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Abstract

Consistency properties and algorithms for achieving them are at the heart
of the success of Constraint Programming. For non-binary Constraint Satis-
faction Problems (CSPs), the relational-consistency property R(i,j)C of [Dechter
and van Beek 1997] may add new non-binary constraints to the constraint
network, thus modifying its topology. The domain-filteringproperties of [Bessière
et al. 2008] filter the domains of the variables and leave the constraints un-
changed but are restricted to combinations of two constraints. We restate the
property ofm-wise consistency [Gyssens 1986; Jégou 1993] as relational
(∗,m)-consistency, R(∗,m)C. R(∗,m)C ensures that any tuple in a relation is
consistent in every combination ofm constraints. The main contributions
of this document are the design of an algorithm for enforcingR(∗,m)C and
the evaluation of its effectiveness in a search procedure solving CSPs. This
document thus establishes the usefulness in practice of higher consistency
levels in non-binary CSPs.
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1 Introduction

Local consistency techniques are the heart of the success ofConstraint Program-
ming and perhaps best distinguish this field from other scientific disciplines that
study the same combinatorial problems. In continuation of the properties and al-
gorithms introduced in [Waltz 1975; Montanari 1974; Mackworth 1977; Freuder
1985], Dechter and van Beek [1997] defined the concept ofrelational consistency
to address the consistency properties of non-binary Constraint Satisfaction Prob-
lems (CSPs). They defined the consistency property of relationalm-consistency
(RmC), involving every combination ofm constraints in the CSP, and the more
relaxed property of relational (i, m)-consistency (R(i, m)C), involving every com-
bination ofi variables. In practice, enforcing RmC or R(i, m)C may require the
generation ofO(ni) new non-binary constraints, wheren is the number of vari-
ables in the CSP.

Another research direction focused on the effect of consistency properties
on the domains of the variables [Mohr and Masini 1988; Bessi`ereet al. 2005;
Lhomme and Régin 2005; Bessièreet al. 2008; Cheng and Yap 2004].Domain
filtering has the advantage of reducing the search space explored for solving the
CSP. While most work considered constraintsindividually (GAC), Bessière et al.
[2008] studied the effects of combinations of pairs of constraints.

In this document we introduce a special form of relational consistency, which
we call R(∗,m)C and which operates on every combination ofm constraints. Un-
like RmC and R(i, m)C, R(∗,m)C doesnot add new constraints to the CSP and,
thus, keeps the topology and width of the network unchanged.Instead, it oper-
ates on the relations defining the constraints, filtering them to remove inconsistent
tuples. In comparison to R(i,m)C, the ‘∗’ in R(∗,m)C is used to indicate that
the property affects only ‘those variables that are in the scope of an existing con-
straint, whatever the size of the scope is.’ More formally, we define R(∗,m)C to
ensure that every tuple in a relation can be extended to a partial solution over the
variables in every set ofm constraints that is consistent with those constraints.
R(∗,m)C is semantically equivalent to relationalm-wise consistency studied in
[Gyssens 1986; Jégou 1993]1. However, neither paper evaluated or even proposed
practical algorithms for implementing relationalm-wise consistency. We choose
to use the notation R(∗,m)C instead of the notationm-wise consistency simply
and purely for the sake of situating this consistency property in the context of the

1[Janssenet al. 1989] present relational pairwise consistency as requiring that the ‘overlap’
of every pair of constraints can be ‘extended’ to the constraints in the pair. However, it is easy to
prove that relational pairwise consistency and R(∗,2)C are equivalent.
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terminology R(i, m)C familiar to the CP community. The contributions of our
document are as follows:

1. The (re-)definition of a new (parametric) relational consistency property,
R(∗,m)C, that does not modify the topology of the constraint network.

2. The design of an algorithm, along with its data structures, for enforcing
R(∗,m)C.

3. Similarly to [Bessièreet al. 2008], the integration of our algorithm in
a backtrack search procedure with full lookahead for solving non-binary
CSPs.

4. The evaluation of the cost (in terms of CPU) and effectiveness (in terms
nodes visited as a measure of pruning power) of the resultingsearch proce-
dure on randomly generated and benchmark problems.

We also identify ways to improve our algorithm in the future.
In summary, we establish in this document that higher consistency levels are

feasible and advantageous in practice.
This document is structured as follows. Section 2 reviews the definition of

non-binary CSPs. Section 3 defines R(∗,m)C. Section 4 describes our algorithm
for enforcing R(∗,m)C. Section 5 discusses our experimental results. Section 6
discusses future work and concludes this report.

2 Basic Definitions

A Constraint Satisfaction Problem (CSP) is defined by the tuple (V,D, C) where
V is a set of variables,D set of domains, andC set of constraints. Each variable
Vi ∈ V has a finite domainDi ∈ D, and is constrained by a subset of the con-
straints inC. For a given constraintCi ∈ C, vars(Ci) denotes the scope of the
constraint. Every constraintCi is associated with a relationRi, which gives the
allowed combinations of values for the variables invars(Ci). Such a combination
of values, said to be consistent withCi, is a tupleτ ∈ Ri of size|vars(Ci)|. In this
report, we use constraints (Ci) and relations (Ri) interchangeably. A solution for
the CSP is a tuple made of one value per variable such that all the constraints are
satisfied, i.e. the projection of the solution tuple on the scope of each constraint
Ci is consistent withRi.
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In this report, we denote by acombinationϕ of m constraintsa set ofm con-
straints such that primal graph induced by the constraints in the set is connected.
Note that the primal graph of a non-binary CSP is the graph whose nodes are the
variables in the scope of the constraints and whose edges connect every two vari-
ables that appear in the scope of one or more constraints [Dechter 2003]. Further,
we denote byζ is the set of all possible combinationsϕ of sizem in a given CSP.
Finally,π and1 denote the relational operators project and join.

