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Safe Query Languages for Constraint Databases

Peter Z. Revesz
University of Nebraska—Lincoln

In the database framework of [Kanellakis et al. 1990] it was argued that constraint query languages
should take as input constraint databases and give as output other constraint databases that use
the same type of atomic constraints. This closed-form requirement has been difficult to realize
in constraint query languages that contain the negation symbol. This paper describes a general
approach to restricting constraint query languages with negation to safe subsets that contain only
programs that are evaluable in closed-form on any valid constraint database input.

Categories and Subject Descriptors: H.2.3 [Software|: Database Management; H.2.1 [software]:
Database Management

General Terms: Database, Languages

Additional Key Words and Phrases: Constraint databases, datalog, relational calculus, safety

1. INTRODUCTION

Constraint databases describe extensional database relations as quantifier-free first-
order formulas. Constraint databases in the form of nonground facts were used in
constraint logic programming [Cohen 1990; Jaffar and Lassez 1987; Jaffar and Ma-
her 1994; Van Hentenryck 1989] for almost ten years. Constraint databases are also
increasingly adopted for database use [Kanellakis 1995]. In the database framework
of [Kanellakis et al. 1990] it was argued that constraint query languages should take
as input constraint databases and give as output other constraint databases that
use the same type of constraints. This has been called the closed-form evaluation
requirement.

There are several motivations for closed-form evaluation. A closed-form evalu-
ation enables easy composition of queries. That is convenient in the information
market where companies buy raw data and sell refined data both in the form of
some databases. For example, a chain of companies could produce a refined prod-
uct like a geographic map. Another motivation for a closed-form evaluation is that
it also allows the addition of aggregate operators as is done recently in [Chomicki
and Kuper 1995].

The good news is that the closed-form evaluation requirement is met by several
constraint query languages. For example, Relational Calculus with equality and in-
equality constraint databases, Relational calculus with polynomial inequality con-
straints, Datalog with rational order constraints can be evaluated in closed-form in
PTIME data complexity [Kanellakis et al. 1990]. (Data complexity is the measure
of the computational complexity of fixed queries as the size of the input database
grows [Chandra and Harel 1982; Vardi 1982]. The rationale behind this measure
is that in practice the size of the database typically dominates by several orders of
magnitude the size of the query.)

Datalog with integer (gap)-order constraints programs and Datalog with C con-
straints on set variables are evaluable in closed-form on constraint databases with
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DEXPTIME-complete data complexity [Revesz 1993; Cox and McAloon 1993;
Revesz 1995]. Datalogis [Chomicki 19], an extension of Datalog with a succes-
sor function applied always to the first argument of relations, can be evaluated in
closed-form and has PSPACE-complete data complexity. Datalog with periodicity
constraints [Toman et al. 1994], relational calculus with linear repeating points [Ka-
banza et al. 1990] and temporal constraints [Koubarakis 1994] can be also evaluated
in closed-form.

The bad news is that many other interesting languages do not guarantee a closed-
form evaluation. For example, the temporal database queries of [Baudinet et al.
1991], and stratified Datalog with integer (gap)-order constraints [Revesz 1993] can
express any Turing-computable function, hence in these languages termination of
query evaluation cannot be guaranteed.

In this paper we take an inspiration from the area of relational databases. In
relational databases queries are required to be functions from finite input to finite
output relational databases. This is an analogue of the closed-form evaluation
requirement. It is traditional in the relational database literature to define various
syntactical “safety restrictions” on languages to ensure that queries in the restricted
language always yield finite database outputs on finite database inputs [Abiteboul
et al. 1995; Kifer 1988; Ullman 1989]. In this paper we generalize this notion of
safety by considering syntactical restrictions on languages to guarantee closed-form
evaluation. Safety can be tested independently of database inputs.

The syntactical notion of safety in this paper corresponds to a subset of the se-
mantical notion of evaluability in the following way. Every safe query is evaluable
in closed-form on any valid database input, but some evaluable queries are not safe.
[Stolboushkin and M.A. 1997] proved recently that, unfortunately, any definition
of safety must leave out some queries that are evaluable in closed-form. Neverthe-
less, the safe constraint queries defined in this paper already extend greatly the
expressive power of safe relational queries.

This paper is organized as follows. Section 2 describes basic definitions and
previous related work. Section 3 describes a general approach to safety for both
relational calculus and Datalog query languages with and without negation.

Section 4 defines safe relational calculus queries with integer gap-order con-
straint databases, safe relational calculus queries with integer set order constraint
databases and the combination of these two languages. Section 4 also presents
terminating evaluation algorithms for queries in these languages and algorithms to
test the safety of relational calculus queries.

Section 5 defines safe stratified Datalog queries with integer gap-order constraint
databases, safe stratified Datalog queries with integer set order constraint databases
and their combination. Section 5 also presents terminating evaluation algorithms
for queries in these languages and algorithms to test the safety of Stratified Datalog
queries.

