
Reformulating the Dual Graphs of CSPs to Improve the Performance of
Relational Neighborhood Inverse Consistency

Robert J. Woodward1 Shant Karakashian1 Berthe Y. Choueiry1 Christian Bessiere2

1Constraint Systems Laboratory, University of Nebraska-Lincoln, USA
{rwoodwar|shantk|choueiry}@cse.unl.edu

2LIRMM-CNRS, University of Montpellier, France
bessiere@lirmm.fr

Abstract

Freuder and Elfe (1996) introduced Neighborhood Inverse
Consistency (NIC) as a new local consistency property for
binary Constraint Satisfaction Problems (CSPs). Two advan-
tages of the algorithm for enforcing NIC is that it automat-
ically adapts its filtering power to the local connectivity of
the network and has insignificant space overhead. However,
studies on binary CSPs have shown that enforcing NIC is not
effective on sparse graphs and too costly on dense graphs.
In (Woodward et al. 2011), we introduced an algorithm
for enforcing Relational Neighborhood Inverse Consistency
(RNIC), which is an extension of NIC to non-binary CSPs.
In this paper, we discuss how we enhance the propagation
effectiveness of our algorithm and reduce its computational
cost by reformulating the dual graph of the CSP. For that pur-
pose, we describe two reformulation techniques that modify
the topology of the dual graph without affecting the solution
set of the problem. We present the two reformulations and
their combinations, and discuss their effects on the consis-
tency property enforced by the algorithm. We also describe
a selection policy that nicely ties together the various com-
ponents of our approach in a consistent, adaptive framework.
Finally, we show that our automated selection policy outper-
forms all approaches in a statistically significant manner.

1 Introduction
An important result in Constraint Processing (CP) ties the
tractability1 of a Constraint Satisfaction Problem to the level
of consistency that it satisfies. Solving difficult problems
often requires enforcing higher order consistency, which
typically requires the use of more costly algorithms in
time and/or in space. Freuder and Elfe (1996) introduced
Neighborhood Inverse Consistency (NIC) for binary CSPs
as a particularly promising consistency property because:
(1) Enforcing it is light in terms of space requirements (in-
verse consistency is enforced by filtering the variables do-
mains); and (2) It focuses the attention on where a vari-
able’s value most tightly interacts with the problem, namely
its neighborhood. Despite its promise and filtering effec-
tiveness, NIC remains relatively unexploited because the al-
gorithm for enforcing it is too costly in terms of process-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The tractability of a problem is the ability to solve it in time
polynomial in the size of the input, which, in the case of the CSP,
is the number of variables.

ing time, which prevented its use on dense networks or in a
lookahead scheme during backtrack search.

In (Woodward et al. 2011), we generalized NIC to Re-
lational Neighborhood Consistency (RNIC) for non-binary
CSPs. Although, Bacchus et al. (2002) had already iden-
tified the same property as RNIC to hold when the arc-
consistency property holds in on the dual graph2 of the CSP,
they do not provide a practical algorithm for enforcing it,
study its usefulness in practice, or compare to any consis-
tency properties other than arc consistency, all of which we
examine in this paper.

This paper is structured as follows. Section 2 reviews
background information about CSPs. Section 3 introduces
RNIC and an algorithm for enforcing it on the dual encod-
ing of the CSP. Section 4 discusses three variations of RNIC
obtained by removing redundant edges in the dual graph
and/or triangulating the considered graph, and a strategy for
deciding which of the four properties to enforce. The goal
of this deliberation is to reduce computational cost and/or
strengthen propagation depending on the topology of the
dual graph. Section 5 reviews the state of the art in relational
consistency. Section 6 discusses our experimental results,
we compare the performance of the resulting mechanisms,
on difficult benchmark problems, with that of GAC2001
(Bessière et al. 2005) and the recently introduced algorithms
for m-wise consistency (i.e., wR(∗,m)C for m = 2, 3, 4 of
(Karakashian et al. 2010)). Finally, Section 7 discusses the
extension of our approach to relations specified as conflicts
or in intension and concludes this paper with directions for
future research.

2 Background
A Constraint Satisfaction Problem (CSP) is defined by P =
(V,D, C) where V is a set of variables,D is a set of domains,
and C is a set of constraints. Each variable Vi ∈ V has a
finite domain Di ∈ D, and is constrained by a subset of
the constraints in C. Each constraint Ci ∈ C is specified
by a relation Ri defined on a subset of the variables, called
the scope of the relation and denoted scope(Ri). Given a
relation Ri, a tuple τi ∈ Ri is a vector of allowed values for
the variables in the scope of Ri. Solving a CSP corresponds
to finding an assignment of a value to each variable such that
all the constraints are satisfied.

2The dual graph is defined in Section 2.

2.1 Graphical representations
A binary CSP is represented by its constraint graph where
the vertices are the variables of the CSP and the edges rep-
resent the constraints. A non-binary CSP is similarly repre-
sented by its hypergraph where the hyperedges represent the
non-binary constraints. Another graphical representation of
a non-binary CSP is the primal graph where the vertices are
the CSP variables and edges connect every two vertices cor-
responding to variables in the scope of a relation (Dechter
2003). Neigh(Vi) denotes the set of variables that are adja-
cent to Vi in the constraint graph of a binary CSP and the
primal graph of a non-binary CSP. The dual encoding of a
CSP P is a binary CSP whose variables are the relations of
P , their domains are the tuples of those relations, and the
constraints enforce equalities over the shared variables. The
representation as a graph of this encoding is the dual graph
of the CSP. Neigh(Ri) denotes the set of relations adjacent
to a relation Ri in the dual graph. Figure1, illustrates the
hyper, primal, and dual graphs of a small non-binary CSP
where V = {A, . . . , F} and the relations are R1, . . . , R6.