3 Definition of R(∗,m)C

Although the definition of R(∗,m)C is intuitive and obvious, we state it below
using the definition format of R(i,m)C of [Dechter 2003]:

Definition 3.1 A set ofm relationsR = {R1, · · · , Rm} is said to be R(∗,m)C
iff every tuple in each relationRi ∈ R can be extended to the variables in
⋃

Rj∈R\Ri
vars(Rj) in an assignment that satisfies all the relations inR simul-

taneously. A network is R(∗,m)C iff every set ofm relations is R(∗,m)C.

R(∗,m)C can thus be enforced by filtering the existing relations using the fol-
lowing operation on each combination ofm relations{R1, · · · , Rm} and without
introducing to the CSP any relation whose scope was not already constrained in
the original CSP:

∀Ri ∈ {R1, · · · , Rm}, Ri ⊆ πvars(Ri)(1
m
j=1 Rj) (1)

Expression (1) gives us an obvious algorithm for enforcing R(∗,m)C. Even if each
join is computed only once and then its tuples filtered iteratively, the space require-
ment of such an operation is too prohibitive to be of any usefulness in practice use.

Once R(∗,m)C is enforced on a constraint network, variable domains cansub-
sequently be filtered (i.e., domain filtering) by simple projection of the filtered
relations on the domains of the variables. Unlike GAC, we do not need to loop
between the filtering of the domains and that of the the constraints because any
value for a variable that appears in any relation in the network, necessarily appears
in all of them. R(∗,m)C is related to other consistency properties as follows:

1. As stated in the introduction, R(∗,m)C is equivalent to relationalm-wise
consistency proposed in the area of Relational Databases [Gyssens 1986;
Jégou 1993].
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2. R(∗,m)C is obviously equivalent to (1,m− 1)-consistency on the dual CSP.

3. If all pairs of relations in the CSP overlap on exactly one variable, then,
R(∗,2)C and GAC have the same ‘domain-filtering power’ (proof issimilar
to that of Theorem 2 of [Bessièreet al. 2008]). Furthermore, on a nor-
malized binary CSP, where the constraints on the same pair ofvariables are
combined, R(∗,2)C and AC have the domain-filtering power (similarly to
what is stated in [Bessièreet al. 2008]). Clearly, R(∗,2)C cannot be bene-
ficial and should not be used in those two situations, as it would only incur
computational overhead.

Below we discuss the relationship between relationalm-consistency (RmC) of
[Dechter and van Beek 1997] and R(∗,m)C. For a given set{R1, · · · , Rm} of m
relations RmC requires the projection of the joined relations on all subsets of size
|
⋃m

i=1 vars(Ri)|−1 of A ⊆
⋃m

i=1 vars(Ri). Hence, every subset introduces a new
constraint, except those that have the same scope of existing constraints. Because
R(∗,m)C projects the join on the scope of each of its original relations, no new
constraints are added. Although R(∗,m)C has the favorable property that no new
constraints are introduced, it is weaker, in terms pruning power and consistency,
than relationalm-consistency2.

Theorem 3.1 R(∗,m)C is a weaker consistency, in terms of pruning power and
consistency, than relationalm-consistency

Proof: Consider a CSPP, and letPrmc andPr∗mc be the same problem after
enforcing RmC and R(∗,m)C onP, respectively. We consider a partial assignment
τ over some of the variables ofP, vars(τ), that is consistent with the constraints
of Prmc and prove that it must necessarily be consistent with the constraints in
Pr∗mc. Let’s assume thatτ is not consistent with the constraints inPr∗mc. Thus,
there must be at least one relationRx∗ inPr∗mc such thatτ 6∈ πvars(τ)(Rx∗). Given
the definitions of RmC and R(∗,m)C, there must exist one relation inPrmc (which
adds many new constraints to the problem) that has the same scope of a relation in
Pr∗mc (which does not add new constraints to the problem). Thus,Prmc must have
a relationRx such thatvar(Rx∗)=var(Rx). Given thatτ is a consistent partial
solution inPrmc, thenτ ∈ πvars(τ)(Rx). τ ∈ πvars(τ)(Rx) andτ 6∈ πvars(τ)(Rx∗)
is impossible because joining more relations ofPrmc and projecting them on the

2Note that relationalm-consistency of of [Dechter and van Beek 1997] and hyper-m-
consistency of [Jégou 1993] are most likely equivalent, the proof being outside the scope of this
document.
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same scopevars(τ) cannot possibly introduce more tuples. Thus, we reach a
contradiction and R(∗,m)C is not a stronger consistency than RmC.

Below we provide an example that shows that RmC can be stronger than
R(∗,m)C. Let P be the following Boolean CSP with the four variablesV1, V2,
V3, andV4 and the four constraints:

CV1,V2
= CV2,V3

= CV3,V4
= CV4,V1

= {〈0, 0〉, 〈1, 1〉} (2)

LetPrmc andPr∗mc be the problems after enforcing RmC and R(∗,m)C onP, re-
spectively. The partial assignment〈(V1, 0), (V3, 1)〉 is consistent inPr∗mc, because
it is consistent with the the constraints inPr∗mc, which are identical to the ones
P for all values ofm. However, this partial assignment violates the constraint
CV1,V3

= {〈0, 0〉, 〈1, 1〉} in Prmc. In this case, RmC is a stronger consistency than
R(∗,m)C.

