
Querying Spatiotemporal XML Using DataFoX ∗

Yi Chen Peter Revesz
Computer Science and Engineering Department

University of Nebraska-Lincoln
Lincoln, NE 68588, USA

{ychen,revesz}@cse.unl.edu

Abstract

We describe DataFoX, which is a new query language
for XML documents and extends Datalog with support for
trees as the domain of the variables. We also introduce for
DataFoX a layer algebra, which supports data heterogene-
ity at the language level, and several algebra-based evalu-
ation techniques.

1. Introduction

XML is a standard data model for data representation
and exchange on the Internet. Several XML-based lan-
guages can also encode geographic information and spa-
tiotemporal data. For example, the Vector Markup Lan-
guage (VML) can represent vector objects, the Geogra-
phy Markup Language (GML) can represent coordinates of
OpenGIS features, and the Parametric Rectangle Markup
Language (PRML), which we introduce in this paper, can
represent parametric rectangles[11, 2].

While XML is successful for data representation, the
current XML query languages, including XQuery[4],
Quilt[5], Lorel[1], XML-QL[6], and XPathLog[10], do
not fully support querying geographic and spatiotemporal
XML documents. Querying based on relational database
systems[3, 9, 7, 13, 12] also does not support spatiotempo-
ral queries. Previous XML query language proposals also
have the following common problems:

• The method of querying XML using relational
database systems includes both the translation of XML
schemas into relational schemas and the translation of
tree-structured XML data into relational tables. This
method may loose some semantic information that is
encoded in the tree structure. For example, a rectangle

∗This research was supported in part by NSF grant EIA-0091530 and a
Gallup Research Professorship.

and a straight-line object in GML have identical struc-
tures. There is no automatic translation algorithm that
can maintain the XML schema information.

• Tree algebras do not allow grammar heterogeneity of
the XML data. For example, a single spatial object
with a rectangle shape can also be encoded as the com-
bination of two triangles. The structure and the content
of the GML data that result from these different combi-
nations are different and tree algebras may erroneously
regard them as two different objects.

• Many XML standards provide a strict structure for part
of the data. For example, spatial attribute data in GML
are well structured. Unfortunately, most previously
proposed XML query languages and XML algebras do
not provide sufficient support for well-structured data
in a semi-structured environment. For example, pre-
viously proposed XML query languages do not sup-
port spatiotemporal queries on GML although the spa-
tiotemporal attributes are well structured in GML.

To overcome the above problems, we present a rule-
based XML query language, Datalog For XML (DataFoX),
which combines the simplicity of Datalog with the support
for spatiotemporal data in constraint databases[8, 11]. We
also introduce a Layer Algebra, which is a novel exten-
sion of relational algebra for XML and provides the basis
of query evaluation and optimization for XML queries. The
primary challenges we address are: (i) how to identify and
represent trees in the query language, and (ii) how to evalu-
ate the tree-based query language.

1.1. The DataFoX System Architecture

The architecture of the DataFoX system is outlined in
Figure 1. XML Data sources in different formats are
wrapped into a uniform representation called Layer Con-
straint Databases, which are powerful for capturing the

GML Wrapper VML Wrapper PRML Wrapper

GML Data Source VML Data Source PRML Data Source

XML Wrapper

XML Data Source

Query Evaluation

Layer Algebra

Datalog Query

Query Translator

DataFoX Query

Layer Constraint Database

Figure 1. The DataFoX Architecture

XML tree structure and GML, VML, and PRML spatiotem-
poral information. The DataFoX query language is trans-
lated into a Datalog query, which is further translated into
the layer algebra. The query is evaluated and the query re-
sult may be translated back to XML using wrappers.

Our architecture not only supports spatiotemporal
queries but also enables integration of heterogeneous data
sources. For example, Figure 2 shows an integrated univer-
sity campus map, whose description is composed of three
different data sources: the classroom buildings represented
in GML, the stadium and the square in front of it repre-
sented in VML, and a moving bus and a helicopter repre-
sented in PRML.