R3

A B

C D

E

F
R1

R4
R2 R5

R6

A B

C D
E
F

R4

BCD	

ABDE	

CF	

EF	 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	
A AD B

R5

R6

Figure 1: Hyper, primal, and dual graphs of a small CSP.

2.2 Consistency properties & algorithms
CSPs are in general NP-complete and solved by search.
To reduce the severity of the combinatorial explosion, they
are usually ‘filtered’ by enforcing a given local consistency
property (Bessiere 2006). One common such property is
Generalized Arc Consistency (GAC). A CSP is GAC iff, for
every relation, any value in the domain of any variable in
the scope of the relation can be extended to a tuple satisfy-
ing the relation. Our work extends, to non-binary CSPs, the
local consistency property known as Neighborhood Inverse
Consistency (NIC) introduced, for binary CSPs, in (Freuder
and Elfe 1996). NIC ensures that every value in the domain
of a variable can be extended to a solution of the subprob-
lem induced by the variable and the variables in its neigh-
borhood. Algorithms for enforcing GAC and NIC typically
operate by filtering the domains of the variables. Pairwise
consistency3 (Janssen et al. 1989), R(∗,m)C (Karakashian
et al. 2010) and RNIC are consistency properties of the dual
graph of the CSP. The algorithms for enforcing them typi-
cally operate by filtering the constraint definitions.

In order to compare the various consistency properties
discussed in this paper we use the terminology introduced
in (Debruyne and Bessière 1997). Given two consistency
properties p and p′,

• p is stronger than p′ if, in any CSP where p holds, p′ also
holds.

3Pairwise consistency (Janssen et al. 1989) is equivalent to
R(∗,2)C (Karakashian et al. 2010).

• p is strictly stronger than p′ if p is stronger than p′ and
there exists at least one CSP in which p′ holds but p does
not.

• p and p′ are equivalent when p is stronger than p′ and vice
versa.

• Finally, p and p′ are incomparable when there exists at
least one CSP in which p holds but p′ does not, and vice
versa.

In practice, when a consistency property is stronger (re-
spectively, weaker) than another, enforcing the former never
yields less (respectively, more) pruning than enforcing the
latter on the same problem.

3 Relational NIC
The algorithm for enforcing NIC on binary CSPs of (Freuder
and Elfe 1996) was tested in a preprocessing step to back-
track search on instances whose constraint density4 did not
exceed 4.25%. Despite its pruning power and light space
overhead, NIC received relatively little attention in the liter-
ature, likely because of the prohibitive cost of the algorithm
for enforcing it. Below, we introduce RNIC, a generaliza-
tion of NIC to non-binary CSPs, and characterize it. Then,
we describe and analyze an algorithm for enforcing it.

3.1 Defining RNIC
Definition 1 A relation Ri is said to be RNIC iff ev-
ery tuple in Ri can be extended to the variables in⋃
Rj∈Neigh(Ri)

scope(Rj)\scope(Ri) in an assignment that
simultaneously satisfies all the relations in Neigh(Ri). A
network is RNIC iff every relation is RNIC.
Informally, every tuple τi in every relation Ri can be ex-
tended to a tuple τj in each Rj ∈ Neigh(R) such that to-
gether all those tuples are consistent with all the relations in
Neigh(Ri). Like R(*,m)C, RNIC can be enforced by fil-
tering the existing relations and without introducing any new
relations to the CSP. A straightforward algorithm for enforc-
ing RNIC applies the following operation to every relation
Ri in the problem until quiescence:

Ri ← πscope(Ri)(onRj∈{Ri}∪Neigh(Ri) Rj) (1)
where π and on are the relational operators project and join,
respectively. The space requirement of this algorithm is pro-
hibitive in practice because it requires storing the join of
Ri ∪Neigh(Ri), which is not necessary as we argue in Sec-
tion 3.4. For the example of Figure 1, RNIC examines the
six subproblems induced on the dual graph by each relation
and its neighborhood as listed below:
1. For R1, Neigh(R1) = {R2, R3}.
2. For R2, Neigh(R2) = {R1, R4}.
3. For R3, Neigh(R3) = {R1, R4, R5, R6}.
4. For R4, Neigh(R4) = {R2, R3, R5, R6}.
5. For R5, Neigh(R5) = {R3, R4, R6}.
6. For R6, Neigh(R6) = {R3, R4, R5}.

Generally speaking, the number of induced subproblems
to be considered is equal to e, where e is the number of re-
lations in the CSP; and the size of the largest subproblem is
equal to δ + 1, where δ is the degree of the dual graph.

4The constraint density of a binary CSP is equal to 2e
n(n−1)

,
where e is the number of constraints and n the number of variables.

3.2 Comparing RNIC and R(∗,m)C
In (Karakashian et al. 2010), we introduced the property
R(∗,m)C with m ≥ 2, which ensures that every tuple in
every relation can be extended in a consistent assignment to
every combination ofm−1 relations in the problem. For the
example shown in Figure 1, R(∗,2)C must verified on 9 com-
binations of two relations. Generally speaking the number
of induced subproblems to be considered is O(em); and the
size of the largest subproblem is equal to m. We compare
RNIC with R(∗,m)C, which is defined for m ≥ 2.

1. RNIC is strictly stronger than R(∗,m)C, m ≤ 3 (see The-
orem 2 in (Woodward et al. 2011)).

2. R(∗,m)C with m ≥ δ + 1, where δ is the degree of the
dual graph, is strictly stronger than RNIC (see Theorem 3
in (Woodward et al. 2011)).

