
The Constraint Database Approach to Software Verification?

Peter Revesz

Max Planck Institut für Informatik
University of Nebraska-Lincoln

revesz@cse.unl.edu

Abstract. Based on constraint database techniques, we present a new approach to software
verification. This new approach has some similarity to abstract interpretation that uses var-
ious widening operators; therefore, we call the new approach l-u widening. We show that
our l-u widening leads to a more precise over-approximation of the invariants in a program
than comparable previously proposed widening operators based on difference-bound matri-
ces, although l-u widening can be computed as efficiently as the other widening operators.
We show that constraint database techniques can compute non-convex program invariants
too. Finally, we give a compact representation of addition-bound matrices, which generalize
difference-bound matrices.

1 Introduction

Software verification is a basic concern of computer science, hence many different approaches were
proposed for it, including data flow analysis, abstract interpretation [?,?,?], model checking [?,?,?,?],
predicate abstraction [?], and mathematical induction. Today there are many examples of successful
applications of these approaches to the verification of digital circuits and programs.

Software verification would be easy if we could compute the precise semantics of programs. For
a procedural program, the semantics means that we find for each line of the program an invariant,
which is the set of possible values of the variables that may be used at that line. While a precise
computation is not possible in general, an over-approximation or under-approximation is possible.
Abstract interpretation relies on a kind of over-approximation. More recently, constraint database
researchers proposed for constraint query languages [?,?,?,?,?], which simplify constraint logic pro-
grams [?,?,?,?], alternative methods to over-approximate or under-approximate the semantics [?,?].
Via well-known translations among the various programming languages, the approximation results
in constraint databases imply approximation results for the semantics of the more traditional pro-
cedural programs. The idea of translating from procedural programs to constraint query languages
or constraint logic programs occurs in Delzanno and Podelski [?], Fribourg and Richardson [?], and
Fribourg and Olson [?]. However, these papers did not use the latest approximation results. For ex-
ample, [?] relied on the result that the least fixpoint semantics of Datalog (Prolog without function
symbols and negation) with integer gap-order constraint programs can be precisely evaluated [?].1

In this paper we present a general approach of applying the constraint database approximation
to software verification, extending earlier work in [?]. The constraint database approximations are

? This research was supported in part by a Humboldt Research Fellowship from the Alexander von Hum-
boldt Foundation.

1 A gap-order is a constraint of the form x−y ≥ c or ±x ≥ c where x and y are integer or rational variables
and c is a non-negative integer constant.

different from abstract interpretation methods, which seem closest to them among the well-known
software verification approaches. To further clarify their relationships, we introduce a new method
between the constraint database approximations in [?,?] and abstract interpretation. We call this
new method l-u-widening. We show that l-u widening is more precise than other widening operators
proposed for abstract interpretation. On the other hand, program semantics approximations based
on l-u widening can be more efficiently computed than program semantics approximations based
on the constraint database techniques in [?,?] can be computed.

The rest of this paper is organized as follows. Section ?? gives a brief review of constraints,
abstract interpretation, and difference bound matrices. It also describes addition-bound matrices
which are similar to difference-bound matrices. Section ?? presents our new l-u widening operator
and its use in approximating the semantics of programs. Section ?? reviews the earlier constraint
database approximation methods and applies them to some sample programs. Section ?? presents
an outline of the constraint database approach to software verification. Section ?? describes a
novel compact representation of addition-bound matrices. This representation can be efficient for
computer implementations. Finally, Section ?? discusses some related and future work.

2 Basic Concepts

2.1 Constraints

∀a, b, S1, S
′
1, . . . Sn, S

′
n

(| S1 | + . . .+ | Sn |= n ∧
(∀i, j, k ((i 6= j ∧ i 6= k ∧ j 6= k ∧ 1 ≤ i, j, k ≤ n)→

((a ∈ Si ∧ b ∈ Sj) → (S′i = ∅ ∧ S′j = Si ∪ Sj ∧ S′k = Sk))))
→ | S′1 | + . . .+ | S′n |= n)

We use the following basic or atomic constraints:

Lower Bound : x ≥ b
Upper Bound : −x ≥ b
Difference : x− y ≥ b
Addition : ±x± y ≥ b
Linear : c1x1 + . . . + cnxn ≥ b

where x, y and the xis are integer or rational variables and b, called the bound, and the cis are
integer constants.

Note: For uniformity, we prefer to always use constraints that end with ”≥ b.” We make some
exceptions when other forms are clearer. For example, we use equalities of the form x = b as a
shorthand for (x ≥ b) ∧ (−x ≥ −b). Some authors use the terms potential constraint and sum
constraint. A potential constraint of the form x − y ≤ b translates to the difference constraint
y − x ≥ −b, and a sum constraint of the form ±x ± y ≤ b translates to the addition constraint
±x ± y ≥ −b with changed signs for x and y. Therefore, any result on potential constraints and
sum constraints can be trivially translated to results on difference or addition constraints and vice
versa.

2.2 Abstract Interpretation

Abstract interpretation finds invariants associated with specific program locations, such that each
invariant is an over-approximation of the set of possible values of the program variables at that
location, and that the invariants cannot be extended further by additional abstract execution of the
program. Each invariant can be compactly described as some constraint on the program variables,
for example, conjunctions of linear equations and inequalities, if the program variables are all
rational numbers.