The following are some typical queries on this map:

Query 1 Will the bus pass the east gate of the stadium?

Query 2 When will the helicopter fly over the stadium?

Query 3 When will the helicopter fly above the bus?

2. Data Model

The DataFoX system translates the different data sources
(GML, VML, and PRML) into a layer model.

2.1. Layer Model

In XML, the type of each node is defined as an “ele-
ment”. We regard nodes as the counterpart of tuples in re-
lational databases. The difference is that the data type of
the field in a certain element could be another element. All
of the nodes of the same element type belong to a layer,
which is the counterpart of a relation in relational databases.
The layer name is the same as the element name defined for
these nodes. We say layer A is the parent layer of layer B if
the element B is the sub-element of element A in the XML
document.

We define inferred layers of a layer L as the set of layers,
which are child layers of L. Similarly, the inferred layer of a
node is the subtree that is rooted from this node. Thus, the
inferred nodes of a certain node n and the edges between
these nodes form an XML tree with root n. We assume that
each node has a virtual attribute nid as the identifier of the
node and a hidden attribute pid as a pointer to the parent
node. We may use the nid to access a node, from which we
may access its child nodes. In DataFoX, we also use this
nid to identify the subtree that is rooted at the current node.

Stadium

Ferguson Hall

Avery Hall

Bus
Helicopter

x

y

Stadium Square

<buildings>
 <lecture_hall>
 <name> Ferguson Hall </name>
 <dept> Computer Science </dept>
 <boundedby>
 <rectangle>
 <coord> <x> 35 </x> <y> 15 </y> </coord>
 <coord> <x> 45 </x> <y> 30 </y> </coord>
 </rectangle>
 <rectangle>
 <coord> <x> 45 </x> <y> 15 </y> </coord>
 <coord> <x> 50 </x> <y> 20 </y> </coord>
 </rectangle>
 </boundedby>
 </lecture_hall>
 .
 .
 .
</buildings>

Campus map GML document

<sport_facilities>
 <stadium>
 <name> Husker Stadium </name>
 <shape>
 <ellipse>
 <x> 15 </x>
 <y> 40 </y>
 <w> 10 </w>
 <h> 15 </h>
 </ellipse>
 </shape>
 </stadium>
 <square>
 <name> Stadium Square </name>
 <shape>
 <rectangle>
 <x> 30 </x>
 <y> 40 </y>
 <w> 5 </w>
 <h> 5 </h>
 </rectangle>
 </shape>
 </square>
</sport_facilities>

<transportation>
 <vehicle>
 <name> Bus </name>
 <schedule>
 <prectangle>
 <x>
 <from> <a> 0 32 </from>
 <to> <a> 0 33 </to>
 </x>
 <y>
 <from> <a> 1 5 </from>
 <to> <a> 1 6 </to>
 </y>
 <t>
 <from> 0 </from>
 <to> 55 </to>
 </t>
 </prectangle>
 .
 .
 .
 </schedule>
 </vehicle>
 .
 .
 .
</transportation>

VML document PRML document

Figure 2. A campus map integrated from GML, VML, and PRML documents

We also assume nid is ordered, to maintain the order in-
formation of the XML tree model. For those elements de-
fined as primitive data types, we assign an internal attribute
named data. The value of this attribute is the content of the
element.

We apply the same notation used to represent relational
schema to represent the layer schema. However, the domain
of variables for the layer schema is “tree”. For example,
the layer schema LAYERNAME(L1,...,Ln) means that
there is an element named “LAYERNAME” defined in the
XML document, which has n child elements, with the layer
names L1, L2, ..., Ln respectively. The data type of the
child layers can be atomic (e.g.: string, integer etc.) or a
tree type defined by another layer schema. An instance of a
layer and all of its inferred layers is a tree, whose root is an
instance of the root layer.