3. For 4 ≤ m ≤ δ, R(∗,m)C and RNIC are not comparable
(see Theorem 4 in (Woodward et al. 2011)).

Figure 2 illustrates the above first three assertions. Two in-

R(*,3)C RNIC R(*,δ+1)C R(*,2)C

Figure 2: Comparing RNIC with R(∗,m)C.

teresting structures of the dual graphs, trees and cycles, are
such that several relational consistency properties collapse
to R(∗,2)C, which is the weakest of them all:
Theorem 1 RNIC, R(∗,2)C, and R(∗,m)C are equivalent on
any dual graph that is tree structured or is a cycle of length
≥ maximum(4,m+ 1).
Proof: By straightforward generalization of Theorem 5
in (Woodward et al. 2011). �

The theorem applies for a tree of any degree. As for
the cycle, it must be length at least m + 1 for m ≥ 3.
This last theorem is important because it identifies struc-
tural configurations where the relational consistency prop-
erties RNIC and R(∗,m)C collapse to their weakest version,
that is R(∗,2)C. In Section 4 we propose reformulating the
dual graph of the CSP to allow RNIC to overcome this ob-
stacle.

3.3 Comparing RNIC and domain filtering
In practice, after enforcing RNIC on a CSP (by filtering the
relations), the domains of the variables are updated accord-
ingly in order to reduce the search effort. It is important to
note that variable domains can be updated by simply pro-
jecting the filtered relations on the variables. Interestingly,
these domain reductions do not break the RNIC property.
Theorem 2 If a network is RNIC, domain filtering by GAC
cannot enable further constraint filtering by RNIC.
Proof: Similar to proof of Theorem 1 in (Karakashian et al.
2010). �

Following the terminology of (Bessière, Stergiou, and
Walsh 2008), the property of a CSP where RNIC holds and
where the domains agree with the constraints is denoted
RNIC+GAC. Although formally correct, we find this nota-
tion confusing because it may incorrectly suggest the need
to enforce GAC, which is in general more expensive than
(simply and without looping) projecting the relations on the

domains. For that reason, we choose to denote this property
instead RNIC+DF (i.e., RNIC followed by domain filtering).
Theorem 3 NIC (on a binary CSP) and RNIC+DF (on the
dual graph of the same binary CSP) are not comparable.
Proof: In Figure 3, the CSP is NIC but not RNIC+DF.
RNIC removes the tuples in {(0, 2), (2, 2)} from R0,

0,1,2

0,1,2

0,1,2

0,1,2

R0 R1 R3

R2

R4 A

B

C

D

R1

B C

0 0
0 2
1 1
2 0
2 1

R0

A B

0 2
1 1
1 2
2 0
2 2

R2

B D

0 1
0 2
1 0
1 2
2 1

R3

C D

0 1
0 2
1 0
1 2
2 1

R4

A C

0 1
1 0
1 1
2 1
2 2

Figure 3: The binary CSP is NIC but not RNIC+DF.
{(0, 0), (1, 2)} from R1, {(0, 2)} from R2, {(0, 2)} from
R3, and {(0, 1), (2, 1)} from R4. Therefore, RNIC+DF re-
moves the value 0 fromA. In Figure 4, the CSP is RNIC+DF
but not NIC. NIC removes the value 0 from D. �

0,1,2

0,1,2

0,1,2

0,1,2

B

C D

A

≠

≠

≠
r

r r

r = {0,1,2}2 – {(0,0)}

Figure 4: Binary CSP is RNIC+DF but not NIC.

The singleton variant of a given consistency property
guarantees that the assignment of every value in the domain
of a variable yields a CSP where the consistency property
holds (Debruyne and Bessière 2001). Singleton consisten-
cies have been studied mainly for arc consistency (SAC) and
generalized arc consistency (SGAC).
Theorem 4 SGAC on a non-binary CSP and RNIC+DF on
the corresponding dual graph are not comparable.
Proof: In Figure 5, the CSP is RNIC+DF but not SGAC.
SGAC empties all variables domains. In Figure 6, taken

1,2

1,2

1,2

1,2

C

B D

A

=

≠

=

=

Figure 5: The CSP is RNIC+DF but not SGAC.

from (Debruyne and Bessière 2001), the CSP is SGAC
but not RNIC+DF. RNIC removes {(2, 3), (3, 2)} from

1,2

R5

R1

R3

R4

A

C

B

D

1,2,3

1,2,3 1,2

R2

R1

A B

1 2
1 3
2 1
2 2
2 3

R2

B C

1 1
1 2
1 3
2 1
2 3
3 1
3 2

R4

C D

1 1
1 2
2 1
3 2

R5

A C

1 2
1 3
2 1
2 2
2 3

R3

B D

1 1
1 2
2 1
3 2

Figure 6: The CSP is SGAC but not RNIC+DF.
R2, {(1, 2), (1, 3)} from R1, and {(1, 2), (1, 3)} from R5.
Therefore, RNIC+DF removes the value 1 from A. �

Figure 7 shows the relationships between the domain-
filtering properties discussed above.

GAC
R(*,2)C+DF
SGAC

RNIC+DF

Figure 7: Some domain filtering properties.

3.4 An algorithm for enforcing RNIC
The algorithm for enforcing RNIC is discussed in detail
in (Woodward et al. 2011) where it is generically denoted
PROCESSQ. Below, we summarize its operation. We define
Sτ , the support of a tuple τ ∈ R, to be the set of tuples that
verify the condition: ∀R′ ∈ Neigh(R),∃(τ ′ ∈ R′), (τ ′ ∈
Sτ), and the tuples in Sτ ∪{τ} agree on all shared variables.
For each tuple τ ∈ R without a valid support, the function
SEARCHSUPPORT determines Sτ as the first solution of a
backtrack search procedure on the subproblem induced by
{R} ∪ Neigh(R) and where R is assigned τ . The support
is recorded and stays active as long as all its constituents
tuples are active. SEARCHSUPPORT uses forward checking
and dynamic variable ordering (domain/degree). Two major
mechanisms significantly contributed to the success of this
search process by improving its running time:

1. The use of the index-tree data structure (Karakashian et
al. 2010) to determine whether or not two tuples of two
adjacent relations in the dual graph are consistent.