In conclusion, R(∗,m)C is a weaker consistency than RmC.
�

Corollary 3.1 R(∗,m)C is sound and does not eliminate any solution.

Because R(∗,m)C is a weaker consistency than relationalm-consistency, its
soundness follows from the soundness of relationalm-consistency.

4 An Algorithm for R( ∗,m)C

In this section we describe our algorithm for enforcing the R(∗,m)C property on a
CSP. The algorithm has three main components: initializingthe constraint queue
(Algorithm 1), processing the constraint queue (Algorithm2), and finding and
maintaining the support structure (FINDSUPPORT). This last function is used in
both Algorithm 1 and Algorithm 2. Enforcing R(∗,m)C is achieved by calling
Algorithm 2 on queue returned by Algorithm 1.

4.1 The set of combinations ofm constraints

Given a CSP problem, we first generate the setζ of all combinationsϕi of m
constraints, such that the graph induced byϕi is a connected graph. There is
potentially a factorial number of such combinations in a constraint network. We
have developed an algorithm, not reported here for lack of space, that computes all
the connected combinations ofm constraints in CSP while exploiting the topology
of the dual graph of the CSP. That algorithm generates every connected component
once while not generating any non-connected component.
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4.2 TheLast data structure

We achieve the R(∗,m)C property when every tupleτ of every relationRi in every
combinationϕ of m relations can be ‘extended’ successfully to all the(m − 1)
remaining relations inϕ, that is all tuples have the same values for the common
variables. We say that the set of(m− 1) tuples that ‘extends’τ to the constraints
in ϕ is the ‘support’ ofRi’s τ in ϕ. When, in at least one combination, no support
can be found for a tuple, then the tuple is deleted. In order toavoid repeatedly
rediscovering this support when enforcing the R(∗,m)C property on the CSP, and
similarly to [Bessièreet al. 2005; 2008], we use a data structureLast((τ, Ri), ϕ),
which is a list of pointers to the tuples supportingτ ∈ Ri in the(m−1) remaining
constraints inϕ. This list is initialized tonil. When a support is first found for
τ , this list points to the(m − 1) supporting tuples. The support isvalid as long
as none of(m − 1) supporting tuples is deleted. The algorithms below focus on
identifying, using, and updating such supports.

Note that the data structureLast((τ, Ri), ϕ) is used to remember the last cur-
rent solution that supportsτ ∈ Ri in the combinationϕ. When any of the sup-
porting tuples is deleted, the search for a new support is restarted from the longest
consistent partial solution. Thus,Last() plays a different role than the data struc-
ture with the same name in GAC/AC-2001 algorithms. In fact the role ofLast in
GAC/AC-2001 algorithms is fulfilled by our data structureIndTreeintroduced in
Section 4.6.

4.3 Initializing the constraints queue

Algorithm 1 considers each tupleτ in each relationR in each combination of
constraintsϕ ∈ ζ , and tries to extend the tuple to the remaining relations in the
combinationϕ using FINDSUPPORT. If no support is found forτ , then it is deleted
from R. (As we explain in Section 4.6, deleting a tuple is achieved by flagging
it as such in the table that stores the tuples of the relation.) Further, the relations
that appear in any combinationϕ′ of m relations containingR and such thatϕ′ 6=ϕ
are added to the constraint queue as their tuples may be supported by the deleted
tupleτ .

4.4 Processing the constraint queue

The initialization phase deletes some tuples from the constraints, but does not
fully enforce the R(∗,m)C property. Some tuples deleted by Algorithm 1 could

9



Algorithm 1 : INITIALIZE -Q, initializes the queue.

Input : ζ
Output : Q: queue of constraints
foreachϕ ∈ ζ do1

foreachR ∈ ϕ do2

deleted← false3

foreach τ ∈ R do4

support←FINDSUPPORT((τ, R), ϕ)5

if support = false then6

DELETE(τ)7

if R = ∅ then return false8

deleted← true9

end10

end11

if deleted then foreachϕ′ ∈ (ζ \ {ϕ}) do12

if R ∈ ϕ′ then Q ← Q∪ (ϕ′ \ {R})13

end14

end15

end16

return Q17

have been in the support of some other tuples. Hence some deletions may leave
some tuples without any support. Therefore, we should seek new supports for
these tuples, and, if none is found, we should delete them. The procedure PRO-
CESSQUEUE given in Algorithm 2 revises every relation in the queue to ensure
that all their tuples are properly supported in each combination of m constraints
where the relation appears.

4.5 Finding a support

The predicate function VALID SUPPORT((τ, R), ϕ) examines the data structure
Last((τ, R), ϕ) to determine whether or not there is a ‘valid’ support forτ ∈ R in
ϕ. A valid support exists when the list of pointers is not emptyand when none of
them − 1 tuples supportingτ ∈ R has been flagged ‘deleted.’ If a valid support
is found, then the predicate returnstrue, otherwise it returnsfalse.

In order to find a support, of(m − 1) tuples, for a tupleτ of a relationR

10



Algorithm 2 : PROCESSQUEUE, delete tuples that have lost their support.