Section 6 shows that the computational complexity of testing whether relational
calculus with gap-order or set order or stratified Datalog with gap-order or set
order programs are safe is in PTIME in their size. Section 6 also considers the data
complexity of evaluating yes/no relational calculus and stratified Datalog queries
with gap-order or set order constraints. The data complexity results in this paper
are summarized in the following table:
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| language | integer gap-order | integer set order |
Safe RC in PTIME PSPACE-hard, in DEXPTIME
Datalog DEXPTIME-complete DEXPTIME-complete
Safe Datalog™ | nonelementary-hard, closed DEXPTIME-complete

It is also shown that for safe stratified Datalog with integer gap-order constraints,
in the data complexity result the level of exponentiation can grow linearly with the
number of strata in the programs. Finally Section 7 gives some conclusion and
direction for future work.

2. BASIC CONCEPTS

In this section we review the basic concepts of constraint databases and constraint
query languages and discuss some related works on closed-form evaluation and
query languages.

2.1 Constraint Databases

Constraint databases are a finite set of constraint relations. Each constraint rela-
tion is a quantifier-free first-order DNF (disjunctive normal form) formula in some
constraint theory. We call each disjunct of the DNF formula a constraint tuple.
Each constraint theory is distinguished by the set of atomic formulas in it. The
following are some example constraint theories.

Theory of Integer (Gap)-Order Constraints: The domain of variables is
the integers, and the allowed constraints are z = y,x # y,r <4 y where g is any
nonnegative integer and z,y are integer variables or constants. The last of these is
called a gap-order constraint. The meaning of a gap-order constraint <, y is that
x is less than y with at least g integers between them, or equivalently, x + g < y.

Theory of Integer Set Order Constraints: The domain of variables is the
finite and infinite set of integer tuples, and the allowed constraints are ¢ € X,
¢ ¢ X, and X CY where ¢ is any tuple of integer constants and X,Y are integer
set variables or constants.

We will denote these theories by C= £ <, and Cz¢ z¢ crespectively. We will also
consider the combination of these two theories, which we denote C= « < U Czc o¢,c-
In this combination the domain of variables is either the integers or the finite and
infinite sets of integers. To keep our notation simple, we will denote integer variables
in lower and set of integer variables by upper case letters. We also denote by Z the
integers, by N the nonnegative integers, and by P(Z%) the powerset of the integer
tuples of arity a. Unless we say explicitly otherwise, a will be one in the examples
in the paper.

The following is an example constraint relation over the theory of integers and
Co <,

Ri(z,y) =20<s5z V y<47V =y

This relation has three constraint tuples.

Let R be any constraint relation. The meaning of R, denoted points(R), is the
unrestricted (finite or infinite) relation that consists of the set of tuples that satisfy
the DNF formula of R.
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In the above, points(R3) is an infinite relation which includes for example the
tuples (30, 15), (10, 2) and (10, 10).

2.2 Constraint Query Languages

In this section we review the most important constraint query languages, including
their syntax and semantics.

2.2.1 Relational Calculus Queries. The syntax of relational calculus queries is the
language of relational calculus formulas. Relational Calculus formulas are built from
variable symbols z,y, z,v,u, ..., constant symbols a, b, ¢, ..., relation symbols, the
conjunction connective symbol A and the existential quantifier symbol 3 according
to the following rules.

—If R is an n-ary relation symbol and z1,...,z, are variables or constants, then
R(z1,...,%y) is a relational calculus formula.

—If ¢; and ¢ are relational calculus formulas, then ¢; A @2 is a relational calculus
formula.

—If ¢ is a relational calculus formula, then —¢ is a relational calculus formula.

—If ¢ is a relational calculus formula and z is a variable, then 3z(¢) is a relational
calculus formula.

In the last line of the above definition, we call each occurrence of variable x
within ¢ a bound variable. Variables that are not bound are called free in a formula.
Sometimes we abbreviate a formula of the form 34, ..., 3z,¢ by writing IT¢p. We
will also use sometimes the identity VZ¢ = —3Iz—¢.

Each relational calculus formula is evaluable as either true or false with respect
to the input database and an assignment to the free variables. A relational cal-
culus query is a function from a relational database to an unnamed relation. The
unnamed relation will contain those assignments from the domain § to the free
variables that make the relational calculus formula true.

More precisely, let xy,...,z, be the set of free variables of a relational calculus
formula ¢ in some fixed order and let ¢(ay,...,a,) denote the formula obtained by
substituting a; for z; for each 1 < ¢ < n. Each input database d is an assignment
of a finite number of tuples over §™ to each R; with arity n;. The output database
is a single relation of arity n defined as {(a1,...,a,) :< §,d > ¢(a1,...,a,)}
Here < d,d >k means satisfaction with respect to a domain § and database d and
is defined as follows. If r; is the constraint relation assigned to relation symbol R;,

then
< 0,d >= Ri(a1,...,a) iff (ai,...,ax) € points(r;)

<6, d>E= (9 A1) iff <4, d>=¢and <6,d>F=1
< 8,d > (=) iff not <d,d>F¢
< 4,d > (z;9) iff <4,d > ¢[z;/a;] for some a; € §

where [z;/a;] means the instantiation of the free variable z; by a;.