The layer definition can be generated from the element
definition of the XML document. We assume that every
XML document comes with a Data Type Definition (DTD).
XML Schema is a stronger schema definition of XML, but
DTD is adequate (note: we can always generate DTD from
the XML schema to create the layer data model.) With the
layer data model, an XML document is treated as a collec-
tion of layers, and the traversal of the XML document is
actually the traversal between the layers.

<!ELEMENT library (book*)>
<!ELEMENT book (title, year,

author+)>
<!ELEMENT title #PCDATA>
<!ELEMENT year #PCDATA>
<!ELEMENT author #PCDATA>

<library>
<book>

<title>Landscape</title>
<year>1997</year>
<author> Steve </author>

</book>
<book>

<title>Portrait</title>
<year>2000</year>
<author>John</author>
<author>Maggie</author>

</book>
</library>

Figure 3. Library Document

Example 2.1 (Layer Model) The XML document shown in
Figure 3 can be modeled in the layer model shown in Fig-
ure 4. Every layer corresponds to an “element” definition

in DTD. The book layer and author layer are called the in-
ferred layers of the library layer. The layers with primitive
data types like “PCDATA” are merged into their parent layer
for simplicity.

2.2. Spatiotemporal Data Model

With the self-description feature of XML, every spa-
tiotemporal data can be easily encoded in XML. Typi-
cally, GML defines a class of spatial features to repre-
sent OpenGIS data, and VML encodes vector information
in XML. Parametric Rectangle data model, used to model
moving objects, can be also encoded in XML, which we
refer to as PRML.

These data models share a common characteristic,
namely, the structures of the spatiotemporal attribute are
well-formatted, and generally form a well-formatted sub-
tree in the document (although the structure could be very
complex.) Applying the layer data model, we may use the
upper layer to aggregate the object using constraints. The
wrapper performs this work. Figure 5 shows the aggrega-
tion operation on spatiotemporal data.

3. The Operators

A layer in XML can be regarded as a relation in relational
databases that accept tree as the variable domain, which is
defined as child layers. This definition allows us to define
the operators on layers, which is very similar to that of re-
lational databases. In this section, we introduce the Layer
Algebra.

3.1. Selection

By “selection” operation, we are interested in all nodes
in a layer, which satisfy some selection predicate. It is a
“horizontal” operation on XML in the sense that no tra-
verse between layers is involved. The input of selection in
layer algebra is a layer L, and a set of predicates SL as pa-
rameters. It returns an output layer O, which has the same
schema as the input layer L. The children of the output
layer are lost except for those fields with atomic data types.
The selection can be denoted as σL

SL(L). A node n belongs
to the output layers if it satisfies the selection predicate S.

3.2. Projection

We define the projection operation as an orthogonal op-
eration to the selection operation. It is a “vertical” operation
on XML in the sense that the traverse between layers is in-
volved in the operation. The input of projection is a layer
L (and all of its inferred layers), and a set of projection list
PL as projection parameters. The projection list is a set of

library

year

author author

book book

title year author
title

Lanscape 1997 Steve Portrait 2001 John Maggie
author nid

4

5

6

nid

1

library

nid <year> <author>book

2

3

1997

2001

<book>

<title>

Landscape

Portrait

data

Steve

John

Maggie

pid

pid

pid

null

1

1

2

3

3

Figure 4. Layer Model for Library Document

vehicle

name
style

schedule

vehicle

name
style

schedule

aggregate

(spatio−temporal data)

constraints

vehicle

nid <name><style> <schedule>

...

1 Bus ... x=10, y=2t, 0<=t<=10

2 shuttle

(a) (b) (c)

Figure 5. Spatiotemporal XML Aggregation

child layer names of the input layer L, which are associated
with a set of sub-elements of the element defined for the in-
put layer L. The output of projection operation is an output
layer O, such that only those child layers that satisfy the
projection predicates are kept as the inferred layer of output
layer O. That is, the child layers in the output layer are a
subset of child layers in the input layer, and all child layers
of these returned layers are copied to the output. The pro-
jection can be denoted as πL

PL(L). Formally, the projection
operation is defined as follows.