Input : Q,ζ
Output : true is the problem is R(∗,m)C, false otherwise
while Q 6= ∅ do1

R← POP(Q)2

deleted← false3

foreachϕ s.t.R ∈ ϕ do4

foreach τ ∈ R do5

support←FINDSUPPORT((τ, R), ϕ)6

if support = false then7

DELETE(τ)8

if R = ∅ then return false9

deleted← true10

end11

end12

end13

if deleted then foreachϕ′ ∈ (ζ \ ϕ) do14

if R ∈ ϕ′ then Q ← Q∪ (ϕ′ \ {R})15

end16

end17

return true18

in a combinationϕ, we conduct a depth first search with partial look-ahead (à
la forward checking) on the dual CSP induced by them relations inϕ and in
which the assignmentR ← τ is made. A solution to that dual CSP provides a
support forτ ∈ R, which is used to initialize or updateLast((τ, Ri), ϕ). One
important functionality to implement the look ahead is the ability to determine
that a tupleτi ∈ Ri can be matched with some tuple inRj , whereRi andRj are
two ‘variables’ in the dual CSP. In Section 4.6, we propose anindex tree data-
structure,IndTree, to facilitate matching the tupleτi in Rj .

One could further improve the runtime performance by updating the support
of each tupleτi in Last((τ, Ri), ϕ) with the set of tuples returned by the search
procedure, from whichτi is removed and to whichτ is added.
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Algorithm 3 : FINDSUPPORT, finds a support for a tuple.

Input : (τ, Ri), ϕ
if VALID SUPPORT((τ, R),ϕ) then return true else1

Last((τ, Ri), ϕ)← SEARCH(ϕ, Ri ← τ )2

end3

return Last((τ, Ri), ϕ)4

4.6 Matching a tuple in a relation

We say thatτi ∈ Ri is matched inRj if we can find a non-deleted tupleτj in Rj

such that the variables invars(Ri) ∩ vars(Rj) have the same assignments inτi

andτj . The performance of matching (or finding a support) for a tuple τi ∈ Ri

in another relationRj (wherevars(Ri) ∩ vars(Rj) 6= ∅) is important in practice.
Below, we introduce a new ‘index data-structure’ to facilitate this operation.

We assume that the relations are implemented as tables of consistent tuples
(i.e., supports) and that the order of the tuples is fixed. We also assume that
each table includes a columndel to indicate that the tuple is deleted (1) or not
(0). For each relationRx and for each subset of the scope ofRx, scopeo, for
whichRx overlaps with another relation in the problem, we build a tree structure
IndTree(scopeo,Rx), wherescopeo is lexicographically sorted, as follows. The
root of the tree is a dummy node. Each level in the tree corresponds to a variable in
scopeo following the lexicographic order. Each node in a given level corresponds
to a value that the variable at that level has in the relation.All the nodes at level 1
are connected to the root node. At any given level, a node is connected to a node
at the preceding leveliff the two corresponding variable-value pairs appear in a
tuple in the relationRx. Thus, we have a one-to-one correspondence between
a path in the tree and the projection of a tuple inRx on scopeo. Finally, each
leaf is annotated with a list of pointers to the originating tuples inRx. At the
construction stage, those pointers reflect the order of the tuples in the relation.
Figure 1 illustrates such a structure. For a CSP withe non-binary constraints and
maximal constraint arityk, we have a maximum ofO(e2) such structures. Each
structure hasO(d(k−1)) nodes and takesO(d(k−1)) effort to build (i.e., linear in
the number of tuples inRx).

In order to locate a support for a given tupleτ in a relationRx, we traverse the
treeIndTree(scopeo,Rx), with scopeo= vars(τ) ∩ vars(Rx), from the root down
to a leaf following the nodes corresponding to the values inπscopeo

(τ). If, at any
level, no tree node can be found with the corresponding valuein τ , we conclude
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Figure 1: Example of IndTree(scopeo,Rx) where vars(Rx)={a,b,c,d} and
scopeo={a,b,c}.

thatτ does not have a support inRx. If we reach a leaf, the annotation at the leaf
gives a list of pointers to the tuples inRx that match withτ .

We implemented an additional (optional) feature for the annotations. Every
time a tuple is deleted from a relation, all the annotations where it appears are
accessed, and the corresponding pointers are moved to the tail of the annotation
list. In this context, whenever the first pointer in an annotation points to a deleted
tuple, it becomes obvious that no other tuple in the annotation can be ‘alive’ and
finding a support forτ in Rx returns failure. This optional feature has showed
improvements in some special instances in our experiments in Section 5. We refer
to this feature asindex updating. Note that when index updating is enabled, our
data structure directly access the consistent tuple alive more efficiently than the
data structureLastof in GAC/AC-2001 algorithms [Bessièreet al. 2005].

4.7 Complexity Analysis

The time complexity of our algorithm is dominated by the PROCESSQUEUE,
hence we omit the initialization phase from the analysis. Weassume uniform
domain sized for all variables, uniform arityk for all constraints, and uniform
number of tuplest in each constraint. We denote bye the number of constraints
(e = |C|), and byδ the number of combinations of constraints (δ=|ζ |). The num-
ber of combinations is bounded by above by

(

e

m

)

, but this bound is reached only
for very dense problems (complete graphs). In practice, thenumber of combi-
nations is much less than this upper bound, therefore we useδ. As a reminder,
our algorithm for generating all connected combinations ofm constraints exploits
the structure of the dual graph and doesnot generate combinations that are not
connected, thus, the upper limit.
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Algorithm 2 has three nested loops: the first loop iterates over all the relations
in the queue; the second loop iterates over each combinationwhere a relation
appears; and the third loop iterates over each tuple in the relation. The innermost
loop iteratesO(t) times, and the middle loop at mostδ times. As for the outermost
loop, every time a tuple is deleted, at mostO(e) relations are queued in Line 15 of
Algorithm 2. Since the condition in Line 14 is satisfied at most once for any tuple
in a relation, and since there aret×c tuples, then the loop in Line 1 of Algorithm 2
iterates at mostO(t · e) times.