Abstract interpretation methods typically use a widening operator. Common widening operators
use the domains of intervals [?] or polyhedra [?,?]. During an abstract execution of the program,
the widening operator repeatedly updates a constraint M that describes the current value of the
invariant associated with a program location with a new constraint N that describes an additional
set of possible values of the program variables at that location. This happens when due to some
program loop we reenter the same location again.

To keep things computationally feasible, the widening operator cannot just take M ∪N as the
new value of the invariant. Instead, it calculates a convex region, that is, a conjunction of linear
inequality constraints that includes both M and N . In addition, when we use widening operators, we
need to avoid an infinite number of repeated applications of the widening operators. The following
clever idea guarantees that: Preserve those constraints of M that are implied by N . This looks
attractive, because if M contains k linear inequalities, then at most k widening operators can be
performed on M .

2.3 Addition-Bound Matrices

Miné [?] represents a conjunction of lower bound, upper bound, and sum constraints over variables
V = {x1, . . . , xn} by a conjunction of potential constraints over variables V + = {x+

1 , x
−
1 , . . . , x

+
n , x

−
n },

that is, every variable has a positive form x+
i equivalent to xi and a negative form x−i equivalent

to −xi.
Rephrasing Miné’s idea, a conjunction of lower bound, upper bound and addition constraints C

over variables V = {x1, . . . , xn} can be represented by a conjunction of difference constraints over
variables V + = {x+

1 , x
−
1 , . . . , x

+
n , x

−
n }, as follows:

x ≥ b ≡ x+ − x− ≥ 2b
−x ≥ b ≡ x− − x+ ≥ 2b

x + y ≥ b ≡ x+ − y− ≥ b
x− y ≥ b ≡ x+ − y+ ≥ b
−x + y ≥ b ≡ x− − y− ≥ b
−x− y ≥ b ≡ x− − y+ ≥ b

Now a conjunction of difference constraints can be simplified as follows. If the conjunction
contains two difference constraints of the form x − y ≥ b and x − y ≥ c where b > c, then we
can delete the second constraint, because it is already implied by the first constraint. By this
simplification, there is at most one constraint with the left hand hide x−y, for any pair of variables
x and y. We apply this simplification to the conjunction of difference constraints that result after
our translation.

The conjunction of difference constraints C over variables {x1, . . . , xn} can be represented by
an n× n Addition-Bound Matrix M , which is defined as follows:

M [i, j] =

{
b if (xi − xj ≥ b) ∈ C
−∞ otherwise

}
Note: Rather confusingly, it is common to call Difference-Bound Matrices (DBMs) those matrices
that represent conjunctions of potential constraints C and are actually defined as having entry b if
xi−xj ≤ b is in C and +∞ otherwise. We use the term Addition-Bound Matrix (ABM) because we
ultimately represent by ABMs conjunctions of addition, lower bound, and upper bound constraints
over V , although not directly as we first translate these constraints to conjunctions of difference
constraints over V +.

Example 1. Consider the following conjunction of lower bound, upper bound, and addition con-
straints over the variables x and y:

−x ≥ −25, y ≥ 3, x− y ≥ 4, x + y ≥ 10, − x− y ≥ −40

These can be translated into the following difference constraints over the variables x+, x−, y+, y−:

x− − x+ ≥ −50, y+ − y− ≥ 6, x+ − y+ ≥ 4, x+ − y− ≥ 10, x− − y+ ≥ −40

This set of difference constraints can be represented by the following ABM:

x+ x− y+ y−

x+ −∞ −∞ 4 10
x− −50 −∞ −40 −∞
y+ −∞ −∞ −∞ 6
y− −∞ −∞ −∞ −∞

This simple representation of ABMs will suffice to describe the main theorems of the paper.
Later in Section ??, we outline a more compact ABM representation that may lead to a more
efficient computer implementation.

2.4 Operations on ABMs

Next we define some basic operators on ABMs.

Definition 1. Let M and N be two ABMs. Then the min of M and N , written as M ∨ N , is
defined as follows.

[M ∨N] [i, j] = min(M [i, j], N [i, j])

Alternatively, we can write the above as:

[M ∨N] [i, j] =

{
M [i, j] if M [i, j] ≤ N [i, j]
N [i, j] if N [i, j] ≤M [i, j]

}
Miné’s widening operator on DBMs [?] can be rephrased on ABMs as follows.

Definition 2. Let M and N be two ABMs. Then the widening of M by N , written as MON , is
defined as follows.

[MON] [i, j] =

{
M [i, j] if M [i, j] ≤ N [i, j]
−∞ if N [i, j] < M [i, j]

}

Example 2. Let M be as in Example ??, and let N be the following ABM:

x+ x− y+ y−

x+ −∞ −∞ 15 10
x− −60 −∞ −∞ −∞
y+ −∞ 7 −∞ 2
y− −∞ −∞ −∞ −∞

In this case M ∨N is:

x+ x− y+ y−

x+ −∞ −∞ 4 10
x− −60 −∞ −∞ −∞
y+ −∞ −∞ −∞ 2
y− −∞ −∞ −∞ −∞

while MON is:

x+ x− y+ y−

x+ −∞ −∞ 4 10
x− −∞ −∞ −∞ −∞
y+ −∞ −∞ −∞ −∞
y− −∞ −∞ −∞ −∞

3 The l-u-Widening Operator

We say matrix M has domain D if all entries of M are in D. If all entries of M are ≥ l and ≤ u or
−∞, where l and u are some integer constants, then the domain of M is {−∞}∪{l, l+1, . . . , u−1, u}.
(The domain of M should not be confused with the domain of the variables which are integer or
rational numbers.)

