
Relational Consistency by Constraint Filtering

Shant Karakashian,
Robert J. Woodward, Berthe Y. Choueiry

Constraint Systems Laboratory
Department of Computer Science & Engineering

University of Nebraska-Lincoln
{shantk|rwoodwar|choueiry}@cse.unl.edu

Christian Bessiere
LIRMM-CNRS

University Montpellier, France
bessiere@lirmm.fr

ABSTRACT
In this paper, we propose a new algorithm for enforcing relational
consistency on every set of k constraints of a finite Constraint Sat-
isfaction Problem (CSP). This algorithm operates by filtering the
constraint while leaving the topology of the graph unchanged. We
study the resulting relational consistency property and compare it
to existing ones. We evaluate the effectiveness of our algorithm
in a search procedure for solving CSPs and demonstrate the appli-
cability, effectiveness, and usefulness of enforcing high levels of
consistency.

1. INTRODUCTION
Advancing the early work on the topic [11, 9], Dechter and van

Beek [5] defined relational consistency for the consistency of non-
binary Constraint Satisfaction Problems (CSPs). They defined the
property relational m-consistency (RmC) to apply to every combi-
nation of m constraints in a CSP, and the more relaxed property of
relational (i, m)-consistency (R(i, m)C) to apply to every combi-
nation of i variables in the scope of the m constraints. In practice,
enforcing RmC or R(i, m)C may require adding O(ni) non-binary
constraints to the constraint network, where n is the number of
variables in the CSP, thus changing its topology. Another research
direction focused on the effect of consistency on the domains of
the variables [10, 1, 8, 2, 3]. Domain filtering reduces the search
space explored for solving the CSP. While most work considered
constraints individually (GAC), [2, 12] studied the effects of com-
binations of pairs of constraints.

In this paper we introduce a special form of relational consis-
tency, which we call R(∗,m)C and which operates on every com-
bination of m constraints. The techniques explored in [12] cor-
respond to R(∗,2)C, but are not designed to handle R(∗,m)C for
m > 2. Unlike RmC and R(i, m)C, R(∗,m)C does not add new
constraints to the CSP and, thus, keeps the topology and width of
the network unchanged. Instead, it filters the relations defining
the constraints to remove inconsistent tuples. In association with
R(i,m)C, the ‘∗’ in R(∗,m)C is used to indicate that the property
is not concerned with the number of variables but only with the
constraints ‘whatever is the size of their scope.’

More formally, we define R(∗,m)C to ensure that every tuple in
a relation can be extended to a partial solution over the variables in
every set of m constraints. R(∗,m)C is semantically equivalent to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

relational m-wise consistency studied in [6, 7]. However, neither
paper evaluated or even proposed practical algorithms for imple-
menting relational m-wise consistency. Our contributions in this
work are the (re-)definition of a new (parametric) relational con-
sistency property, R(∗,m)C, that does not modify the topology of
the constraint network, the design of the algorithm for efficiently
enforcing it, and its empirical evaluation on benchmark problems.

2. BASIC DEFINITIONS
A Constraint Satisfaction Problem (CSP) is defined by (V,D, C)

where V is a set of variables, D set of domains, and C set of con-
straints. Each variable Vi ∈ V has a finite domain Di ∈ D, and
is constrained by a subset of the constraints in C. The scope of a
constraint is given by vars(Ci). Every constraint Ci is associated
with a relation Ri that lists the allows combinations of values for
the variables in vars(Ci). A solution for the CSP is an assign-
ment of a value for every variable such that all the constraints are
satisfied simultaneously. We denote by ϕ a combination of m con-
straints such that the primal graph induced by the constraints in the
combination is connected. Two constraints are connected if they
have at least one common variable in their scope [4]. Finally, π and
1 denote the relational operators project and join, respectively.

3. DEFINITION OF R(∗,M)C
We define R(∗,m)C using the definition format of R(i,m)C [4]:

DEFINITION 3.1. A set of m relations R = {R1, · · · , Rm} is
said to be R(∗,m)C iff every tuple in each relation Ri ∈ R can be
extended to the variables in

S
Rj∈R\Ri

vars(Rj) in an assignment
that satisfies all the relations in R simultaneously. A network is
R(∗,m)C iff every set of m relations is R(∗,m)C.