When FINDSUPPORT is called for a tuple in Line 6 of Algorithm 2 and if the
tuple has not lost its support, then it costs onlyO(m) to check the existence of a
valid support in Line 1 of Algorithm 3. Letβ be the cost of FINDSUPPORTand
α be the number of times FINDSUPPORT is called in the case when the tuple has
lost its support. Multiplying the costs of the nested loops we get:

O(t2e2δm + αβ) (3)

When a tuple does not have a support, Line 2 of Algorithm 3 is executed. Finding
a support for a tuple is finding a matching tuple from each of them-1 constraints
in the combination. The worst-case time complexity of this operation isO(tm−1).
Using the index-tree structure has the same complexity, because deleted tuples
must be discarded. However, in practice, the index-tree structure exploits the
selectivity of the relations and demonstrates much improved performance. As the
arity of the relations increases, the selectivity of the relations also increases, and
we observe better performance of our algorithm for problemswith high constraint
arity in the experiments (see Section 5). Therefore,β = O(tm−1).

The number of times a tupleτ can lose a support is bounded by the number
of tuples that can participate in any support forτ . There arem − 1 constraints
in a combination that make the support for a givenτ , and each hast constraints.
Hence the number of timesτ loses support isα = O(tm). Substitutingα andβ
in Expression (3) we get:O(t2e2δm + mtm).

The space complexity of the algorithm is dominated by the space requirement
for the indexes constructed on the constraints. The space complexity of each index
isO(t), that is the number of tuples in the relation, since there is apointer to each
tuple in the constraint. The number of nodes in the tree can beat mostd× scopeo.
There areO(e) index trees, therefore the space complexity is:O(e · t).

14



4.8 Integration with backtrack search

Our backtrack search mechanism for non-binary CSPs implements a full looka-
head schema that maintains R(∗,m)C. The algorithm proceeds by assigning a
valuex to variableVi taken from its domain, it then removes from all the rela-
tionsRi such thatVi ∈ vars(Ri) the tuples that do not havex for Vi. Then, each
relationRi that has lost any tuples is processed as follows. For every combination
ϕ such thatRi ∈ ϕ, every relationR′ ∈ ϕ, R′ 6= Ri is added to the constraint
queue. Then the queue is passed to Algorithm 2 to propagate the effect of those
deletions. Finally, all updated relations are projected onthe variables’ domains
for domain filtering.

5 Experimental Results

Our approach was motivated by an online tool for playing Minesweeper3 where
the puzzle is modeled as a CSP and various propagation algorithms are developed
to support the user in solving the puzzle [Bayeret al. 2006]. We have used this
puzzle as a tool to ‘demystify’ Constraint Programming to the general public and
to illustrate to Computer Science students the usefulness of consistency properties
and the operation of propagation algorithms.

5.1 Experimental Setup

We evaluated our algorithm on several benchmark problems4 and randomly gen-
erated instances using the Model B generator of [Stergiou 2009]. Regarding the
choice of benchmarks, Table 5.1, we make the following comments:

• The Renault benchmarks are the hardest used in the literature. We solve 46
out of 50 instances. Prior publications reported only 27 solved instances.

• Positive table constraints benchmarks have very large tables.

• Boolean benchmarks were chosen because the initial inspiration for our re-
search was Minesweeper.

3http://minesweeper.unl.edu
4Renault configuration, Positive Table Constraints, and Boolean CSPs all taken from

http://www.cril.univ-artois.fr/ lecoutre/research/benchmarks
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• Random instances were chosen to compare the performance of the algo-
rithms with increasing arity.

All benchmarks are hard, with large constraint arity and very large relations.

Table 1:Benchmark problems.

Name |V| Domain size |C| Arity Number of tuples

Renault [108, 111] [2, 42] [147, 159] [2, 10] [3, 48721]
rand-8-20-5 20 5 18 8 [77512, 78726]

rand-10-20-10 20 10 5 10 10,000
aim-50 50 2 [75, 279] [2, 3] [2,7]
aim-100 100 2 [155, 562] [2, 3] [2,7]
aim-200 200 2 [312, 1157] [2, 3] [2,7]

Random, Model B 20 10 5 [5, 12] 10000

All experiments were executed on a 2.4GHz Quad-Core AMD Opteron ma-
chine with 32GB of memory. Below, we discuss the performanceof solving
the CSPs with backtrack search while maintaining the properties GAC, maxR-
PWC [Bessièreet al. 2008], and R(∗,m)C in a full-lookahead schema during
search. As a reminder:

Definition 5.1 (Max Restricted Pairwise Consistency [Bessière et al. 2008]) A
non-binary CSP is Max Restricted Pairwise Consistent (maxRPWC) iff∀Vi ∈ V
and∀x ∈ DVi

, ∀Cj ∈ C whereVi ∈ vars(Cj), ∃τ ∈ Cj such thatπVi
(τ) = a,

τ is valid and∀Cl ∈ C (Cl 6= Cj), s.t.vars(Ci) ∩ vars(Cl) 6= ∅, ∃τ ′ ∈ Cl, s.t.
πvars(Cj )∩vars(Cl)(τ) = πvars(Cj )∩vars(Cl)(τ

′) andτ ′ is valid. In this case,τ ′ is said
to be pairwise-support ofτ .