We now introduce the l-u-widening operator.

Definition 3. Let l < 0 and u > 0 be two integer numbers. Let M and N be two ABMs such that
the domain of M is {−∞} ∪ {l, l + 1, . . . , u − 1, u}. Then the l-u-widening of M by N , written as
M♦l,uN , is defined as follows.

[M♦l,uN] [i, j] =

M [i, j] if M [i, j] ≤ N [i, j]
N [i, j] if l ≤ N [i, j] < M [i, j]
−∞ if N [i, j] < l ≤M [i, j]

Example 3. Let us continue Example ?? and find M♦−50,50N , the l-u-widening of M and N with
l = −50 and u = 50.

x+ x− y+ y−

x+ −∞ −∞ 4 10
x− −∞ −∞ −∞ −∞
y+ −∞ −∞ −∞ 2
y− −∞ −∞ −∞ −∞

3.1 Properties of l-u-Widening

In this section we compare the precision of the widening and l-u-widening operators. Let S be the
solution space of an ABM or union of ABMs. We have the following.

Theorem 1. For any l < 0 and u > 0, the following holds:

S(M ∪N) ⊆ S(M ∨N) ⊆ S(M♦l,uN) ⊆ S(MON).

Proof. By Definition ??, each entry of M ∨N is smaller than the corresponding entry in either M
or N . Hence S(M) ⊆ S(M ∨N) and S(N) ⊆ S(M ∨N) hold. Therefore, S(M ∪N) ⊆ S(M ∨N)
also must hold.

By Definition ??, the minimum, widening and l-u-widening operators behave the same when
M [i, j] ≤ N [i, j]. When N [i, j] < M [i, j] then there are two cases. In the first case, when l ≤ N [i, j],
then the l-u-widening operator behaves like the minimum operator and returns N [i, j], and if
N [i, j] < l, then it behaves like the widening operator and returns −∞. Therefore, S(M ∨ N) ⊆
S(M♦l,uN) ⊆ S(MON) must hold. ut

Definition 4. Given a program P , and values l < 0 and u > 0, the result of evaluating its least
fixed point using l-u-widening is written as W l,u.

The following is the main l-u-approximation theorem.

Theorem 2. Let l < 0 and u > 0 be integer constants. For any program P with m lines and n
variables the following holds.

lfp(P) ⊆ W l,u

where lfp(P) is the least fixed point of P . Further, W l,u can be computed using O(|u− l|mn2) time.

Proof. We start evaluating P . For each new line Li of P , when we find the first ABM for it, we
change all entries greater than u to u and call the resulting ABM Mi. Then whenever a new ABM
N is found for line Li, we update Mi to be the result of Mi♦l,uN . This ensures that the domain of
each Mi is {−∞}∪ {l, l + 1, . . . , u− 1, u} throughout the approximate evaluation. In each iteration
at least one entry in at least one of the Mis must decrease. Moreover, each entry can decrease at
most |u− l| times and each Mi has n2 entries. Since there are m number of Mis, the total number of
iterations is at most |u− l|mn2. It is also clear that the approximate evaluation is always computing
an upper approximation of the actual least fixed point. ut

The computational complexity of the l-u-widening operator is similar to that of Miné’s widening
operator, which needs O(mn2) iterations. If the values of u and l are fixed constants, then the use
of the two widening operators will have the same complexity. However, there are reasons to vary
the values of l and u, because we can also get tighter approximations using increasingly smaller
values of l or larger values of u. That is, we can show the following.

Theorem 3. For each program P and constants l1, l2, u1, and u2 such that l1 ≤ l2 < 0 < u2 ≤ u1,
the following condition holds:

W l1,u1 ⊆ W l2,u2

3.2 A Simple Program with Goto Statements

Consider the following simple program fragment.

1 a = 0

2 a = a + 1

3 if a > 2 then goto 6

4 if a = 2 then goto 7

5 goto 2

6

7

Let us see how this widening operator works on this program. Let Li,j be the invariant at the
beginning of line i at the jth entry of that line. Initially all Li,0 are empty. L2,1 = {a = 0} (which,
like all equalities, is just a shorthand for a conjunction of two inequalities, namely in this case
{0 ≤ a ≤ 0}), and L3,1 = {a = 1}. Lines 3 and 4 have false if conditions and do not change the
value of a, hence L4,1 = L5,1 = {a = 1}. The execution of line 5 takes us back to the beginning
of line 2 with no change in a. This is the second entry to line 2, hence L2,2 = L2,1OL5,1 = {a =
0}O{a = 1} = {a ≥ 0}. When a = a + 1 is executed, this yields a ≥ 1. We enter line 3 for the
second time. By widening we get L3,2 = L3,1O{a ≥ 1} = {a = 1}O{a ≥ 1} = {a ≥ 1}. We enter
the if statement and find that L3,2 ∧ (a > 2) = (a ≥ 1)∧ (a > 2) = a > 2. That is, our invariant (or
rather our current best estimate of the possible values of the program variable a at the beginning
of line 3) and the condition of the if statement overlap on a > 2, which clearly is a nonempty set.
Hence we enter line 6 with L6,1 = {a > 2}. This example can be summarized in the table below.