2. The dynamic identification, after each dual variable in-
stantiation, of trees in the dual graph of uninstantiated
dual variables (Woodward et al. 2011). The instantiation
of a variable eliminates, from the problem, the variable
and the constraints that link it to the uninstantiated vari-
ables, potentially breaking cycles and yielding trees. We
call those trees dangles: They can be floating trees or may
be attached to some subgraph. Dangles can be identified
efficiently and exploited for early inconsistency detection.

Note that dangle identification is a general mechanism for
improving the performance of any backtrack search. Obvi-
ously, it cannot be used in the algorithm for enforcing GAC
or R(∗,2)C (where there is no search). Further, it is not par-
ticularly useful in the algorithm for enforcing R(∗,m)C be-
cause the values of m are small in practice.

Let e be the number of constraints in the CSP, k the max-
imum arity of the constraints, d the maximum domain size,
t = O(dk) the maximum number of tuples in a relation,
and δ the degree of the dual graph. The complexity of the
algorithm for enforcing RNIC is O(tδ+1eδ).

3.5 Enforcing RNIC versus R(∗,m)C
The above summarized algorithm and that for enforcing
R(∗,m)C (Karakashian et al. 2010) are similar in that they
both try to ‘complete’ (Freuder 1991) each tuple in each re-
lation over one (or more) sets of relations.

The algorithm for R(∗,m)C considers every combination
of m connected relations. The number of those combina-
tions is O(em). Further, each relation needs to be ‘checked’
againstm−1 relations in each combination where it appears.

The algorithm for enforcing RNIC does not suffer from
the above drawbacks. First, the number of combinations
considered is equal to the number of relations (e), and each

relation is ‘checked’ against a unique set of relations, which
is determined by its neighborhood. Further, the size of the
neighborhood is determined locally by the connectivity of
the relation in the dual graph. Thus, the ‘level’ of consis-
tency enforced is not necessarily the same on all relations
of the dual graph: Lower levels are enforced on sparser por-
tions of the dual graph, and higher levels on the denser por-
tions. In particular, on a cycle of length four or more, RNIC
‘naturally’ reduces to R(∗,2)C, see Theorem 1.

4 Reformulating the Dual Graph
Two topological conditions of the dual graph can seriously
hinder the performance of PROCESSQ:

1. High density of the dual graph. As the density of the dual
graph increases, the neighborhood of a given relation Ri
grows, which increases the cost of enforcing RNIC. To
address this issue, we reformulate the dual graph by re-
moving redundant edges.

2. The existence of cycles of length four or more. On a cy-
cle of length four or more, the two adjacent relations of
a given relation Ri in the cycle are prevented from ‘com-
municating,’ thus reducing RNIC to R(∗,2)C (see Theo-
rem 1). To address this issue, we propose to reformulate
the dual graph by triangulation,5 which eliminates cycles
of length four or more.

The above two reformulations have the following effects:

• Removing redundant edges cannot strengthen the consis-
tency property enforced by the algorithm and cannot de-
crease the number of nodes visited by search.

• Adding edges by graph triangulation cannot weaken the
consistency property enforced and cannot increase num-
ber of nodes visited by search.

Applying PROCESSQ on the dual graph reformulated by one
or both of the above reformulations enforces three variations
of RNIC, namely wRNIC, triRNIC, and wtriRNIC, where
the prefixes ‘w’ and ‘tri’ denote the consistency properties
resulting from removing redundant edges and triangulating
the dual graph, respectively. Figure 8 illustrates those re-
lationships in a partial order. Naturally, the property en-

wRNIC
RNIC

wtriRNIC
triRNIC

Figure 8: Variations of RNIC.

forced depends on the particular minimal and triangulated
dual graph used.

While the set of solutions to the CSP is not affected by
either reformation, it is not straightforward to predict the
effect of the above reformulations on CPU time. To lay it
out, we would like to remove enough edges from the dual
graph to reduce the running time of PROCESSQ, which is
O(tδ+1eδ). However, we would also like to add enough

5Graph triangulation adds an edge (a chord) between two non-
adjacent vertices in every cycle of length four or more (Golumbic
2004). While minimizing the number of edges added by the tri-
angulation process is NP-hard, MINFILL is an efficient heuristic
commonly used for this purpose (Kjærulff 1990; Dechter 2003).

edges to the dual graph in order to boost propagation. Fur-
thermore, we need a strategy to automatically select the ap-
propriate reformulation. Below, we discuss the two reformu-
lations (Sections 4.1 and 4.2) and their combination (Sec-
tion 4.3). In Section 4.4, we propose a procedure to auto-
matically select a reformulation in a preprocessing step.

4.1 Removing redundant edges: wRNIC
An edge between two vertices in the dual graph is redundant
if there exists an alternate path between the two vertices such
that the shared variables appear in every vertex in the path
(Janssen et al. 1989; Dechter 2003). Redundant edges can
be removed without affecting the set of solutions of the CSP.
Janssen et al. (1989) introduced an efficient algorithm for
computing the minimal dual graph by removing redundant
edges. Many minimal graphs may exist, but all are guaran-
teed to have the same number of edges. Figure 9 shows the
dual graph (density 60%) and a minimal dual graph (den-
sity 40%) of the example of Figure 1. Note that R(∗,2)C

R4

BCD	

ABDE	

CF	

EF	 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	
A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	 AB	

R3 R1

R2

C

F

E

BD

AB

AD	
AD

R5

R6

Figure 9: A minimal dual graph.

≡ wR(∗,2)C (Janssen et al. 1989). Also, computing and
storing the combinations of relations necessary for enforc-
ing R(∗,m)C is not possible in practice unless the redundant
edges are first removed from the dual graph (Karakashian et
al. 2010).