R(∗,m)C can thus be enforced by filtering the existing relations
using the following operation on each combination of m relations
{R1, · · · , Rm} and without introducing to the CSP any relation
whose scope was not already constrained in the original CSP: ∀Ri ∈
{R1, · · · , Rm}, Ri ⊆ πvars(Ri)(1

m
j=1 Rj)

This expression gives us an obvious algorithm for enforcing
R(∗,m)C. Even if each join is computed only once and then its tu-
ples filtered iteratively, the space requirement of such an operation
is too prohibitive to be useful in practice.

Once R(∗,m)C is enforced on a constraint network, variable do-
mains can subsequently be filtered (i.e., domain filtering) by simple
projection of the filtered relations on the domains of the variables.
Unlike GAC, we do not need to loop between the filtering of the
domains and that of the constraints because, on a network that is
R(∗,m)C, domain filtering cannot enable further constraint filter-
ing by R(∗,m)C. R(∗,m)C does not eliminate any solution, and is
is a weaker consistency, in terms of pruning power and consistency,
than relational m-consistency. We omit the proofs for lack of space.

4. AN ALGORITHM FOR R(∗,M)C
We achieve the R(∗,m)C property when every tuple τ of every

relation Ri in every combination ϕ of m relations can be ‘ex-
tended’ successfully to all the (m − 1) remaining relations in ϕ,
that is all tuples have the same values for the common variables.
We say that the set of (m − 1) tuples that ‘extends’ τ to the con-
straints in ϕ is the ‘support’ of Ri’s τ in ϕ. A tuple is deleted when
it has no support in at least one combination.

Algorithm 1 enforces R(∗,m)C by processing the combination-
relation queue. When a pair 〈ϕ, R〉 is poped from the queue, every
tuple in the relation R is extended to all the remaining relations in
ϕ in the loop in Line 4. The tuple that is not extended, is deleted.
When a relation loses a tuple, all the other relations that appear in a
combination with R may be effected only in the combinations with
R. Hence all such relations are added back to the queue paired with
the combinations that include R in Line 12. This is the reason for
having combination-relation pairs in the queue.

The inputs to the algorithm are the initial queue Q that is initial-
ized to all the combination-relation pairs, and the set of all com-
bination ζ. The algorithm terminates when a relation loses all the
tuples and returns inconsistent, or verifies that all the remaining tu-
ples can be extended and returns consistent. The FINDSUPPORT in

Algorithm 1: PROCESSQUEUEEnforces the R(∗,m)C property

Input: Q, ζ
Output: true if the problem is R(∗,m)C, false otherwise
while (Q 6= ∅) do1
〈ϕ, R〉 ← POP(Q)2
deleted← false3
foreach τ ∈ R do4

support←FINDSUPPORT((τ, R), ϕ)5
if support = false then6

DELETE(τ)7
if R = ∅ then return false8
deleted← true9

if deleted then foreach ϕ′ ∈ (ζ \ {ϕ}) do10
if R ∈ ϕ′ then foreach R′ ∈ (ϕ′ \ {R}) do11
Q ← Q∪ {〈ϕ′, R′〉}12

return true13

Line 5 utilizes a special data structure to avoid the scanning of the
complete relation when searching for a support. We do not describe
the data structure here for lack of space.

The complexity of Algorithm 1 is O(t2e2δm+mtm) where t is
the maximum number of tuples in a relation, e is the total number
of relations, and δ in the number of combinations.

5. EXPERIMENTAL RESULTS
We conducted the experiments on benchmarks selected from the

CPAI08 competition1. We compare R(∗,m)C to GAC2001/3.1 [1]
and maxRPWC-1 [2]. R(∗,m)Ci is the algorithm with a special
feature enabled on the indices of the data structures, which is not
described here for lack of space. The results are reported in Ta-
ble 1. We report the number of nodes visited (#NV), average and
maximum CPU time in seconds over instances completed by all
algorithms, number of instances completed, and the number of in-
stances completed fastest. The time limits were set to 20 minutes
for Renault, three hours for rand-8-20-5, and one hour for aim-
200. We solve the CSPs by using a backtrack search procedure
with the ‘domain over degree’ dynamic variable-ordering heuristic.
The search maintains the consistency properties by applying full
lookahead.