Invariants Obtained by Widening

Line 1st Entry 2nd Entry

2 0 ≤ a ≤ 0 0 ≤ a
1 ≤ a

3 1 ≤ a ≤ 1 if condition a > 2 true
goto 6

4 1 ≤ a ≤ 1
5 1 ≤ a ≤ 1

However, the above program analysis is wrong. Actually, the program can never enter line 6.
When we first get to line 5, a = 1. Hence when we get back to line 2 and execute a = a + 1,
then a = 2. Therefore the if condition of line 3 will fail, and the program goes on to line 4. The if
condition of line 4 will be true, hence we go to line 7 and never enter line 6.

Clearly, the invariant analysis is not precise enough. The inductive generalization that the widen-
ing operator applies (for example, in the above program from a = 0 and a = 1 to a ≥ 0) is often
very useful and powerful, but it has to be applied more judiciously. At the present, there are only
some limited techniques in the abstract interpretation area to get around the above problem. For
example, we may establish a priori a set of constraints K and widen M up-to K only, but finding a
suitable K is easier said than done. For example, if K contains {a ≤ 3}, then we may widen a = 0
and a = 1 to 0 ≤ a ≤ 3, but then the program analysis would be still incorrect.

Now let us see how the l-u widening works on the same program with l = −5 and u = 5. The
crucial difference is that on the second entry to line 2, we obtain L2,2 = L2,1♦−5,5L5,1 = {a =
0}♦−5,5{a = 1} = {0 ≤ a ≤ 1}. When a = a + 1 is executed, this yields 1 ≤ a ≤ 2. We enter
line 3 for the second time and get L3,2 = L3,1♦−5,5{1 ≤ a ≤ 2} = {1 ≤ a ≤ 2}. We enter the if
statement but find that L3,2∧(a > 2) is unsatisfiable. Therefore. we continue to line 4 and find that
L4,2 = L4,1♦−5,5{1 ≤ a ≤ 2} = {1 ≤ a ≤ 2}. W enter the if statement and find that L4,2 ∧ a = 2 is
satisfiable. Hence we go to line 7. The invariants found by the l-u widening are summarized in the
table below.

Invariants Obtained by l-u Widening

Line 1st Entry 2nd Entry

2 0 ≤ a ≤ 0 0 ≤ a ≤ 1
3 1 ≤ a ≤ 1 1 ≤ a ≤ 2

if condition a > 2 false
1 ≤ a ≤ 2

4 1 ≤ a ≤ 1 if condition a = 2 true
goto 7

5 1 ≤ a ≤ 1

3.3 The Subway Train Example

Let us consider the following subway train speed regulation system described by Halbwachs [?].
Each train detects beacons that are placed along the track and receives a “second” signal from a
central clock.

Let b and s be counter variables for the number of beacons and second signals received. Further,
let d be a counter variable that describes how long the train is applying its brake. The goal of the
speed regulation system is to keep | b− s | small while the train is running.

The speed of the train is adjusted as follows. When s + 10 ≤ b, then the train notices it is
early and applies the brake as long as b > s. Continuously braking causes the train to stop before
encountering 10 beacons.

When b + 10 ≤ s the train is late and will be considered late as long as b < s. As long as any
train is late, the central clock will not emit the second signal.

The following program implements the subway train regulation using parallel case statements.
In a parallel case statement one of the cases is selected randomly. If the condition of the selected
case statement is false, then another is selected and executed. This repeats until one of the cases
succeeds.

Train(b,s,d)
1 ONTIME

begin parallel
2 if b− s > −9 then s = s + 1 goto ONTIME

3 if b− s = −9 then s = s + 1 goto LATE

4 if b− s < 9 then b = b + 1 goto ONTIME

5 if b− s = 9 then b = b + 1 goto BRAKE

end parallel
6 LATE

begin parallel
7 if b− s < −1 then b = b + 1 goto LATE

8 if b− s = −1 then b = b + 1 goto ONTIME

end parallel
9 STOPPED

begin parallel
10 if b− s > 1 then s = s + 1 goto STOPPED

11 if b− s = 1 then s = s + 1 goto ONTIME

end parallel
12 BRAKE

begin parallel
13 if b− s > 1 then s = s + 1 goto BRAKE

14 if b− s = 1 then s = s + 1, d = 0 goto ONTIME

15 if d < 9 then b = b + 1, d = d + 1 goto BRAKE

16 if d ≤ 9 then b = b + 1, d = 0 goto STOPPED

end parallel

Suppose we know that the subroutine Train can be called with any values where b = s and
d = 0. We need to find all the possible values of the variables b, s and d in all lines of the program.

Note that variable d is changed only in the parallel case statement after BRAKE. When we exit
the BRAKE region and go to either ONTIME or STOPPED, then d is reset to 0. Hence d always
remains 0 outside of the BRAKE region. This simplifies the analysis for the other three cases. With
only variables b and s, each conjunction of difference constraints can be represented in the form:

c1 ≤ b ≤ c2, c3 ≤ s ≤ c4, c5 ≤ b− s ≤ c6

where c1, c2, c3, c4, c5, c6 are constants that may be omitted.