Our experiments showed that RNIC is advantageous on
dual graphs of density up to around 15%.6 For higher den-
sity values, we propose to remove the redundant edges in
the dual graph before running PROCESSQ. This operation
reduces the density of the original dual graph and the size
of the induced subproblems on which SEARCHSUPPORT is
executed. It also results in a weakened consistency, denoted
wRNIC, that depends of the particular minimal graph used.
Because wRNIC is enforced on a minimal dual graph (i.e.,
a graph with no more edges than the original dual graph),
wRNIC is strictly weaker than wRNIC.

Figure 10 integrates the above discussion in the partial
order of Figure 2. Note that these results hold between the

R(*,3)C

wRNIC

R(*,4)C

RNIC
R(*,δ+1)C

R(*,2)C≡
wR(*,2)C wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

Figure 10: Relating RNIC, wRNIC, R(∗,m)C, and wR(∗,m)C.

weakened properties provided they are enforced on the same
minimal dual graph.

6In a related research, we studied the density of 1689 dual
graphs of (binary and non-binary) CSPs from the Solver Compe-
tition Benchmarks. We identified a sharp threshold at 15% den-
sity. Indeed, 56.6% of the dual graphs (79.9% after redundancy
removal) considered had a density less than or equal to 15%. It is
not yet clear to us how to interpret the value of this threshold.

4.2 Triangulating the dual graph: triRNIC
When the dual graph has only cycles of size four or
more, RNIC reduces to R(∗,2)C (see Theorem 1), which
significantly hampers filtering and propagation. To rem-
edy this situation, we propose to triangulate the dual
graph. This process creates loops in the dual graph
and increases the size of the induced subproblems on
which SEARCHSUPPORT is executed, boosting the propa-
gation process, but also raising the consistency level en-
forced on the CSP. For example, in the dual graph of
the example of Figure 1, Neigh(R1)={R2, R3}. However,
Neigh(R1)={R2, R3, R4} in the triangulated graph (density
67%) of Figure 11. We denote the resulting consistency

R4

BCD	

ABDE	

CF	

EF	 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	
A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	 AB	

R3 R1

R2

AD	
R5

R6

Figure 11: Triangulating a dual graph.
property triRNIC. Similarly to wRNIC, triRNIC depends on
the particular triangulation of the dual graph.

An important feature of the triangulation process is that it
operates locally, adding edges only where cycles of length
four or more need to be shortened, irrespective of the degree
of the vertices in the graph.

4.3 Triangulate a minimal dual graph: wtriRNIC
While using a minimal dual graph allows us to cope with
the high density of difficult benchmark instances, triangulat-
ing the minimal dual graph allows us to boost propagation.
We denote wtriRNIC the consistency resulting from apply-
ing PROCESSQ on the triangulated minimal dual graph. Fig-
ure 12 shows the dual graph (density 47%) resulting from
applying both reformulations in sequence for the example of
Figure 1. As shown in Figure 8, wtriRNIC is strictly stronger

R4

BCD	

ABDE	

CF	

EF	 AB	

R3 R1

R2

C

F

E

BD

AB

D AD	
A AD B

R5

R6 R4

BCD	

ABDE	

CF	

EF	 AB	

R3 R1

R2

AD	
R5

R6

Figure 12: Triangulating a minimal dual graph.
than wRNIC applied on the same minimal dual graph, but
strictly weaker than triRNIC. Further, it is not comparable
with RNIC, which is enforced on the original dual graph.
Figure 13 summarizes the relationships between RNIC, its
reformulations, and R(∗,m)C based properties.

R(*,3)C
wRNIC

R(*,4)C
RNIC

wtriRNIC
triRNIC

R(*,δ+1)C
wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

R(*,2)C≡
wR(*,2)C

Figure 13: Relating RNIC, R(∗,m)C, and their studied variations.

4.4 Select the appropriate RNIC: selRNIC
The algorithm summarized in Section 3.4, PROCESSQ, en-
forces any of the four properties RNIC, triRNIC, wRNIC,

and wtriRNIC on a CSP by operating on the original dual
graph or some modification of it.
• For RNIC, it uses the original dual graph (Go).
• For wRNIC, it uses a minimal dual graph (Gw).
• For triRNIC, it uses a triangulated dual graph (Gtri).
• Finally, for wtriRNIC, it uses a triangulated minimal dual

graph (Gwtri).
The selection policy shown in Figure 14 automatically
chooses the dual graph on which to enforce RNIC by com-
paring the density dG of a given dual graph G. The goal
of this deliberation is to adjust the strength of propagation
to the topology of the dual graph. Paraphrasing the content

No Yes

No Yes Yes No

dGo ≥ 15%

dGtri ≤ 2 dGo dGwtri ≤ 2 dGw

Go Gwtri Gw Gtri

Start

Figure 14: Selecting a dual graph for selRNIC.

of Figure 14, we consider the dual graph of density greater
than or equal 15% to be too dense to be effectively processed
by PROCESSQ. For this reason, we choose to reformulate it
by removing redundant edges. Whenever triangulation does
not increase the density of a dual graph more than two fold,
then the advantage of boosting propagation by creating loops
and increasing neighborhood sizes outweighs the drawback
of increasing the cost of operating on larger neighborhoods.
For the example of Figure 1, this policy correctly chooses
the triangulated minimal dual graph (density 47%). While
both operations of triangulating a dual graph and computing
a minimal dual graph can be done efficiently and do not add
any perceptible overhead in our experiments, the policy of
Figure 14 applies each operation at most once. The resulting
mechanism, which we denote selRNIC, nicely ties together
our techniques in a consistent and adaptive framework.