• A node in the input layer belongs to the output if and
only if its element type is included in the projection list
PL.

• A node in the input layers belongs to the output layers,
if its the parent node belongs to the output layers.

3.3. Product and Join

The input of a product operation is two layers,
L1 and L2, with the schema L1(L1,1, ..., L1,m) and
L2(L2,1, ..., L2,n). The output of the product op-
eration is a new layer O, with the layer schema
O(L1,1, ..., L1,m, L2,1, ..., L2,n). Formally, the product op-
eration can be defined as follows.

For every pair of nodes n1 and n2, such that n1 belongs
to layer L1 and n2 belongs to layer L2, a new node n is
created for the output layer O. The new nodes have m + n
children, such that the first m children are the same as the
children of n1, and the remaining n children are the same
as the children of n2.

The join operation can be expressed as selection opera-
tion posed on the result layer of the product operation. The
formal definition of the join operation can be defined as fol-
lows.

Definition 3.1 (Join) Let L1 and L2 be two layers, with
the schema L1(x1, ..., xi, ..., xm) and L2(y1, ..., yj , ...yn),
respectively. Then the join operation ./ creates a new layer
L, such that

• The layer L has the schema
L(x1, ..., xi, ..., xm, y1, ..., yj , ..., yn).

• If a node n1 belongs to layer L, there must be two
nodes n1 and n2 that belongs to layer L1 and L2 re-
spectively, such that the inferred layer xi of node n1

has the same value with that of the inferred layer yj of
node n2.

The join operation can be denoted as L1 ./L
xi=yj

L2.

3.3.1 Path Join

We introduce Path Join to join two layers with path predi-
cates. The input is two layers A and B, and the output of
the path join operation is two layers, A′ and B′, which has
the same schema with A and B respectively. The path join
operation will have the form of A ./L

PP B, while PP is the
path predicates. The path join can be defined formally as
follows.

• A node n belongs to the output layer of A′ if and only
if n also belongs to A, and there exists a node m in B ′,
such that n and m satisfy the path predicate nθm.

• A node m belongs to the output layer of B ′ if and only
if m also belongs to B, and there exists a node n in
output layer A′, such that m and n satisfy the path
predicate nθm.

Example 3.1 The query Find all information about books
that were published in 1997 can be expressed using path
join as follows:

(σL
year=1997

book) ./L
book.nid/author.nid author

3.4. Translation of Layer Algebra

Layer Algebra is the basis for query evaluation and opti-
mization. We show in this section the translation of Layer
Algebra to Relational Algebra. With this translation we
may implement the queries in a relational database system
discussed in Section 4.

Theorem 3.1 Let L be an expression of Layer Algebra.
There is an expression E in Relational Algebra that is equiv-
alent to L.

proof: A Layer Algebra expression L that consists of
projection, selection and join can be translated into a Re-
lation Algebra expression E because there are equivalent
operators for each layer algebra operator.

• (Selection) Selection operation only returns a set of
nodes that belong to the input layer. Thus, the layer
algebra σL

SL(L) can be translated into relational alge-
bra expression σSL(R), such that the relation R has
the same schema with the layer L.

• (Projection) For a projection operation with the form
πL

PL(L), such that the PL is the list of fields to be
projected, translate the expression into relational oper-
ation πPL(L), followed by σIL(L), in which IL is the
inferred layers of L.

• (Join) The join operation on two layers can be trans-
lated straightforwardly into a join operation on two re-
lations.

For the selection, projection and join operation on a layer
that do not have inferred layers, the translation is straight-
forward.

Example 3.2 Consider the join operation between the book
layer and the publisher layer, book ./L

book.title=publish.title

publish. Parts (a) and (b) in Figure 6 show the original
data. Part (c) shows the schema of the output of the join
operation. Finally, part (d) shows the tree structure of the
result of the join operation.

4. DataFoX Language

DataFoX is a Datalog-like declarative query language. It
is a high-level language that extends Datalog with tree type
variables. We show that a DataFoX query can be translated
into a constraint query, which can be evaluated in the run-
ning constraint database system MLPQ.