2.2.2 Relational Algebra Queries. Relational algebra expressions are built from
the well-known relational algebra operators of select (o), project (), rename (p),
join (X) and difference (—). The relational algebra plays an important part in
evaluating non-procedural relational database queries [Abiteboul et al. 1995; Ull-
man 1989]. The algebraic operators can be extended for constraint databases. The
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constraint algebra operators on constraint relations R, Ra,... correspond to re-
lational algebra operators on the unrestricted relations points(R;), points(Rz), .. ..
More precisely:

Let R, R;, R2> be constraint relations over some domain and constraint theory
C. We say that &, 7, p, W and = are select, project, rename, join and difference
operators for constraint databases over C if they map input constraint relations
over C to output constraint relations over C such that the following hold:

points(pc(R)) = pc(points(R))

points(6c(R)) = oc(points(R))
points(Tyy .00 (R)) = Tuy,... r (pOints(R))
points(R1 R Ry) = points(Ry) X points(R2)

points(Ry—Ry) = points(R,) — points(Ry)

where C' is any valid rename or select condition.
We say that an algebraic operator is closed under a constraint theory C if it maps
constraint relations over C to constraint relations over C.

2.2.3 Datalog Queries. Datalog is a rule-based language. That means that syn-
tactically a Datalog program II is a finite set of rules of the form:

Ro(.’L’l, .. .,:L'k) — Rl(ml,l, e ,.’L‘l’kl), .. -;Rn(xn,la PN ,xn,kn)-

where Ry, ..., R, are not necessary distinct relation symbols and the zs are either
variables or constants. We call Ro(z1,...,z;) the head and Ry (21,1, -, %1k, ) - - -
R, (zni,--->%n,k,) the body of the rule. We associate with each rule r of the above
form the formula ¢,.

(,Zsr(f) = Hy(Rl(IIJLl, .. ,:cl,kl) AN...A Rn(:cn,l, .. ,:cn,kn))

where T is the list of variables in the head and ¥y the variables that occur only in
the body.

The above looks very much like a positive query. The difference is that in Datalog
rules some of the relation symbols stood for defined relations. For example, some R;
may be equal to Ry. That is, the output relations may be defined using references
to themselves.

We call ezxtensional database relations, or EDBs, those relations whose symbol
occurs only on the right hand side of rules. We call the other relation symbols the
intensional database relations, or IDBs. In each Datalog query the EDBs are the
input relations assigned by the user and the IDBs are the output relations to which
assignments are sought. The EDBs and IDBs are disjoint in each Datalog program.

We call an interpretation of a Datalog program II any assignment I of a constraint
relation to each R; that occurs in II. We call an interpretation an input database if
it assigns to each IDB relation the empty relation.

Each Datalog program II is a function from input databases to interpretations.
Let d be an input database. Then the output of II on d, denoted II(d), is the
set of tuples ¢ that are satisfied by the domain and the input database, denoted
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< 48,d >k t, where we use the first condition of satisfaction only for EDB relations
and we use the following for IDB relations:

< 0,d >= R;(a) iff there is a rule r with head R; and < §,d > ¢.(a)

The output of a Datalog query is called the least model.

2.2.4 Stratified Datalog Queries. Each stratified Datalog [Abiteboul et al. 1995;
Chandra and Harel 1982; Apt et al. 1988; Doets 1994; Ullman 1989] program is a
composition through negation of Datalog programs. We explain that composition
in the following way.

We call semipositive those Datalog programs that allow negation of EDBs.

Semantically each semipositive Datalog program II is a mapping from input
databases to interpretations. On any input database d the output of the semi-
positive Datalog program is II(d) where II is the Datalog program in which each
negated occurrence of an EDB relation R is replaced with the complement of R.

Each stratified Datalog program II is a list of semipositive programs IIy, ..., I
satisfying the following property: no relation symbol R that occurs negated in a II;
is an IDB in any II; with j > 4. Each II; is called a stratum of II.

Semantically each stratified Datalog program is a mapping from databases to in-
terpretations. In particular, if IT is the list of the semipositive programs I1y, ..., I
with the above property, then the composition II;(...II;()...) is the semantics of
II.

The output of a stratified Datalog query is called the perfect model.

2.3 Related Work

Constraint algebra operators and closed-form query evalutions were proven for rela-
tional calculus with linear arithmetic constraints [Brodsky et al. 1993], with linear
repeating points [Kabanza et al. 1990] with rational order constraints [Kanellakis
and Goldin 1994], with temporal constraints [Koubarakis 1994], with spatial con-
traints [Paradeans 1994] and with polynomial arithmetic constraints over the re-
als [Kanellakis et al. 1990], and for Datalog;s [Chomicki 19] and Datalog with
periodicity constraints [Toman et al. 1994].