5 Related Work
NIC was proposed by Freuder and Elfe in (1996) and eval-
uated by them and others on binary CSPs. Debruyne and
Bessière (2001) showed that NIC is ineffective on sparse
graph and too costly on dense graphs. Below, we restrict
our discussion to non-binary CSPs. In (Bacchus et al.
2002), nic(dual) denotes applying NIC to the dual encod-
ing of a CSP. As stated in the introduction, it is identical
to RNIC. However, the paper does not go beyond stating
that nic(dual) is strictly stronger than ac(dual) (i.e., RNIC
is strictly stronger than R(∗,2)C). Otherwise, most of the
research on consistency for non-binary CSPs has focused
on filtering the variables domains, not the constraints def-
initions, such as the study of ‘variable-based’ NIC (Gent,
Stergiou, and Walsh 2000; Stergiou 2007).

More generally, relational consistency properties were
formalized in (Dechter and van Beek 1997) as relational
m-consistency and relational (i,m)-consistency. Enforc-
ing those properties may require adding constraints to the
problem, modifying its topology. As for relation-filtering
properties, m-wise consistency was proposed in relational
databases (Gyssens 1986). Janssen et al. (1989) showed
that arc consistency on the dual encoding of a CSP enforces

pairwise consistency. Algorithms for R(∗,m)C, which is
equivalent to m-wise consistency, were proposed for arbi-
trary m ≥ 2 and evaluated in (Karakashian et al. 2010).
One limitation of the algorithm for R(∗,m)C is the need to
manually select m and generate all combinations of m rela-
tions that form a connected graph. The number of combina-
tions grows exponentially withm, causing space limitations.
In comparison, RNIC requires storing for each relation R a
unique combination of constraints {R} ∪Neigh(R) and the
size of this combination varies with the connectivity of R
in the dual graph. Given the space requirement for storing
all combinations of m relations, Karakashian et al. (2010)
proposed to enforce R(∗,m)C on minimal dual graphs only,
namely wR(∗,2)C, wR(∗,3)C, and wR(∗,4)C. The support
structures used in PROCESSQ are similar to those proposed
in (Bessière et al. 2005). Finally, the insight that breaking
cycles yields trees in a search space (i.e., tree, or dangle,
identification in SEARCHSUPPORT, Section 3.4) can be re-
lated to the Cycle-Cutset method (Dechter and Pearl 1987).

6 Experimental Results
We ran our experiments on the benchmarks of the CSP
Solver Competition7 with a time limit of one and a half hours
per instance. Below we report our results, which are quan-
titatively but not qualitatively different from the results de-
scribed in (Woodward et al. 2011). We also conduct statis-
tical tests to determine the significance of those results. We
have slightly improved the code of all our algorithms and en-
large the memory pool giving benefit to the wR(∗,m)C algo-
rithms. The justification for those changes is to focus more
on the performance of the algorithms rather than focusing
on their limitations. We report our results first for the entire
pool of reported benchmarks (Table 1), then for four rep-
resentative benchmark problems (Tables 2, 3, and 4). Given
that some algorithms did not complete some instances, some
data points are missing. For this reason, we consider the
data to be right-censored and conduct a survival data anal-
ysis (Lee 1992). The survival data analysis does not make
any assumption about the distribution of the data, and yields
a calculated mean CPU time for each algorithm, reported
in column Time in Tables 1, 2, 3, and 4. A ‘-’ entry in
those columns indicates that, even though the correspond-
ing algorithm terminated on some instances, it did not ter-
minate on enough instances to yield an accurate statistical
mean. In column R, we report the rank of each algorithm
based on the probability of the survival data analysis, break-
ing ties based on the time for reaching that probability. In
column S, we group the algorithms into equivalence classes
of CPU performance. To compute the statistically signifi-
cant categories, we perform a pairwise significance check
between every two algorithms for a significance level of
0.05. This comparison requires a normal distribution of the
non-censored data. For this analysis, we assume that all
censored data points finished at the maximum cutoff time.
In Table 1, column SB provides a coarser classification of
those algorithms based on termination only while ignoring
CPU time. Regardless of whether or not the normality as-
sumption holds, each analysis yielded similar results, hint-

7http://www.cril.univ-artois.fr/CPAI09/

ing that our conclusions are correct. In addition to the above,
the tables provide: the number of completed instances (#C);
the number of instances with the fastest running time (#F),
where ties are awarded to all parties; the number of instances
solved backtrack free (#BF); and the range of the density
of the dual graph dD that each of the algorithms works on.
Further, for each benchmark class, we report the number of
instances in the class and the range of the number of con-
straints e. Before we discuss the results in detail, we note
that the values of nodes visited in all experiments comply
with the partial order shown in Figure 13.

Table 1 reports the results of all reported benchmarks. No-
tice how selRNIC outperforms all other algorithms. It ties
only with wR(∗,2)C on the pairwise significance check for
CPU time in column S. Further, with a 50ms error tolerance,
selRNIC outperforms in a statistically significant manner a
random selection of the four RNIC-based algorithms.

Table 1: Comparison over the 169 instances reported.
Algorithm Time R S SB #C #F #BF
aim-100, aim-200, lexVg, modifiedRenault, ssa benchmarks
wR(∗,2)C 944924 3 A B 138 52 79
wR(∗,3)C 925004 4 B B 134 8 92
wR(∗,4)C 1161261 5 B B 132 2 108

GAC 1711511 7 C C 119 83 33
RNIC 6161391 8 C C 100 19 66

triRNIC 3017169 9 C C 84 9 80
wRNIC 1184844 6 B B 131 8 84

wtriRNIC 937904 2 B B 144 3 129
selRNIC 751586 1 A A 159 17 142

Table 2 illustrates the usefulness of RNIC: it solves the
largest number of problems in this set, and solves, backtrack
free, the largest number of instances. In terms of signifi-
cance ranking, GAC, triRNIC, and wRNIC are not advanta-
geous techniques for these problems that have low density,
and high density after triangulation. selRNIC was able to se-
lect the dual graph that yielded the largest number of com-
pletions and backtrack free. Despite not always being the
fastest, it was not significantly different than the algorithm
that was the fastest.