4.1. Syntax

The input of a DataFoX query is a set of XML docu-
ments, and the output of a DataFoX query is also an XML
document. Each DataFoX query consists of a finite set of
rules of the form:

Q(y1, . . . , ym) : − R1(x1,1, . . . , x1,k1
),

...,
Rn(xn,1, . . . , xn,kn

).

where each Ri is either a name of element in the XML
document or a defined relation name, including predefined
spatiotemporal function names. The x’s and y’s are ei-
ther variables, or constants. When xi,j is a variable, it is
bounded to the jth child of the Ri element. We also al-
low to specify the sub-element type of the variable xi,j , by
adding the element name ei,j , with the form of ei,j : xi,j .

publish nid

11

12

13

14

nid <title> <year> <author> <title> <publisher>

(a)

(b)

(c)

book book

title yeartitle

Lanscape

year author

1997 Steve 2001Portrait John

author author

Maggie

Kodak Little,Brown

publisherpublisher

(d)

nidauthor

nid <year> <author>book

2

3

1997

4

5

6

2001

<data>

Steve

John

Maggie

<title>

Landscape

Portrait

<title> <publisher>

Kodak

Amaherst Media

Little, Brown

Little, Brown

Landscape

Macro

Black & White

Portrait

pid

pid

pid

1

1

2

3

3

10

10

10

10

Figure 6. Join Operation

The rule head relation Q is the root element name of the
query result. The variables yi define the values of the ele-
ments which are the sub-elements of the resulting root ele-
ment Q. Each variable yi has to appear somewhere in the
rule body.

4.1.1 DataFoX Query Body

We categorize the predicates in the DataFoX query body
into three classes: Extensional and Intensional Predicates,
Built-in Predicates and user defined functions. The same
with Datalog, the extensional predicates are relational
database relations and the intensional predicates are the
database relations defined by the rules.

Built-in predicates include arithmetic comparison predi-
cates, =, <, and so on. We introduce two path predicates, “/”
and “//” refer to the parent-child and ascendant-descendant
relationships of two nodes. For example, x/y means the
node x is the parent node of the y.

Tree is included in the domain of variables in DataFoX.
An internal attribute node ID (nid) for an extensional pred-
icate refers to the current node that satisfies the predicate,
and this nid is used to identify the tree with the root node
nid. For example, in the predicate A(a, B : b, C : c) the
variable a refers to the current node with the element type
A, which has two sub-elements B and C. Two boolean
predicates will hold from this extensional predicate: a/b
and a/c, because the node b and c are both children of node
a.

We introduce user defined predicates to handle the opera-
tion between tree type variables. Tree data is more complex
then atomic data. The predicate between two tree variables

can’t simply be mapped to the predicates of the nodes and
edges of the tree. For example, a single spatial object can be
divided into two rectangles in two different ways. Thus, we
can encode this spatial object in GML in two different ways
but they are describing exactly the same object. Equality, as
applied to two trees, means that there exists a mapping be-
tween nodes or edges of the two trees. This concept focuses
on the equality of structure detail, but misses the semantic
information provided by the tree as a whole.

The introduction of user defined predicates also allows
hiding of structure detail of variable from user. This pro-
vides a data integration mechanism.

Example 4.1 Consider the query:
Find all the buses that will intersect with the bus named
”schoolbus” between times 0 and 100.
This can be expressed as:

vehicle(bus: u):-
Bus(v, name:"schoolbus"),
Bus(u),
intersect(v, u, x, y, t),
0<=t, t<=100.

In this example, bus u and v have the same data type,
defined as “Bus” element in the document, but the structure
details of the data are hidden. The user defined predicate
intersect handle the detail and heterogeneity of these two
trees.

4.1.2 DataFoX Query Head

Each DataFoX query head has two roles: (1) it specifies
the projection operation on the relation created by the query
body, and (2) it defines the schema for each variable.