Koubarakis [Koubarakis 1994] considers temporal difference constraint databases
which contain atomic constraints of the form z; — x;0c where z;,x; are integer
variables, ¢ is an integer constant and 6 is one of =, <. It is shown that relational
calculus programs are closed under temporal difference constraint databases. This
implies that safety restrictions could be avoided in the case of relational calculus
with integer gap-order constraints. However, Koubarakis’s results do not extend to
the language described in Section 4.2, while this paper is concerned with a general
approach to safe queries.

Constraint select, project, rename and join operators that are closed for C= « <,
were described and the following proposition was proven in [Revesz 1993].

ProprosITION 2.1. Let II be a Datalog program and d an input constraint database
over C— » <,. A constraint database representing II(points(d)) can be computed in
finite time by algorithm Find-Closed-Form shown below.

Algorithm Find-Closed-Form
INPUT: A Datalog program P and a constraint relation ¢; for each p;.
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For the defined relations ¢; is false.
OUTPUT: The least model of P in constraint database form.

REPEAT
FOR each relation p,, DO
Let ¥ = ém.
END-FOR

FOR each r; of form po(z1,...,2x) =— p1,...,pn DO
Tj = pja(p1)X... Rpj n(on).
Fj = ﬁaxl,...,szj-
Delete all inconsistent constraint tuples from Fj.
Add to ¢ each constraint tuple in F}; that does not imply another in ¢y.
END-FOR
UNTIL v,, = ¢,, for each m

Contraint relational algebra operators closed for C.c .¢ c, i.e., when the arity
a is one, were described and closed-form evaluation of Datalog queries was proven
in [Revesz 1995]. (Algorithm Find-Closed-Form with the relational algebra operator
symbols reinterpreted can still compute II(d).)

Nested databases allow set type data as well as complex data, (e.g. sets of sets
etc.), but they do not allow variables and constraints on them. Relational calculus
and rule-based query languages for nested or flat databases that allow sets are
considered in [Hull and Su 1993; Kuper 1990; Ramakrishnan et al. 1992; Tsur and
Zaniolo 1986; Vadaparty 1994] among others. Nested databases and some constraint
databases can be combined. For example, relational calculus queries of nested
databases with dense and set order constraints were considered in [Grumbach and
Su 1995]. Object-oriented databases and constraint databases can be also combined
and queried by an SQL-like language [Brodsky and Kornatzky 1995] or a refinement
rule-based language [Srivastava et al. 1994].

The constraint logic programming systems {log} [Dovier and Rossi 1993],
ECLIPSE [Eclipse 1994], Conjunto [Gervet 1994] and CLPS [Legeard and Legros
1991] allow finite set domains and constraints on them. Since the domain of sets is
finite, these systems also allow set constraints like union and intersection, which are
not considered in this paper, and {log} and CLPS also allow a finite depth nesting
of sets. The main issue in [Dovier and Rossi 1993; Eclipse 1994; Gervet 1994;
Legeard and Legros 1991] is the efficiency of the constraint satisfaction techniques
used in testing the satisfibility of the set constraint expressions allowed and not the
efficiency of the closed-form evaluation of the constraint logic programs.

Set constraints over infinite sets are used in program analysis (see the sur-
veys [Aiken 1994; Heintze and Jaffar 1994]). The main issue in this line of work is
decision procedures for systems of set constraints. These set constraints are used
to describe information about the behavior of programs concerning for example
type-cheking or optimization. This line of work is not concerned with using set
constraints within constraint databases and query languages.
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3. A GENERAL APPROACH TO SAFE QUERIES
3.1 An Approach to Queries without Negation

In this section we give a general definition of the constraint database operators p (re-
name), & (select), 7 (project), and ) (join). We will only assume that the constraint
database is is represented in a constraint theory C with the following properties: (1)
there exists a function sat from constraint tuples in C to {¢true, false} that returns
true or false depending on whether the constraint tuple is satisfiable in C, and (2)
there exists a function elim from pairs of variables and constraint tuples in C to
constraint tuples in C such that for each variable z and constraint tuple ¢ with z
in it, elim(x,t) returns a constraint tuple ¢, such that 3z ¢ and ¢, are semantically
equivalent.

Let p =t1 V...Vi, and ¥ = 51 V...V s, be constraint relations over some
constraint theory C with the above properties.

The rename operation p returns the constraint database with the specified sub-
stitutions. That is,

e fyssesznfui® = OlT1/Y15 - Tk [ Yk]

where x/y means the substitution of x by y.
The selection operation returns the conjunction of the constraint tuples and the
selection condition when it is satisfiable. That is,

&m:al,,,,,mk:akgb: \/ ti/\IL'l :(11/\.../\.’Ek = ag
1<i<n, sat(t;Azi1=aiA...Azp=ay)

The projection operation eliminates the necessary variables from each constraint
tuple and returns them. Let X = {zi,...,z1} be the set of variables in ¢, let
z; € X, and let X' = X \ {z;}.

1<i<n
The join operation pairs each constraint tuple in the first relation with each
constraint tuple in the second relation. A pairing is kept as a constraint tuple of
the output only if it is satisfiable.