The results show that R(∗,m)C is able to solve more problems

1http://cpai.ucc.ie/08/

Table 1: Results on benchmark problems.
Algorithm #NV Time Max time Comp. Fst.

Renault benchmark
GAC 300,195.33 66.83 610.41 21 19

maxRPWC 1,140.56 115.66 215.43 29 0
R(*,2)C 100.28 10.83 12.48 46 28

rand-10-20-10 benchmark (all unsatisfiable)
GAC 210.10 7.19 9.54 20 0

maxRPWC 0.00 1.57 3.94 20 0
R(*,2)C 0.00 0.20 0.23 20 20

rand-8-20-5 benchmark (all satisfiable)
GAC 60,273.27 3,527.00 10,072.60 15 3

maxRPWC - - - 0 0
R(*,2)C 1,307.67 3,188.08 10,945.70 18 1
R(*,2)Ci 1,307.67 2,073.04 5,549.97 18 14

aim-200 benchmark
GAC 1.9M 554.80 2034.54 7 2

maxRPWC 850K 386.39 1365.64 7 3
R(*,2)C 5.5K 520.36 1971.79 12 7
R(*,3)C 222 880.24 925.80 13 3

within the time limit, and has the lowest maximum time among the
problems solved by all algorithms.

6. CONCLUSIONS
We presented an algorithm to enforce a parametrized relational

consistency property. This property, unlike most other well-studied
consistency properties, is enforced by tightening the existing con-
straints and without introducing any additional ones. Importantly,
we empirically evaluated our algorithm on difficult benchmark prob-
lems and demonstrated its effectivness.

Acknowledgments
The authors acknowledge the help of Kostas Stergiou and the feedback of
anonymous reviewers. Experiments were conducted on the Holland Com-
puting Center at UNL. Karakashian was partially supported by NSF CA-
REER Award #0133568, and Woodward by a UCARE grant UNL.

7. REFERENCES
[1] C. Bessière, J.-C. Régin, R. H. Yap, and Y. Zhang. An

Optimal Coarse-Grained Arc Consistency Algorithm.
Artificial Intelligence, 165(2):165–185, 2005.

[2] C. Bessière, K. Stergiou, and T. Walsh. Domain Filtering
Consistencies for Non-Binary Constraints. Artificial
Intelligence, 172:800–822, 2008.

[3] K. C. K. Cheng and R. H. C. Yap. Maintaining Generalized
Arc Consistency on Ad Hoc r-Ary Constraints. In CP 08,
volume LNCS 5202, pages 509–523. Springer, 2004.

[4] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[5] R. Dechter and P. van Beek. Local and Global Relational

Consistency. Theor. Comput. Sci., 173(1):283–308, 1997.
[6] M. Gyssens. On the Complexity of Join Dependencies. T.

ACM Trans. Database Systems, 11 (1):81–108, 1986.
[7] P. Jégou. On the Consistency of General

Constraint-Satisfaction Problems. In AAAI 1993, pages
114–119, 1993.

[8] O. Lhomme and J.-C. Régin. A Fast Arc Consistency
Algorithm For N -Ary Constraints. In AAAI 2005, pages
405–410, 2005.

[9] A. K. Mackworth. Consistency in Networks of Relations.
Artificial Intelligence, 8:99–118, 1977.

[10] R. Mohr and G. Masini. Good Old Discrete Relaxation. In
ECAI 88, pages 651–656, 1988.

[11] U. Montanari. Networks of Constraints: Fundamental
Properties and Application to Picture Processing. Inf.
Sciences, 7:95–132, 1974.

[12] K. Stergiou and N. Samaras. Binary Encodings of
Non-binary Constraint Satisfaction Problems: Algorithms
and Experimental Results. JAIR, 24:641–684, 1998.