This means that each variable in the DataFoX rule head
must appear in the rule body. The data type of a variable
in the rule head is the same as that of the matching variable
in the rule body. The query result is tagged as an XML
document according to the query head.

4.2. Tree Operation

One of the advantages of Layer Algebra for XML is that
it provides a data abstraction based on the tree data types.
The detail of a subtree in XML is abstracted as a tree type
variable in the root layer of this subtree. With this tree ab-
straction we may design operations between trees. The de-
tails of the tree variable (the structure and content) are all
hidden from the user. In implementation, the corresponding
XML wrapper will be triggered when a tree variable is used
in the query.

A typical application of tree operation is the manipula-
tion of spatiotemporal data encoded in XML.

Example 4.2 Consider the query:
Find the intersection time and position of two vehicles.
This can be expressed as:

intersect_time(x, y, t) :-
vehicle(name:"Bus", schedule:s1),
vehicle(name:"Shuttle",schedule:s2),
intersect(s1, s2, x, y, t).

The schedule layer and its inferred layers encode spa-
tiotemporal information of the vehicle in a tree structure.
Tree variables s1 and s2 are used to abstract the tree and
take part in the intersect spatiotemporal operation. The tree
structure details are hidden from the user.

This kind of query is very difficult to express in other
XML query languages. Consider the intersection of two line
segments AB and CD represented in GML. The coordi-
nates of the four points can be queried by XQuery. Suppose
these four points are represented in coordinates A(0, 0),
B(5, 5), C(0, 5), D(5, 0). The coordinates of the intersec-
tion point is (2.5, 2.5), which does not exist in the XML
source. To handle spatial data types is an even more com-
plex problem. For example, the intersection of two rectan-
gular objects could be another rectangle, but it also could
be a line segment or a single point. To represent this query
with XQuery language, the user has to take into account
each case separately.

In the layer model we may use a tree type variable to
represent the spatiotemporal object and introduce a set of

built-in operations defined on these variables. For example,
a function area() can be defined on the Bounded by ele-
ment in GML to compute the area of the region represented
by this element. The task of translating the spatiotemporal
objects to a constraint representation is shifted to the wrap-
per. That makes the query language easier to understand.

4.3. DataFoX Evaluation

DataFoX extends Datalog with path predicate and tree
operation, which supports the tree data type domain. In this
section, we address the problem of DataFoX evaluation.

Theorem 4.1 (Least Fixpoint Evaluation) The least fix-
point of any DataFoX query and input database (XML doc-
ument) with path constraints is closed-form evaluable.

4.4. Translating DataFoX Queries

DataFoX uses a similar syntax to Datalog, and Layer Al-
gebra is an extension of Relational Algebra with tree opera-
tions. In this section, we discuss the translation of DataFoX
rule bodies into Layer Algebra.

Algorithm 1 Computing the layer for a DataFoX rule
body using Layer Algebra
INPUT: The body of a DataFoX rule r, which consists of
subgoals S1, ..., Sn. For each Si = pi(Ai,1, ..., Ai,ki

) with
an ordinary predicate, there is a layer Li already computed
where the A’s are either an internal attribute nid for the
layer or a variable term with the form ei,k : xi,k , or a con-
stant term with the form ei,k : ci,k.
OUTPUT: An expression of layer algebra.
METHOD:

1. For each subgoal Si, let Qi be the expression
πL

PL(σL
SL(Li)), such that all variables appear in the

predicate are included in the projection term pl, and
sl is the conjunction of the following conditions: (i)
If there is a constant a appear in the subgoal with the
form ei,k : a, then sl has the term ei,k = a; and (ii) if
two sub-elements have the same variable with the form
ei,k : x, ei,l : x, then sl has the term ei,k = ei,l.

2. For each subgoal Si which is path predicate
with the form aθb, let Qi be the expression
Li,j ./Li,j .nidθLi,k.nid Li,k, such that the variable a
and b appears as the internal attributes in two other
subgoals Sj and Sk respectively.

