERC4.5 65 192 48.97 0.26

Set III
SOLVERRF 3 75 130.66 0.08
SOLVERC4.5 3 75 130.66 0.08

5 Related Work
The “algorithm selection problem” was discussed at length by Rice [Rice, 1976]
and has recently witnessed a surge of successful implementations under the label
of “algorithm portfolio.” An excellent historical review of the topic can be found
by Xu et al. [Xu et al., 2008]. Those authors introduced SATzilla, a wildly suc-
cessful portfolio algorithm for solving SAT problems. SATzilla uses 48 features,
computed from 16 parameters of SAT problems, to choose between seven SAT
solvers. We use 12 attributes, computed from five CSP parameters, to choose be-
tween two algorithms. Our choice of attributes is sufficient for our task, which is
simpler than SATzilla’s. Importantly, the time for extracting and computing the
features in our case is negligible compared to the time taken by computing the
minimal network using either algorithm.
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6 Conclusions and Future Work
In this paper we proposed two search-based algorithms for computing the min-
imal network of a CSP. We identified CSP parameters that can be computed in
polynomial time to characterize the difficulty of a CSP instance and the degree of
interaction among the various components of the instance. We used those parame-
ters to build two classifiers that predict the appropriate algorithm given a problem
instance. We evaluated our solvers and demonstrated their benefits on benchmark
and on randomly generated problems, demonstrating their good performance on
problems unrelated to the ones on which the classifiers were built. In most cases
that we studied, we achieved classifier accuracy of above 90%, which allowed us
realize average time savings of more than 100 seconds.

For future work, we plan to replace the algorithm for enforcing the relational
consistency property R(∗,m)C introduced in [Karakashian et al., 2010] with one
of the hybrid solvers. We also plan to predict if both algorithms are not suitable to
solve an instance within the time limit. The choice of using none is useful when
we are computing the minimal network of a CSP decomposed into clusters, where
we solve each cluster separately and then propagate the effects to one another.
If we can predict that a cluster is too expensive to solve, we can delay it, solve
the other clusters, and then propagate the effects of the neighbors to the difficult
cluster. The propagation may likely simplify its complexity to the extent in which
one of the algorithms may be suitable to solve it.
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