We implemented GAC2001/3.1 [Bessièreet al. 2005], maxRPWC-1 [Bessière
et al. 2008], and our algorithms R(∗,m)C and R(∗,m)Ci, respectively without and
with the index updating scheme described in Section 4.6. We use dynamic variable
ordering with thedom/deg ordering heuristic (with static degree). To measure the
performance of the search, we report the CPU time in seconds and the number of
nodes visited (#NV) for finding the first solution.
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5.2 Renault Benchmarks

Our first experiment compared GAC, maxRPWC, R(∗,m)C, and R(∗,m)Ci on the
Renault configuration problems. The set has 50 CSP instancesthat have between
108 and 111 variables, 147 and 159 constraints, largest domain size 42, and max-
imum arity of 10. We set the time limit to 20 minutes. The results are shown in
Table 2. ‘Completed’ gives the number of instances solved within 20 minutes.
Nodes visited (#NV) and CPU time (Time) in seconds are average over those 18
instances that were completed by all of the algorithms. The maximum time is
the largest time taken by an algorithm for the 18 instances completed by all algo-
rithms. ‘Fastest’ gives the number of times a given algorithm finished first among
the four tested. As it can be seen from the results, R(*,2)C significantly improves

Table 2:Results on the Renault benchmark.

Algorithm #NV Time Maximum time Completed Fastest
GAC 300,195.33 61.63 560.16 21 19

maxRPWC 1,140.61118.01 253.24 29 0
R(*,2)C 100.28 11.60 15.85 46 28
R(*,2)Ci 100.28 16.96 29.43 46 0

the performance for solving the 18 instances solved by all algorithms and are able
to solve 46 out of the 50 instances of this difficult benchmark.

R(∗,2)C’s improved performance with respect to maxRPWC’s is best explained
by considering the number of nodes visited. R(∗,2)C did more filtering than
maxRPWC, which allowed it to solve most of the problems almost backtrack
free. Both R(∗,2)C and maxRPWC consider combinations of two constraints,
and they only differ in that R(∗,2)C actually tightens the constraints. We conclude
that a slightly larger investment in the pruning effort is rewarded by a significant
reduction of the exponential search effort, thus making it possible to solve more
problems within the same time limit.

5.3 Positive Table Constraints

Our next experiment was the ‘Positive Table Constraints’ benchmark, which has
two sets of problems. Here, we set the time limit to three hours. Table 3 shows
the results on the first set, which has 20 unsatisfiable instances of 20 variables,
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domain size 10, with 5 constraints of arity 10. Table 4 shows the results on the

Table 3:Results on the Positive Table Constraintsrand-8-20-5 (all unsatisfiable).

Algorithm #NV Time Maximum time Completed Fastest
GAC 210.10 8.19 11.55 20 0

maxRPWC 0.00 1.70 4.51 20 0
R(*,2)C 0.00 0.07 0.10 20 20
R(*,2)Ci 0.00 0.09 0.13 20 0

second set, which has 20 satisfiable instances, of 20 variables, domain size 5, with
18 constraints, and arity 8. The number of nodes visited (#NV) and CPU time
(Time) in seconds are averaged over the 20 instances in Table3, and over the
instances completed by both GAC and R(∗,2)C in Table 4. ‘Maximum time’ is
the largest time spent on any instance by an algorithm. ‘Fastest’ gives the number
of times a given algorithm finished first among the four tested. Empty cells in the
tables below indicate that the experiment did not complete in the allocated time
limit.

Table 4:Results of the Positive Table Constraintsrand-10-20-10 (all satisfiable).

Algorithm #NV Time Maximum time Completed Fastest
GAC 60,273.273,956.59 10,072.60 15 2

maxRPWC - - - 0 0
R(*,2)C 1,552.112,901.71 7,210.45 18 2
R(*,2)Ci 1,552.112,161.12 7,756.12 18 14

Both R(∗,2)C and maxRPWC solved the instances in the first set in a backtrack-
free manner. R(∗,2)C was faster than maxRPWC because of the huge size of the
relations in the problem instances. R(∗,2)C took advantage of the selectivity of the
tuples to tighten the constrains and simplify the problem. The same phenomenon
appears to a larger extent in the second set. This set consists of looser instances,
hence backtracking is inevitable. Moreover, it has large relations (about 70,000
tuples) with high constraint arity (8). The high arity induces a high selectivity
among the tuples, which is exploited by R(∗,2)C. R(∗,2)C deletes tuples, hence
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simplifying the problem. As a consequence, although R(∗,2)C visited about 1,500
nodes, it was visiting them with smaller relations.

5.4 Dimacs Benchmarks

Table 5.4 shows the results of the experiment on Boolean CSPsfrom the Di-
macs benchmarks:aim-50 with 50 variables,aim-100 with 100 variables,
andaim-200 with 200 variables. Each problem class is divided into subclasses
according to the average number of constraints. We report, for each subclass,
the number of instances, number of variables, number of constraints, percentage
of the instances solvable, the average time in seconds, average number of nodes
visited and the number of instances completed. Note that theaverages for time
and nodes visited exclude instances that were not completedby any of the com-
pared algorithms. If an algorithm did not complete any of theinstances, then it is
not a compared algorithm in that subclass. If no instance in asubclass was com-
pleted by all of the compared algorithms, then we do not report the average time
and nodes visited. The last row shows the total number of instances completed.
Each problem was ran with a time limit of one hour, and not all instances were
completed within the time limit.