PR = V (ti A s;)

1<i<n, 1<j<m, sat(t;As;)

LeEMMA 3.1. The following are true for any R, R;, R» constraint relations over
any C with the sat and elim functions:
(1) points(pc(R)) = po(points(R))
(2) points(6¢c(R)) = oc(points(R))
(3) points(ix: (R)) = mx: (points(R))
(4) points(RiXRy) = points(R1) X points(Ra)

PROOF. The first and second equivalences follow from the fact that substitut-
ing variables by other variables does not change the set of models of a constraint
formula.

To show equivalence (8): Suppose that ai,...,a;—1,aj41,--.,ax is a tuple in
wx+ points(R). Then there must be a tuple aq, - . ., ax in points(R). Also, a1, ..., ay
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must be a model of some constraint tuple ¢; of R. Then by the definition of variable
elimination a,...,a;-1,a;41,...,a; is a model of elim(xz;,t;). By the definition
of 7 the tuple ai,...,a;-1,aj41,...,a, must belong to points(wx' R).

For the reverse direction, suppose that ai,...,a;-1,a;j41,...,ax is a tuple in
points(7x+ R). Then there must be a constraint tuple ¢; in R such that a1,...,a;_1,
Gj41,-..,0; is @ model of elim(z;,t;). Therefore, there is some a; value such
that ag,...,ar is a model of #;. Then ai,...,ar must be in points(R). Hence
Aiy...,Qj—1,Qj41,.-.,ar must be in wx: points(R).

To show equivalence (4): Suppose that ay,...,ax; is in points(Ry) and by, . .., bgo
is in points(Rz), and ¢y, . . ., ¢k that is the combination of ay, ..., ax; and by, ..., bga
such that the same attributes are assigned the same values is in points(Ry) X
points(Ry). Then ay,...,ar is a model of some constraint tuple ¢; in R; and
bi,-..,bk2 is a model of some constraint tuple s; in Ry. By the definition of W then
(ti,s;) is a constraint tuple in R1®Ry and ¢, ..., ¢ is a model of RyXR,. Hence
1, --,c, must be in points(R1NR3).

For the reverse direction, suppose that c¢i,..., ¢ is in points(R;XRs). Then by
the definition of R there must be a tuple of the form (¢;,s;) in RiRRy such that
t; is a constraint tuple in R; and s; is a constraint tuple in Ey. That means that

there must be projections of ¢1, ..., ¢ onto the attributes of Ry and R» that yield
tuples ai,...,a1 and by, ..., bga respectively and that aq,...,ar1 is a model of Ry
and by,...,bk2 is a model of Ro. Hence ay,...,ax; is in points(Ry) and by, ..., bga

is in points(Rs). Therefore cy, ..., ¢, must be in points(R1) X points(R2). O

Next we describe example variable elimination algorithms for constraint tuples
in C:,¢,<g and CEE’Eg’gand in C:,¢,<9U CEE,EQ,Q'

ExXAMPLE 3.1. Consider the constraint theory C— . ,. Here the function
elim(z,t) returns the conjunction of the constraints in the following set.

{those constraints in t that do not contain the variable x}U

{y=%: y=2and z = z occur in t}U

{y<y2z : y==zand z <, z occur in t}U

{y<g 2z : y<yzandz =z occur in t}U

{y <g+h+1 2z : y <y z and z <}, z occur in t}

In each of the above y and z are constants or variables other than x. The above
variable elimination function adds only constraints that logically follow by transi-
tivity from the set of original constraints in ¢. Hence if the original constraint tuple
is satisfiable, then the returned constraint tuple is also satisfiable. Furthermore, if
any instantiation satisfies the returned constraint tuple, then it is possible to extend
that instantiation with an instantiation for x such that the combined instantiation
satisfies ¢.

The sat(t) function can be defined using the elim function. sat(t) eliminates each
variable one by one from ¢ until no variables remain. Then it returns “true” if all
remaining atomic constraints (that can involve only constants and no variables) are
true, else it returns “false”. It is possible to write computationally more efficient
functions for eliminating variables and testing satisfiability. We refer to [Revesz
1993] for computationally more efficient algorithms. O

Now let’s consider the constraint theory Csc z¢,c. Let A = {c1,...,cn} be the
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set of constants that occur explicitly in a k-ary constraint relation p(Xj,...,Xk)
in Ceezg¢,c. Let ¢(Xi,...,X;) be any constraint tuple in p. Then in ¢ each X;
could have in it (1) any of the constraints ¢ € X or ¢ ¢ X for each ¢ € A%, and (2)
any of the constraints B C X; or X; C B for each B C A%. Further, among the k
argument variables of ¢ we can have the constraints X; C X; where 1 <i,l < k.

We define a normal form for constraint tuples as follows. First, replace each
constraint ¢ € X or ¢ ¢ X by the equivalent constraint {¢} C X; or X; C Z°\ {¢}.
Second, replace the conjunction of the lowerbound constraints B; C X;,...,B,, C
X; by the equivalent constraint (UB;) C X;. Similarly, replace the conjunction
of upperbound constraints X; C By,...,X; C B,, by the equivalent constraint
X; C (NB;). We call the normal form of a constraint tuple the constraint tuple
with the above replacements. It is clear that every constraint tuple and its normal
form are semantically equivalent.