L1,1 = {0 ≤ b− s ≤ 0}
line 2 causes return to ONTIME with {−1 ≤ b− s ≤ −1}
line 3 fails
line 4 causes return to ONTIME with {1 ≤ b− s ≤ 1}
line 5 fails
L1,2 = L1,1O({−1 ≤ b− s ≤ −1} t {1 ≤ b− s ≤ 1}) = {−1 ≤ b− s ≤ 1}

...L1,9 = {−9 ≤ b− s ≤ 9}
line 2 causes return to ONTIME with {−9 ≤ b− s ≤ 8}
line 3 causes entry to LATE with {−10 ≤ b− s ≤ −10}
line 4 causes return to ONTIME with {−8 ≤ b− s ≤ 9}
line 5 causes entry to BRAKE with {10 ≤ b− s ≤ 10}
L1,10 = L1,9

L6,1 = {−10 ≤ b− s ≤ −10}
line 7 causes return to LATE with {−9 ≤ b− s ≤ −9}

line 8 fails
L6,2 = L6,1O{−9 ≤ b− s ≤ −9} = {−10 ≤ b− s ≤ −9}
...L6,10 = {−10 ≤ b− s ≤ −1}
line 7 causes return to LATE with {−10 ≤ b− s ≤ −2}
line 8 causes return to ONTIME with {−1 ≤ b− s ≤ −1}
L6,11 = L6,10

L1,11 = L1,10

L12,1 = {10 ≤ b− s ≤ 10, d = 0}
line 13 causes return to BRAKE with {9 ≤ b− s ≤ 9, d = 0}
line 14 fails
line 15 causes return to BRAKE with {11 ≤ b− s ≤ 11, d = 1}
line 16 causes entry to STOPPED with {11 ≤ b− s ≤ 11, d = 0}
L12,2 = L12,1O({9 ≤ b− s ≤ 9, d = 0} t {11 ≤ b− s ≤ 11, d = 1} = {9 ≤ b− s ≤ 11, 0 ≤ d ≤ 1}

...line 16 causes entry to STOPPED with {2 ≤ b− s ≤ 20, d = 0}
L12,10 = {1 ≤ b− s ≤ 19, 0 ≤ d ≤ 9}

L9,1 = {2 ≤ b− s ≤ 20, d = 0}
line 10 causes return to STOPPED with {1 ≤ b− s ≤ 19, d = 0}
line 11 fails
L9,2 = L9,1O{1 ≤ b− s ≤ 19, d = 0} = {1 ≤ b− s ≤ 20, d = 0}
line 10 causes return to STOPPED with {1 ≤ b− s ≤ 19, d = 0}
line 11 causes return to ONTIME with {0 ≤ b− s ≤ 0, d = 0}
L9,3 = L9,2

L1,11 = L1,10

The table below shows the result of the invariants that can be found using l = −20 and u = 20.

Invariants Obtained by l-u Widening

Brake Late Ontime Stopped
1 ≤ b− s ≤ 19 −10 ≤ b− s ≤ −1 −9 ≤ b− s ≤ 9 1 ≤ b− s ≤ 20

0 ≤ d ≤ 9 0 ≤ d ≤ 0 0 ≤ d ≤ 0 0 ≤ d ≤ 0

It is possible to prove that these values match the actual semantics of the program.

4 Non-Convex Invariants

In the constraint database area, researchers have founds methods for finding over-approximations
and under-approximations of the least fixpoint semantics of Datalog programs. The over-approximation
yields for each relation a disjunction of conjunctions of atomic constraints. In this sense the approx-
imation is different from widening operators that always yield a conjunction of atomic constraints.

Definition 5. Given any conjunction C of addition constraints and integer l < 0, let C′ be the
result of deleting from C any constraint where the bound is less than l. Further, let C′′ be the result
of replacing in C any bound with less than l with l.

It is easy to see that C′ is an over-approximation and C′′ is an under-approximation of C. Further,
this leads to the following evaluation idea.

Definition 6. Given a program P and value l < 0, the result of evaluating its least fixed point by
always rewriting after each rule application any conjunction of constraints C into a C′ (or C′′) as in
Definition ?? is written as P l,u (respectively, Pl,u).

The following is the main theorem that we can adopt.

Theorem 4. Let l < 0 be any integer constant. For any program P the following holds.

Pl,u ⊆ lfp(P) ⊆ P l,u

Further, Pl,u and P l,u can be computed in finite time.

The bottom up evaluation in Theorem ?? is slower than the l-u widening approach. However,
it can lead to a more precise over-approximation or under-approximation than the l-u widening
approach.

Example 4. Consider the following program.

1 x = 1, y = 1

2 x = x + 1, y = y + 2x - 1

3 goto 2

For the above program, it is easy to see that for each entry i of line 2, we have:

L2,i = {x = i, y = i2}.

Recall that each equality is the conjunction of a lower and an upper bound atomic constraint. That
is,

L2,i = {x ≥ i, − x ≥ −i, y ≥ i2, − y ≥ −i2}.