Table 5:Results on Dimacs benchmarksaim-50, aim-100, andaim-200.

GAC maxRPWC R(∗,2)C R(∗,3)C

#inst. |V| e %solv Time #NV comp Time #NV comp Time #NV comp Time #NV comp
8 50 75 0.50 1.31 112K 8 0.71 35K 8 0.48 5K 8 9.05 816.75 8
8 50 95 0.50 1.42 45K 8 0.73 28K 8 0.48 4K 8 9.08 159.25 8
4 50 159 1.00 0.69 225 4 0.74 205.75 4 0.48 90.25 4 9.12 53.50 4
4 50 279 1.00 0.76 80 4 0.78 61.25 4 0.60 50.75 4 9.16 50.00 4
8 100 155 0.50 1K 77M 5 504.81 26M 5 10.23 86K 5 2.05 128.20 6
8 100 194 0.50 979.95 35M 4 642.30 15M 4 104.12 175K 4 1.01 100.00 5
4 100 316 1.00 0.86 5K 4 0.76 3K.75 4 2.71 378 4 62.46 106.50 4
4 100 562 1.00 3.81 214 4 3.80 143.25 4 9.78 108 4 628.65 100.00 4
8 200 312 0.5 - - 0 - - 0 0.10 200 2 1.59 200.00 5
8 200 387 0.5 - - 0 - - 0 1.07 535 2 4.05 200.00 3
8 200 642 1.00 - - 2 - - 3 - - 4 - - 1
8 200 1,157 1.00 290.00 96K 4 222.10 54K 4 558.87 4K 4 2K 200.00 4
80 47 48 53 56

This problem set has neither high arity nor huge relations. However it has a
huge search space. GAC and maxRPWC visited in some instancesmillions of
nodes, while R(∗,3)C completed the search in an almost backtrack-free manner.
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The powerful filtering of R(∗,3)C explains the high performance of R(∗,3)C on
these problems, especially in terms of the number of instances completed.

5.5 Randomly Generated Problems

Finally, in our last experiment, we studied the effect of varying the arity of the con-
straints while fixing the number of variables to 20, domain size to 10, number of
constraints to 5 and the number of support tuples in the constraints to 10,000. As
the arity increases, the problem becomes tighter, and exhibits the ‘phase transition’
phenomenon. The results averages over on 50 instances are shown in Figure 2.

This final experiment clearly illustrates the relative advantages of the three dif-
ferent consistency algorithms. When the arity is low, R(∗,2)C and R(∗,3)C have
poor performance. R(∗,3)C suffers more than R(∗,2)C because of its higher com-
plexity and because it does not draw any remarkable advantage from its filtering
power. GAC and maxRPWC take advantage of their lower polynomial complex-
ity and explore the search space quicker to find a solution. Notice that the number
of nodes visited is almost the same for all algorithms up to arity 7.

As the constraint arity increases and the problems become tighter and more
difficult, the advantages of R(∗,3)C and R(∗,2)C start showing up. R(∗,m)C takes
advantage of the high constraint arity. Search visits fewernodes at arity eight
(8), and proceeds backtrack free for arity nine and above. The performance of
maxRPWC improves when for constraint arity nine and above, and is rewarded
by a sharp decline of the CPU time curve of maxRPWC after arityeight. GAC is
clearly a ‘loser’ as the arity grows to eight: it is not able tofilter as much as the
other algorithms and consequently is not able to reduce the CPU time.
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Figure 2:Random non-binary CSPs with 20 variables, domain size 10, 5 constraints and
10,000 (support) tuples per constraint. Constraint arity varies from 5 to 12.
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6 Future Work & Conclusions

An anonymous reviewer of a previous version of this report suggested the two
following avenues, which remain to be investigated:

• Compare the performance of our algorithm for R(∗,2)C with that of the
filtering algorithms on the dual and the double encodings of non-binary
CSPs reported in [Stergiou and Walsh 1999; Stergiou and Samaras 1998].

• Demonstrate that, despite the recent advances with the implementation of
GAC (e.g., the specialized algorithm for table constraint by [Cheng and Yap
2004]), many problems still benefit from the use of consistency algorithms
with stronger pruning power than GAC.

[Janssenet al. 1989] introduced an algorithm for removing redundant con-
straints in the dual graph of a non-binary CSP. This algorithm can be of great
value to us as it can reduce the number of combinations of constraints to be con-
sidered for R(∗,m)C, and for a given combination of constraints, the number of
redundant checks. While our algorithms can still be improved, especially by re-
moving redundant edges in the dual graph of a CSP as advised by[Janssenet
al. 1989], our work establishes that the exploitation of higherlevels of consis-
tency in non-binary CSPs can be advantageous in practice anddeserves further
exploration.

While it seems that R(∗,2)C is likely the most useful form of relational consis-
tency in the context of backtrack search, our tests on Boolean CSPs (see Table 5.4)
establish the usefulness of R(∗,3)C. The fact that R(∗,m)C form>3 does not seem
to be useful in the context ofsearchdoes not rule out its usefulness in contexts
where the number of constraint combinations considered is restricted.