We say that p is in normal form if every constraint tuple of p is in normal form.
Since the ordering of the atomic constraints within a constraint tuple does not
change its meaning, we will ignore the ordering of the atomic constraints when
talking about normal forms.

EXAMPLE 3.2. Consider the constraint theory Cz¢ z¢,c. Here the function elim (X, 1)
returns the conjunction of the constraints in the following set. Let ' be the normal

form of ¢.
{those constraints in t’ that do not contain the variable X}U

{YCZ :YCXandX C Zoccur in t’}

In the above Y and Z are constants or variables other than X. The above vari-
able elimination function adds only constraints that logically follow by transitivity
from the set of original constraints in ¢'. Hence if the original constraint tuple
is satisfiable, then the returned constraint tuple is also satisfiable. Furthermore, if
any instantiation satisfies the returned constraint tuple, then it is possible to extend
that instantiation with an instantiation for X such that the combined instantiation
satisfies t and ¢'.

The sat(t) function can be defined using the elim function similarly to the pre-
vious example. O

ExAMPLE 3.3. Finally, let’s consider the constraint theory C— « < U Cscz¢ c-
Let ¢ be any tuple in this constraint theory. Each atomic constraint in ¢ belongs
to either the first or the second theory. Let #; and t5 be the subsets of atomic
constraints in ¢ that belong to C= « <, and to Czcz¢ crespectively. The variable
elimination function in this case can be called with either an integer variable z
or a set of integers variable X. In the first case it should return the conjunction
of elim(z,t1) in Example 3.1 and t2, while in the second case it should return
the conjunction ¢; and elim(X,t2) in Example 3.2. The satisfiability testing func-
tion should return true if and only if both sat(t;) in Example 3.1 and sat(tz) in
Example 3.2 return true. O

3.2 An Approach to Safe Queries with Negation

A closed-form evaluation often cannot be guaranteed once negation is added to a
constraint query language. This is because negation is not closed under several
types of constraint relations.
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For example, R(z,y) = = <s y is a constraint relation over the integers and
C= +#,<,, but =R cannot be represented as a constraint relation over the integers
and C:775’<g.

As another example, Ry(X) = X C {1,2,3,4, 5} is a constraint relation over sets
of integers and Cee cg,c, but =Ry (X) cannot be represented similarly.

On the other hand, many examples can be given where negation is unproblematic.
For example, R3(z,y) = 20 <5 x Vy <4 7TV x = y is a constraint relation over the
integers and C= x «,. Here ~R3(x,y) can be represented as = <o 26,2 <o ¥, 7 # ¥,
which is also a constraint relation over the integers and C— - .

The difference between the problematic and unproblematic cases of negation stem
from the occurence in the former of atomic constraints that are unnegateable within
C. For example, gap-order constraints over two variables and non-zero gap-value g
are not negateable in C— » .

Our general approach to safe queries over constraint databases with some § and
C will be to assign a type to each input constraint relation. The type of the
input constraint relation will tell whether it may contain an unnegatable atomic
constraint. Then a type checking is performed during which it is tested whether
the output relation may be always represented as a constraint relation over ¢ and
C. If it is, then the query is called safe.

Safe queries can be always evaluable in closed-form on any valid constraint
database input. By a valid constraint database input we mean one in which each
relation has the required type.

The evaluation of safe queries reduces to an evaluation of negation-free queries
because the negation can be evaluated by a type-restricted complement operator.
The type resticted complement operator will be from constraint relations of a spec-
ified type to constraint relations of the same type. In this paper, in particular we
will be interested in the following:

Let C— 4 < be the subset of C— + , where each gap-order constraint has a zero
gap-value or has at least one constant on the right or left hand side.

The type-restricted complement operator I' from C=  « to C= « < can be defined
using De Morgan’s laws.

Similarly, let Czc z¢,ccbe the subset of Csc z¢, cwhere in each C constraint the
left hand side is a set constant.

The type-restricted complement operator I'y from Cee.cg,cc to Cee,cg,cc can
be defined using De Morgan’s laws and noting that —({c1,...,¢p} C X) =1 &
XV...Vec, € X. The type-restricted complement operator I's from C— » <U
Cze,og,0cto C= £ <U Cee 5¢,cccan be similarly defined.

It is well-known that each relational calculus formula is equivalent to a relational
algebra expression with the select, project, rename, join, and complement operators,
where each negation is translated as a complement operator. Safe relational calculus
formulas are equivalent to relational algebra expressions that can be evaluated with
a complement operator that is closed. Similarly, each stratified Datalog program
can be evaluated stratum by stratum as a Datalog query after application of a
type-restricted complement operator that is closed.
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4. SAFE RELATIONAL CALCULUS QUERIES

In this section we define safe relational calculus queries over gap-order and safe
relational calculus queries over set order constraint databases, denoted RC<Z and
RCSPz2) respectively, and show that they are evaluable in closed-form. We also
consider the combination of these two languages, that is, safe relational calculus
queries over both gap-order and set order constraint databases, denoted RC<z 'SPz

4.1 Safe Relational Calculus for Gap-Order Constraint Databases

We assign to each input constraint relation of arity k£ a type that is called an
arguments connection graph or congraph. Intuitively, each congraph shows the
possible connections via <, constraints among the arguments of a relation. Each
congraph of arity & is a directed graph C(V, E,=,#) where V is the set of argument
variables, £ C V xV is the set of edges, =C V x V is the set of equalities among the
argument variables, and ZC V x V is the set of inequalities among the argument
variables.