Table 3 illustrates the usefulness of wRNIC and wtriR-
NIC. As stated above, the sheer number of relations com-
bined with the large density in the dual graphs of the prob-
lems in this benchmark prevents us from executing RNIC
and triRNIC. This situation demonstrates the benefits of us-
ing wRNIC and wtriRNIC, which were actually automati-
cally chosen by selRNIC. Note also that wtriRNIC solves,
backtrack free, all instances in this category. We cannot
stress enough on the importance of this last fact: It is indica-
tive of the tractability of this class of problems. Notice, de-
spite selRNIC not having the smallest CPU time, there is not
a statistically significant difference between the mean CPU
time of selRNIC and and the mean CPU time of wR(∗,2)C.
Once again, GAC was in a lower significance class than sel-
RNIC, as with RNIC and triRNIC, as was expected.

In both Tables 2 and 3, selRNIC largely outperforms GAC
for all measures. Even if one was to use a high-performance
GAC implementation such as the one in (Cheng and Yap
2010), the number of nodes visited by GAC remains orders
of magnitude larger than that by selRNIC, and the number of

Table 2: RNIC/selRNIC completes the largest number of in-
stances, and solves, backtrack free, the largest number of instances.
Algorithm dD Time R S #C #F #BF

aim-100: 24 instances, e ∈[150,570]
wR(∗,2)C

[6.3%,8.1%]
412369 5 A 19 6 5

wR(∗,3)C 304816 3 A 20 1 7
wR(∗,4)C 140070 2 A 20 0 12

GAC N/A 1923579 7 B 17 4 1
RNIC/

selRNIC
[6.3%,8.1%] 94699 1 A 22 5 16

triRNIC [26.0%,70.5%] 2259986 8 B 9 1 9
wRNIC [0.7%,2.6%] 1009380 4 B 20 8 7

wtriRNIC [6.3%,8.1%] 1280885 6 A 17 0 8
aim-200: 24 instances, e ∈[302,1169]

wR(∗,2)C
[3.2%,4.2%]

132205 5 B 12 10 4
wR(∗,3)C 1006472 2 A 15 3 8
wR(∗,4)C 2015651 3 B 12 0 8

GAC N/A - 6 C 8 0 0
RNIC/ [3.2%,4.2%] 781596 1 A 19 5 13selRNIC

triRNIC [21.2%,71.6%] - 8 C 1 0 1
wRNIC [0.4%, 1.4%] 244643 4 B 13 3 5

wtriRNIC [6.3%,11.6%] - 7 C 6 0 6

Table 3: RNIC is hindered by the high density of the dual graph,
but its weakened versions outperform all others.
Algorithm dD Time R S #C #F #BF

modifiedRenault 50 instances, e ∈[147,159]
wR(∗,2)C

[35.4%,41.6%]
3078 6 A 46 30 41

wR(∗,3)C 8463 3 A 49 4 48
wR(∗,4)C 31157 1 A 50 2 50

GAC N/A 1678928 7 B 25 14 4
RNIC [35.4%,41.6%] - 8 B 7 0 7

triRNIC [36.4%, 43.8%] - 9 B 5 0 5
wRNIC [1.7%,1.9%] 8285 5 A 47 0 43

wtriRNIC [2.9%,3.9%] 166652 2 A 50 0 50
selRNIC [1.8%,3.6%] 166560 4 A 49 0 48

instances solved backtrack-free significantly smaller. Only
in Table 4 does GAC outperform the other algorithms in
terms of CPU time only. Interestingly, however, on lexVg,
and despite the high density ([57.6%,78.6%]) of the redun-
dancy removed triangulated dual graph, wtriRNIC/selRNIC
solves in a backtrack-free manner all but one of the instances
in this set, thus hinting to the tractability of these instances.
(The last instance hit the time threshold.) Notice that even
though GAC has a smaller CPU time than selRNIC, the dif-
ference between the two algorithms is not statistically signif-
icantly (see column S). There were not enough instances (8)
for the ssa benchmark, reported in (Woodward et al. 2011),
to report any statistically significant conclusions.

7 Future Work & Conclusions
Our approach opens the door to the investigation of a
new type of singleton consistency properties for non-binary
CSPs. Instead of assigning the value of a single variable
before enforcing some level of consistency on the CSP, as
it is usually the case for Singleton Arc Consistency (SAC)
(Bessiere et al. 2011), we should investigate the effective-
ness of ‘assigning a tuple to a relation’ in the dual prob-
lem. Such an approach would yield a new class of relational
consistency properties, which could be called relation-based
singleton consistency properties. Note however, that, un-

Table 4: GAC is best on CPU, triRNIC/selRNIC is best on #BF.
Algorithm dD Time R S #C #F #BF

lexVg: 63 instances, e ∈[8,36]
wR(∗,2)C

[48.5%,57.1%]
809765 4 C 55 4 27

wR(∗,3)C 1384983 7 C 44 0 27
wR(∗,4)C 1525548 7 C 28 0 26

GAC N/A 114827 1 A 63 61 26
RNIC [48.5%,57.1%] 1647671 6 C 45 7 27

triRNIC [57.6%,78.6%] 1031882 3 B 62 7 62
wRNIC [48.5%,57.1%] 1464461 5 C 43 1 27

wtriRNIC/
selRNIC

[57.6%,78.6%] 580935 2 A 62 7 62

like RNIC, maintaining such properties during search is pro-
hibitive in practice (Lecoutre and Prosser 2006).