The goal of the document is to introduce the first algorithm for computing
R(∗,m)C. We believe that this algorithm must be quickly reported to serve as a
foundation for further investigations. Note thatm-wise consistency was intro-
duced years ago in the database community without any algorithms or experi-
ments. To the best of our knowledge, our algorithm is the firstgeneral algorithm
for this purpose.

To summarize, we presented in this report an algorithm to enforce aparametrized
relational consistency property. This property, unlike most other well-studied con-
sistency properties, is enforced by tightening the existing constraints and without
introducing any additional ones. Importantly, we empirically evaluated our al-
gorithm on difficult benchmark problems and demonstrated its significance for
solving
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1. Hard problems specially when the relations are large and have high arity,
and also

2. Boolean CSPs which have small relations of arity.

We hope that these results encourage the community to investigate more effi-
cient algorithms for enforcing higher levels of consistency in non-binary CSPs.

Acknowledgments

We are grateful to Kostas Stergiou and Christian Bessière for countless explana-
tions about their work and for generously sharing with us their benchmarks and
their generator of random instances. Their responsivenessand cooperation have
been exemplary and inspiring. We also acknowledge the feedback of anonymous
reviewers of a previous version of this report. Experimentswere conducted on the
Research Computing Facility at UNL. Shant Karakashian was partially supported
by NSF CAREER Award #0133568, and Robert Woodward by an undergraduate
research grant (UCARE) of University of Nebraska-Lincoln.

References

Ken Bayer, Josh Snyder, and Berthe Y. Choueiry. An Interactive Constraint-
Based Approach to Minesweeper. InProceedings of the National Conference on
Artificial Intelligence (AAAI 2006), pages 1933–1934, Boston, Massachussets,
2006.
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In this document, we revise the pseudo-code of all three algorithms in the
technical report, improving on their performance.

Initializing the constraints queue

The initialization phase Algorithm 1 builds a queue of all combination-relation
pairs.

Algorithm 1: Initialize-Q initializes the queue.

Input: ζ: set of all possible combinations
Output: Q: a queue of all combination-constraint pairs
foreach ϕ ∈ ζ do1

foreach R ∈ ϕ do2

Q ← Q∪ {〈ϕ, R〉}3

end4

end5

revision-time ← 06

Processing the constraint queue

The procedure ProcessQueue, described in Algorithm 2, revises every relation-
combination pair in the queue to ensure that all their tuples are supported in
each combination of m constraints where the relation appears.

We modified the queue of relations (as described in the technical report),
into a queue of combination-relation pairs for the following reason. Originally,
when a relation Ri is popped from the queue for revision,

• It was revised in every combination where it appears, and

• When the revision modified Ri, every other relation in every other com-
bination where the relation Ri appears was inserted in the queue.

According to the new queue management strategy, when a pair of combination-
relation 〈ϕ, Ri〉 is popped from the queue for revision,

• It is revised in only the paired combinationφ, and

• When the revision modified Ri, every other relation in every other combi-
nation where the relation Ri appears is inserted in the queue paired with
the corresponding combination.

This mechanics saves in computational effort, while maintaining soundness and
completeness.
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Algorithm 2: ProcessQueue deletes tuples that have lost their support.

Input: Q, ζ,revisiouT ime
Output: true is the problem is R(∗,m)C, false otherwise
consistent← true1

while (Q 6= ∅) ∧ (consistent = true) do2

〈ϕ, R〉 ← Top(Q)3

revision-time ← revision-time +14

foreach 〈ϕ, R′〉 ∈ Q do5

Remove(〈ϕ, R′〉,Q)6

deleted← false7

foreach τ ∈ R′ do8

if RevisionTime(τ) = revision-time then9

GoTo 810

end11

support←FindSupport((τ,R′), ϕ)12

if support = false then13

Delete(τ)14

if R′ = ∅ then15

consistent← false16

GoTo 2917

deleted← true18

end19

end20

end21

if deleted then foreach ϕ′ ∈ ζ do22

if R′ ∈ ϕ′ then foreach R′′ ∈ (ϕ′ \ {R′}) do23

Q ← Q∪ {〈ϕ′, R′′〉}24

end25

end26

end27

end28

return consistent29
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To access all the combination-relation pairs in the queue pertaining to the
same combination, we implement a hash-table on the queue whose indices are
combinations and the values are the relations in the combinations.

Further, when we find the tuples {τ ′} that support the tuple τ in a given com-
bination φ, all those tuples are guaranteed ‘support’ and need not be rechecked
for support in the combination φ. We use a ‘time stamp’ mechanism to record
this situation and save redundant checks, see Line 10.

revision-time is a global variable throughout the execution so that the time
stamp uniquely marks a revision of a combination. The time stamp remains
the same during the revision of all the relations in a given combination. For
that purpose, we need to revise, for a given same combination, all combination-
relation pairs in the queue sequentially.

Finding a support

The marking of the tuples with the time stamp is performed in the Find-
Support algorithm. Every time a support is found (either by search or simply
retrieved from the data structure Last), all the tuples in the support are marked
with the time stamp in Line 10 of Algorithm 3.

Algorithm 3: FindSupport finds a support for a tuple in a combination.

Input: (τ,Ri), ϕ, revision-time
support← true1

if Last((τ,Ri), ϕ) = ∅ then2

Last((τ,Ri), ϕ) ← Search(ϕ, Ri ← τ)3

if Last((τ,Ri), ϕ) = ∅ then4

support← false5

Goto 126

end7

end8

foreach τ ′ ∈ Last((τ,Ri), ϕ) do9

RevisionTime(τ ′)← revision-time10

end11

return support12
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