We say that a constraint relation p(z1,...,z) has congraph type C(V, E, =, #)
or is valid with respect to C(V, E,=, #) if for every constraint z; <, z; in p, the
edge (z;,z;) € E, and for every constraint z; = z; (or x; # z;) in p, it is true that
(®;,25) €= (or (zi,x;) €#). (We sometimes abbreviate the latter two conditions
as x; = x; and z; # x;).

Note that in the above we assume that each relation p is rectified, that is, if it is
an EDB then it always appears in the input database and if it is an IDB it always
appears in the head of rules with the same list of argument variables. (In the body
of the rules the relation symbol p may appear with a different list of variables than
in its rectified form.) Rectification is a minor restrriction since it is easy to put any
Datalog program into an equivalent rectified form [Ullman 1989).

Now we define safe relational calculus with gap-order constraints. We assume
that each relation sumbol R is already assigned a congraph Cr(Vr, Er, =R, ZR)-
Each safe relational calculus formula will also have a type that depends on the type
of the relation symbols in it.

—If R is an n-ary relation symbol and z1,...,x, are variables or constants, then
R(z1,...,z,) is a safe formula.
The congraph of R(z1,...,z,) will be C(V, E,=,#), where V is the set of vari-
ables among the z’s and E is the edges in Er, = the pairs in =g, and # the
pairs in #Zpg in which both vertices correspond to z’s that are variables.

—If ¢1 and ¢ are safe formulas, then ¢1 A ¢ is a safe formula.
Let Cy, = (V1, Er,=1,#1) and Cy, = (V2, Ea, =2, #2). The congraph of ¢1 A ¢
is Cpings = (V, E,=,#), where V=V, UVs and E = Ey U Ey, === U =, and
#F=#1 U #a.

—If ¢ is a safe formula and Cy(V, E, =, #) is its congraph and E is empty, then —¢
is a safe formula.
The congraph of =¢ will be Cy(V, E, #,=).

—If ¢ is a safe formula and z is a variable, then 3z(¢) is a safe formula.
Let Cy(Vy, Ey, =4, #4) be the congraph of ¢. Here Cg,4) = (V, E, =, #) where
V =Vs\{z} and E = {(z;,z;) : z; # = # z; and (z;, z;) € Ey or (z;,2), (z,z;) €
Eg or (z5,z) € By, (z,x;) €=4 or (z;,2) €=, (x, ;) €E=¢}.
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Also, == {(zi,z;) : z; # = # x; and (z;,2;) €=¢ or (z;,2),(z,z;) €=¢}, and
Z={(zi,2;) : 2:i # © # x; and (zi,7;) €Z4}.

ExampLE 4.1. Let ¢ = Jy(R(z,5) A ~Q(z,y)) and let Cr = (Vg, Er, =R, #R)
where Vg = {z,2} and Eg = {(z,2)} and ==#= (. Also let Cq = (Vp, Eqg,=¢
,Zq) where Vg = {z,y} and Eg = 0 and == {(z,y)} and #= 0.

Here ¢ is safe with the given congraph typing. This is because R(z,5) and Q(z, )
are safe and have congraphs ({z},0,0,0) and ({z,y},0,{(z,y)},0) respectively.
The subformula —Q(z,y) is safe and has congraph ({z,y},0,0,{(z,y)}). Further,
R(z,5) A —=Q(z,y) is safe and has congraph ({z,y},0,0,{(z,y)}). Finally, ¢ is safe
and has congraph ({z},0,0,0). O

THEOREM 4.1. Safe RC<Z programs are functions from valid gap-order con-
straint databases to gap-order constraint databases.

PROOF. We can prove by induction on the structure of the formulas the following:
Let d be any valid input database. Then when evaluated each formula is valid for
its congraph.

The condition is true for the first case. Assume that R has the scheme (21, . ..,2,).
Then the first case is evaluated by substituting each z; by z; and conjoining z; = z;
if ; is a constant. Clearly, only if there was a constraint between two variables z;
and z; and neither x; nor z; are constants, can there be a constraint between two
variables z; and z;.

The condition is true for conjunction, which is evaluated by natural join, because
in the natural join each constraint tuple will be the conjunction of a constraint
tuple in the two input constraint relations.

The condition is true for the negation which is evaluated by I" because I' always
takes in constraint relations over C— » « and gives output constraint relations over
C— +,«. Having an empty edge relation assures that in the relation to be negated
there is no constraint of the form x <, y where z,y are variables and g is any
nonnegative integer constant.