Hence when we evaluate the semantics of this program using l = −10, we obtain the following
over-approximation: This formula is the union of three parts. Clearly, the first part corresponds to
the actual semantics for 1 ≤ i ≤ 3. The second part is an over-approximation needed because for
4 ≤ i ≤ 10 we can only express the upper bounds y ≥ i2 but cannot express the lower bounds
−y ≥ −i2 needed to have a precise evaluation matching the actual semantics. The third part is
needed because for any i = 11 we can express neither the lower bound −x ≥ i nor the lower bound
−y ≥ −i2. Finally, note that for any i ≥ 12, the conjunction of the constraints x ≥ i and y ≥ i2 are
more restrictive than the third part.

5 Verification

Suppose that we need to check that certain error states never occur during any execution of a
program. The error states are expressed as a quantifier-free formula of the variables used in the
program. Each satisfying assignment of values to the variables is an error that needs to be avoided.
Next we outline a general constraint database approach to the verification of programs.

1. Translate the program P into a transition system T .
2. Translate T into a Datalog program that always derives conjunctions of addition constraints.
3. Find an over-approximation of the least fixed point semantics of the Datalog program.
4. Check that the over-approximation and the error states do not intersect.
5. If the answer is ”yes”, then return ”‘safe”’, else goto 1 and try a smaller l.

Step (1) is well-known in the software verification area. Step (2) is explained in Chapter 5
of [?], to which we refer for the details. Step (3) follows Theorems ?? and ?? with more details
in [?]. The over-approximation algorithm is implemented within the MLPQ constraint database
system [?], which is available from the website: cse.unl.edu/~revesz. Step (4) requires to test the
satisfiability of the over-approximation and the error states. Finally, Step (5) is just a repetition of
the previous steps in case the check is inconclusive. In the MLPQ system the user can specify any
negative l value.

In the above outline, the translations to transition system and to Datalog are required only to
take a direct advantage of the already implemented constraint database systems such as MLPQ.
Those who are familiar with abstract interpretations with widening operators may skip the transla-
tions steps and consider an invariant analysis similar to abstract interpretation with the widening
operator replaced by l-u widening or the non-convex approximation.

Example 5. Consider again the subway train example. The Datalog with addition constraint pro-
gram that is equivalent to the subway train control program is described in [?]. Let E , the error
states, be as follows:

E = {b, s : |b− s| > 20}.

It can be checked that the over-approximation found for the subway train and E have no common
solution. Hence the subway train program is safe to use.

Example 6. Consider again the program in Example ??. This program can be translated into the
following constraint Datalog program.

Line2(x, y) : −− x = 1, y = 1.
Line2(x′, y′) : −− Line2(x, y), x′ = x + 1, y′ = y + 2x′ − 1.
Line3(x, y) : −− Line2(x, y), x′ = x + 1, y′ = y + 2x′ − 1.

We can calculate the over-approximation of the above Datalog program similar to Example ??.
It is interesting to see how the bottom up evaluation terminates. In the 11th application of the
second rule (which corresponds to the 12th entry of line 2 in the original program), the bottom up
evaluation finds that ∃x, y x′ = x + 1, y′ = y + 2x′ − 1, x ≥ 11, y ≥ 121 = x′ ≥ 12, y′ ≥ 144.
Before adding this to the set of already existing ABMs for Line2, we need to replace x′ by x and
y′ by y. The replacement yields x ≥ 12, y ≥ 144, which is more restrictive than x ≥ 11, y ≥ 121,

the previously added ABM. Hence it is not added to the set of ABMs for Line2 and the evaluation
terminates.2

Let the error states E be as follows:

E = {y : y ≥ 10, − y ≥ −15}.

This is a region where y is between 10 and 15 inclusively. It can be easily checked that the over-
approximation of L2,1 in Example ?? and E have no common solution. Hence the program can
never enter the error states.

Example 7. Consider the following program.

1 x = 1, y = 1

2 x = x + 1, y = y + 2x - 1

3 goto 2

For the above program, it is easy to see that for each entry i of line 2, we have:

L2,i = {x = i, y = i2}.

Recall that each equality is the conjunction of a lower and an upper bound atomic constraint. That
is,

L2,i = {x ≥ i, − x ≥ −i, y ≥ i2, − y ≥ −i2}.

Hence when we evaluate the semantics of this program using l = −10, we obtain the following
over-approximation:

L2.i = {x = i, y = i2 : 1 ≤ i ≤ 3} ∪ {x = i, y ≥ i2 : 4 ≤ i ≤ 10} ∪ {x ≥ 11, y ≥ 121}

This formula is the union of three parts. Clearly, the first part corresponds to the actual semantics
for 1 ≤ i ≤ 3. The second part is an over-approximation needed because for 4 ≤ i ≤ 10 we can only
express the upper bounds y ≥ i2 but cannot express the lower bounds −y ≥ −i2 needed to have a
precise evaluation matching the actual semantics. The third part is needed because for any i = 11
we can express neither the lower bound −x ≥ i nor the lower bound −y ≥ −i2. Finally, note that
for any i ≥ 12, the conjunction of the constraints x ≥ i and y ≥ i2 are more restrictive than the
third part.