Our algorithm operates on relations defined in extension
as consistent tuples (supports). Relations defined in exten-
sion as conflicts (no-goods) could be converted to supports,
as we did here. Further, and also for constraints defined in
intension, we could generate support tuples after applying
GAC to the original CSP. For cases where it is important
to keep all relation definitions in intension, we claim that a
similar, albeit weaker, domain pruning can be achieved by
executing RNIC on combinations of domain values that are
consistent with the relations. We propose to mitigate the loss
of information by generating new (support) constraints of
some judiciously chosen scopes. We propose to investigate
this approach in the future and evaluate its effectiveness.

Consistency properties and their algorithms are central to
CP, and perhaps best distinguish this discipline from other
fields that study the same problems. Research has focused
on defining new properties, proposing new algorithms, im-
proving the performance of known ones, and theoretically
characterizing the relationship between the consistency level
and the tractability of the CSP. Our contribution exploits and
adds to the large body of literature on consistency properties
and their propagation algorithms. However, our long-term
goal is to design techniques that allow a constraint solver
to identify tractable problem classes and automatically se-
lect and apply the appropriate tools for solving them. In that
sense, the ability of our techniques to adapt to a problem’s
structure and solve many difficult instances in a backtrack-
free manner8 is perhaps the most noteworthy contribution of
the current research: It indicates that we may be one step
closer to achieving our goal.

Acknowledgments
We are grateful to Elizabeth Claassen and David B. Marx of the
Department of Statistics at the University of Nebraska-Lincoln
(UNL) for their help with designing the statistical analysis. Exper-
iments were conducted on the equipment of the Holland Comput-
ing Center at UNL. Robert Woodward was partially supported by
a B.M. Goldwater Scholarship and by a National Science Founda-
tion (NSF) Graduate Research Fellowship grant number 1041000.
This research is supported by NSF Grant No. RI-111795.

References
Bacchus, F.; Chen, X.; Beek, P. V.; and Walsh, T. 2002. Binary vs.
Non-Binary Constraints. Artificial Intelligence 140:1–37.

8Note that the complexity of RNIC is exponential in the degree
of the dual graph and not in the number of variables.

Bessière, C.; Régin, J.-C.; Yap, R. H.; and Zhang, Y. 2005. An
Optimal Coarse-Grained Arc Consistency Algorithm. Artificial In-
telligence 165(2):165–185.
Bessiere, C.; Cardon, S.; Debruyne, R.; and Lecoutre, C. 2011.
Efficient Algorithms for Singleton Arc Consistency. Constraints
16 (1):25–53.
Bessière, C.; Stergiou, K.; and Walsh, T. 2008. Domain Filtering
Consistencies for Non-Binary Constraints. Artificial Intelligence
172:800–822.
Bessiere, C. 2006. Handbook of Constraint Programming. Else-
vier. chapter Constraint Propagation.
Cheng, K. C., and Yap, R. H. 2010. An MDD-Based Generalized
Arc Consistency Algorithm for Positive and Negative Table Con-
straints and Some Global Constraints. Constraints 15 (2):265–304.
Debruyne, R., and Bessière, C. 1997. Some Practicable Filtering
Techniques for the Constraint Satisfaction Problem. In Proc. of the
15 th IJCAI, 412–417.
Debruyne, R., and Bessière, C. 2001. Domain Filtering Consisten-
cies. Journal of Artificial Intelligence Research 14:205–230.
Dechter, R., and Pearl, J. 1987. The Cycle-Cutset Method for
improving Search Performance in AI Applications. In Third IEEE
Conference on AI Applications, 224–230.
Dechter, R., and van Beek, P. 1997. Local and Global Relational
Consistency. Theor. Comput. Sci. 173(1):283–308.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
Freuder, E. C., and Elfe, C. D. 1996. Neighborhood Inverse Con-
sistency Preprocessing. In Proc. of AAAI-96, 202–208.
Freuder, E. C. 1991. Completable Representations of Constraint
Satisfaction Problems. In Second International Conference on
Principles of Knowledge Representation and Reasoning, 186–195.
Gent, I.; Stergiou, K.; and Walsh, T. 2000. Decomposable Con-
straints. Artificial Intelligence 123 (1-2):133–156.
Golumbic, M. C. 2004. Algorithmic Graph Theory and Perfect
Graphs. Elsevier. Annals of Discrete Mathematics, Vol 75.
Gyssens, M. 1986. On the Complexity of Join Dependencies. ACM
Trans. Database Systems 11(1):81–108.
Janssen, P.; Jégou, P.; Nougier, B.; and Vilarem, M. 1989. A Filter-
ing Process for General Constraint-Satisfaction Problems: Achiev-
ing Pairwise-Consistency Using an Associated Binary Representa-
tion. In IEEE Workshop on Tools for AI, 420–427.
Karakashian, S.; Woodward, R.; Reeson, C.; Choueiry, B. Y.; and
Bessiere, C. 2010. A First Practical Algorithm for High Levels of
Relational Consistency. In AAAI 10, 101–107.
Kjærulff, U. 1990. Triagulation of Graphs - Algorithms Giving
Small Total State Space. Research Report R-90-09, Aalborg Uni-
versity, Denmark.
Lecoutre, C., and Prosser, P. 2006. Maintaining Singleton Arc
Consistency. In CPAI 06 Workshop on Symmetry in Constraint
Satisfaction Problems (SymCon 10), 47–61.
Lee, E. T. 1992. Statistical Methods for Survival Data Analysis.
New York, NY: John Wiley & Sons, second edition.
Stergiou, K. 2007. Strong Inverse Consistencies for Non-Binary
CSPs. In Proc. of the 19th IEEE International Conference on Tools
with Artificial Intelligence, volume 1 of ICTAI 07, 215–222.
Woodward, R.; Karakashian, S.; Choueiry, B. Y.; and Bessiere,
C. 2011. Solving Difficult CSPs with Relational Neighborhood
Inverse Consistency. In AAAI 11, 1–8.