Theorem 4.2 Let Q be a DataFoX query not involving re-
cursion, function calls (spatiotemporal functions), there is
an expression E in layer algebra that is equivalent to Q.

4.5. Translation to Layer Algebra

With Algorithm 1 all spatiotemporal operations can be
converted into constraint queries. In this section, we focus
on the translation to layer algebra. We also show how to
eliminate path predicates.

The query body of DataFoX can be translated into Data-
log easily, provided a schema information of the XML doc-
ument (DTD format).

To simplify the query statement, DataFoX extensional
and intensional predicates allow the explicit specification
of the field name. The complete predicate can be retrieved
by looking up the internal schema information.

The translation of DataFoX to layer algebra can be sum-
marized by the following steps:

1. For a predicate, if there is any constants appear
in it,the predicate can be translated into a “se-
lection” operation. For example, the predicate
book(title : ”portrait”, ...) can be translated into
πtitle=′portrait′(book).

2. For any variable that appears in more than one predi-
cate, a “join” operation should be used between these
predicates. For example, the DataFoX query Exam-
ple 3.2 can be expressed as:

publishers():- book(title:t),
publish(title:t).

The same variable t appears in two predicates, the
corresponding algebra is book ./L

book.title=publish.title

publish.

3. The path predicate, for example, the predicate with the
form a/b, can be regarded as a special path join op-
eration between the two nodes and the edge relation.
We can easily translate a path predicate into layer al-
gebra. Note that by giving an edge relation that stores
all edges, the descendant predicate with the form a//b
can also be translated into a set of join operations on
the edge relation. The descendant predicate can be de-
scribed as recursive Datalog as follows:

descendant(a, b) :- parent(a,b).
descendant(a, b) :- parent(a,c),

descendant(c,b).

In DataFoX evaluation, we maintain a lightweight tree to
abstract the path information and use a bottom-up traversal
to bypass the evaluation of recursive join operations.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. L. Wiener. The Lorel query language for semistruc-
tured data. International Journal on Digital Libraries,
1(1):68–88, 1997.

[2] M. Cai, D. Keshwani, and P. Revesz. Parametric
rectangles: A model for querying and animation of
spatiotemporal databases”. In Proc. Seventh Con-
ference on Extending Database Technology (EDBT),
Springer-Verlag LNCS 1777, pages 430–444, 2000.

[3] M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shan-
mugasundaram, E. J. Shekita, and S. N. Subrama-
nian. XPERANTO: Publishing object-relational data
as XML. In WebDB (Informal Proceedings), pages
105–110, 2000.

[4] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and
M. Stefanescu. Xquery: A query language for XML,
2001.

[5] D. D. Chamberlin, J. Robie, and D. Florescu. Quilt:
An XML query language for heterogeneous data
sources. In WebDB (Informal Proceedings), pages 53–
62, 2000.

[6] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. XML-QL: A query language for XML.

[7] A. Deutsch, M. Fernandez, and D. Suciu. Storing
semistructured data with STORED. In SIGMOD 99,
pages 431–442, 1999.

[8] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Con-
straint query languages. In Journal of Computer and
System Sciences , vol. 51, no. 1, pages 26–52, 1995.

[9] M. Fernandez and W. Tan and D. Suciu. SilkRoute:
Trading between Relations and XML. In WWW9, May
2000.

[10] W. May. Xpath-logic and xpathlog: A logic-based ap-
proach for declarative xml data manipulation.

[11] P. Revesz. Introduction to Constraint Databases.
Springer, 2002.

[12] J. Shanmugasundaram, E. Shekita, J. Kiernan, R. Kr-
ishnamurthy, E. Viglas, J. Naughton, and I. T. Rinov.
A general technique for querying xml documents us-
ing a relational d atabase system. In SIGMOD Record,
pages 20–26, 2001.

[13] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational databases
for querying XML documents: Limitations and oppor-
tunities. In The VLDB Journal, pages 302–314, 1999.