6 Verification

Suppose that we need to check that certain error states never occur during any execution of a
program. The error states are expressed as a quantifier-free formula of the variables used in the
program. Each satisfying assignment of values to the variables is an error that needs to be avoided.
Next we outline a general constraint database approach to the verification of programs.

1. Translate the program P into a transition system T .
2. Translate T into a Datalog program that always derives conjunctions of addition constraints.

2 This is a simplification of the bottom up evaluation, because within the ABMs constraints of the form
x ≥ b are represented by x+ − x− ≥ 2b as described in Section ??.

3. Find an over-approximation of the least fixed point semantics of the Datalog program.
4. Check that the over-approximation and the error states do not intersect.
5. If the answer is ”yes”, then return ”‘safe”’, else goto 1 and try a smaller l.

Step (1) is well-known in the software verification area. Step (2) is explained in Chapter 5
of [?], to which we refer for the details. Step (3) follows Theorems ?? and ?? with more details
in [?]. The over-approximation algorithm is implemented within the MLPQ constraint database
system [?], which is available from the website: cse.unl.edu/~revesz. Step (4) requires to test the
satisfiability of the over-approximation and the error states. Finally, Step (5) is just a repetition of
the previous steps in case the check is inconclusive. In the MLPQ system the user can specify any
negative l value.

In the above outline, the translations to transition system and to Datalog are required only to
take a direct advantage of the already implemented constraint database systems such as MLPQ.
Those who are familiar with abstract interpretations with widening operators may skip the transla-
tions steps and consider an invariant analysis similar to abstract interpretation with the widening
operator replaced by l-u widening or the non-convex approximation.

Example 8. Consider again the subway train example. The Datalog with addition constraint pro-
gram that is equivalent to the subway train control program is described in [?]. Let E , the error
states, be as follows:

E = {b, s : |b− s| > 20}.

It can be checked that the over-approximation found for the subway train and E have no common
solution. Hence the subway train program is safe to use.

Example 9. Consider again the program in Example ??. This program can be translated into the
following constraint Datalog program.

Line2(x, y) : −− x = 1, y = 1.
Line2(x′, y′) : −− Line2(x, y), x′ = x + 1, y′ = y + 2x′ − 1.
Line3(x, y) : −− Line2(x, y), x′ = x + 1, y′ = y + 2x′ − 1.

We can calculate the over-approximation of the above Datalog program similar to Example ??.
It is interesting to see how the bottom up evaluation terminates. In the 11th application of the
second rule (which corresponds to the 12th entry of line 2 in the original program), the bottom up
evaluation finds that ∃x, y x′ = x + 1, y′ = y + 2x′ − 1, x ≥ 11, y ≥ 121 = x′ ≥ 12, y′ ≥ 144.
Before adding this to the set of already existing ABMs for Line2, we need to replace x′ by x and
y′ by y. The replacement yields x ≥ 12, y ≥ 144, which is more restrictive than x ≥ 11, y ≥ 121,
the previously added ABM. Hence it is not added to the set of ABMs for Line2 and the evaluation
terminates.3

Let the error states E be as follows:

E = {y : y ≥ 10, − y ≥ −15}.

This is a region where y is between 10 and 15 inclusively. It can be easily checked that the over-
approximation of L2,1 in Example ?? and E have no common solution. Hence the program can
never enter the error states.
3 This is a simplification of the bottom up evaluation, because within the ABMs constraints of the form
x ≥ b are represented by x+ − x− ≥ 2b as described in Section ??.

7 An Efficient Representation of ABMs

Without loss of generality we can fix an order of the variables and assume that in all addition
constraints of the form x− y ≥ b or −x + y ≥ b, x is earlier than y, and in all addition constraints
of the form x + y ≥ b and −x − y ≥ b x is earlier than y or x = y. We can represent lower bound
constraints of the form x ≥ b by x + x ≥ 2b and and upper bound constraints of the form −x ≥ b
by −x− x ≥ 2b.

Then we can represent x− y ≥ b and x + y ≥ b constraints by a matrix L as follows:

L[i, j] =

 b if (xi − xj ≥ b) ∈ C and i < j
b if (xj + xi ≥ b) ∈ C and j ≤ i
−∞ otherwise

Similarly, we can represent −x + y ≥ b and −x− y ≥ b constraints by a matrix U as follows:

U [i, j] =

 b if (−xi + xj ≥ b) ∈ C and i < j
b if (−xj − xi ≥ b) ∈ C and j ≤ i
−∞ otherwise

Note that the above is equivalent to the following:

U [i, j] =

 b if (xi − xj ≤ −b) ∈ C and i < j
b if (xj + xi ≤ −b) ∈ C and j ≤ i
−∞ otherwise

For example, the ABM in Example ?? can be represented by the following matrices. L is:

x y
x −∞ 4
y 10 6

and U is:

x y
x −50 −∞
y −40 −∞

The above representation with matrices L and U requires only 2n2 matrix entries, while Miné’s
representation requires 4n2 matrix entries. Moreover, since the corresponding entries in L and U
are lower and upper bounds of the same xi − xj or xj + xi, they can be put together as follows:

x y
x [−∞, 50] [4,+∞]
y [10, 40] [6,+∞]

Therefore, each ABM can be represented using a matrix with only n2 entries that are intervals.

8 Related and Future Work

Pratt [?] gave efficient algorithms for testing the satisfiability and the implication problem for
conjunctions of potential constraints. Harvey and Stuckey [?] gave a polynomial algorithm for the
implication problem in the case of conjunctions of sum constraints with integer variables. An open
problem is to improve the complexity of the algorithm in [?]. Currently, we are working on updating
the MLPQ system to the more efficient ABM representation described in Section ??. Another open
problem is to find conditions when the over-approximation and the under-approximation of the
program semantics are the same, resulting in a precise evaluation.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H., Nicollin, X., Olivero,
A., Sifakis, J., and Yovine, S. The algorithmic analysis of hybrid systems. Theoretical Computer
Science 138, 1 (1995), 3–34.

2. Anderson, S., and Revesz, P. Verifying the incorrectness of programs and automata. In Proc.
6th International Symposium on Abstraction, Reformulation, and Approximation (2005), vol. 3607 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 1–13.

3. Clarke, E. M., Grumberg, O., and Peled, D. A. Model Checking. MIT Press, 1999.

4. Colmerauer, A. Note sur Prolog III. In Proc. Séminaire Programmation en Logique (1986), pp. 159–
174.

5. Cousot, P. Proving program invariance and termination by parametric abstraction, Lagrangian relax-
ation and semidefinite programming. In Sixth International Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI’05) (Paris, France, LNCS 3385, Jan. 17–19 2005), Springer, Berlin,
pp. 1–24.

6. Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proc. ACM Principles on Programming
Languages (1977), ACM Press, pp. 238–252.

7. Cousot, P., and Halbwachs, N. Automatic discovery of linear restraints among variables of a
program. In Proc. ACM Principles on Programming Languages (1978), ACM Press, pp. 84–97.

8. Delzanno, G., and Podelski, A. Model checking in CLP. In 2nd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (1999), vol. 1579 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 74–88.

9. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., and Berthier, F. The
constraint logic programming language chip. In Proc. Fifth Generation Computer Systems (Tokyo,
Japan, 1988), pp. 693–702.

10. Fribourg, L., and Olsén, H. A decompositional approach for computing least fixed-points of Datalog
programs with Z-counters. Constraints 2, 3–4 (1997), 305–36.

11. Fribourg, L., and Richardson, J. D. C. Symbolic verification with gap-order constraints. In Proc.
Logic Program Synthesis and Transformation (1996), vol. 1207 of Lecture Notes in Computer Science,
pp. 20–37.

12. Godefroid, P., Huth, M., and Jagadeesan, R. Abstraction-based model checking using modal
transition systems. In 12th International Conference on Concurrency Theory (2001), pp. 426–440.

13. Halbwachs, N. Delay analysis in synchronous programs. In Proc. Conference on Computer-Aided
Verification (1993), pp. 333–46.

14. Harvey, W., and Stuckey, P. A unit two variable per inequality integer constraint solver for
constraint logic programming. In Proc. Australian Computer Science Conference (Australian Computer
Science Communications) (1997), pp. 102–11.

15. Jaffar, J., and Lassez, J. L. Constraint logic programming. In Proc. 14th ACM Symposium on
Principles of Programming Languages (1987), pp. 111–9.

16. Jaffar, J., and Maher, M. Constraint logic programming: A survey. J. Logic Programming 19/20
(1994), 503–581.

17. Kanellakis, P. C., Kuper, G. M., and Revesz, P. Constraint query languages. In Proc. ACM
Symposium on Principles of Database Systems (1990), pp. 299–313.

18. Kanellakis, P. C., Kuper, G. M., and Revesz, P. Constraint query languages. Journal of Computer
and System Sciences 51, 1 (1995), 26–52.

19. Kerbrat, A. Reachable state space analysis of lotos specifications. In Proc. 7th International Confer-
ence on Formal Description Techniques (1994), pp. 161–76.

20. Kuper, G. M., Libkin, L., and Paredaens, J., Eds. Constraint Databases. Springer-Verlag, 2000.
21. Marriott, K., and Stuckey, P. J. Programming with Constraints: An Introduction. MIT Press,

1998.
22. McMillan, K. Symbolic Model Checking. Kluwer, 1993.
23. Miné, A. The octagon abstract domain. In Proceedings Analysis, Slicing and Transformation (2001),

IEEE Press, pp. 310–319.
24. Pratt, V. Two easy theories whose combination is hard. MIT Technical Report (1977).
25. Revesz, P. A closed-form evaluation for Datalog queries with integer (gap)-order constraints. Theo-

retical Computer Science 116, 1 (1993), 117–49.
26. Revesz, P. Datalog programs with difference constraints. In Proc. 12th International Conference on

Applications of Prolog (1999), pp. 69–76.
27. Revesz, P. Reformulation and approximation in model checking. In Proc. 4th International Symposium

on Abstraction, Reformulation, and Approximation (2000), B. Choueiry and T. Walsh, Eds., vol. 1864
of Lecture Notes in Computer Science, Springer-Verlag, pp. 124–43.

28. Revesz, P. Introduction to Constraint Databases. Springer-Verlag, 2002.
29. Revesz, P., Chen, R., Kanjamala, P., Li, Y., Liu, Y., and Wang, Y. The MLPQ/GIS constraint

database system. In ACM SIGMOD International Conference on Management of Data (2000).