The condition is true for existential quantification, which is evaluated using the
variable elimination algorithm described in Example 3.1. As is clear from the
algorithm z; <, z; can be a constraint after the variable elimination only if it was
a constraint or three other conditions are true, which are repreated in the definition
of E with the only difference that the gap-values are ignored. Similarly, z; = z;
can be a constraint after the variable elimination only if it was a constraint or the
second conditions in the algorithm is true, which is repeated in the definition of =.
Finally, the only way # can be true is that it was true before. O

4.2 Safe Relational Calculus for Set Order Constraint Databases

We assign to each input constraint relation a congraph type C(V, E, f) where (V, E)
is a directed graph and f is a coloring function from V to {green,red}.

We say that a constraint relation p(Xi, ..., X) has congraph type C(V, E, f) or
is valid with respect to C(V, E, f) if for every constraint X; C X; in p, the edge
(X:,X;) € E, and for every constraint X; C C the color of X is red.

Now we define safe relational calculus with set order constraints. We assume
that each relation symbol R is already assigned a congraph Cr(Vg, Eg, fr). Each
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safe relational calculus formula will also have a type that depends on the type of
the relation symbols in it.

—If R is an n-ary relation symbol and X7, ..., X,, are variables or constants, then
R(Xy,...,X,) is a safe formula.
The congraph of R(Xy,...,X,) will be C(V, E, f), where V is the set of variables
among the X’s and E is the edges in Er in which both vertices correspond to
X'’s that are variables, and f assignes red to a vertex X if it is assigned red by
fr or if there is a constant argument X; and (X, X;) € Eg.

—If ¢; and ¢- are safe formulas, then ¢; A ¢ is a safe formula.
Let Cy, = (V1,En, f1) and Cy, = (Va,Es, f2). The congraph of ¢1 A ¢o is
Coings = (V,E, f), where V = Vi1UVs and E = E;UE,. Here for each X € V the
function f(X) = red iff (X € V] and f1(X) = red) or (X € V5 and fo(X) = red).
—If ¢ is a safe formula and Cy(V, E, f) is its congraph and E is empty and the
color of each vertex is green, then —¢ is a safe formula.
The congraph of =¢ will be the same as Cy(V, E, f).

—If ¢ is a safe formula and X is a variable, then 3X (¢) is a safe formula.
Let Cy(Vy, Ey, fy) be the congraph of ¢. Here C3x(g) = (V, E, f) where V' = V4 \
{X} and F = {(Xz,XJ) X #FX # X; and (XZ,X]) € Ey or (Xi,X),(X,Xj) S
E;}. Also, for each X; € V the value f(X;) =redif f(X) =red and (X;,X) €
E,.

EXAMPLE 4.2. Let ¢ = Y (-P(X,Y) A S(Y,Z)) and let Cp = (Vp, Ep, fpP)
where Vp = {X,Y} and Ep = () and fp assigns green to both X and Y. Also let
Cs = (Vs, Eg, fs) where Vg ={Y, Z} and Es = {(Y, Z)} and fs also assigns green
to Y and red to Z. Then ¢ is safe. This is because -P(X,Y") will have same type
as P(X,Y) has. Also, the conjunction will have type (V, E, f) with V = {X,Y, Z}
and E = {(Y,Z)} and f assigns green to X and Y and red to Z. Hence ¢ will have
Vo ={X,Z}, E, =0 and f4 will assign green to X and red to Z. O

THEOREM 4.2. Safe RCSP#* programs are functions from valid set order con-
straint databases to set order constraint databases.

PRrROOF. Similarly to the proof of Theorem 4.1, we use induction on the structure
of the formulas.

In the first case, the argument is similar to Theorem 4.1 except for the coloring
function. Note that the only way a vertex X can have a constant upper bound
is either if it had one before or there was an edge (X, X;) in Eg and now X; is
assigned a constant value. In the first case, X already is a red vertex according to
fr and f will keep it red, while in the second case X will be colored red according
to f. Hence the property is preserved that every vertex with a constant upper
bound is colored red.

The condition is true for conjunction, which is evaluated by natural join, because
in the natural join each constraint tuple will be the conjunction of a constraint
tuple in the two input constraint relations.

The condition is true for the negation which is evaluated by I's because 'y always
takes in constraint relations over Cz¢ z¢,ccand gives output constraint relations over
Czc z¢,cc- Having an empty edge relation assures that in the relation to be negated
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there is no constraint of the form X C Y where X,Y are integer set variables.
Having each vertex green assures that in the relation to be negated there is no
constraint of the form X C C where C is an integer set constant.

Existential quantification is evaluated using the variable elimination algorithm in
Example 3.2. The correctness of the coloring function follows from the following.
Suppose X is the variable to be eliminated when the existential quantification is
evaluated. If X is a red vertex, then there could be some constant C' such that
X C C (and if X is green then there cannot be such a C'). Now if (X;, X) is an
edge in Ey, then there could also be a constraint X; C X in the constraint relation
associated with the subformula ¢. Then by transitivity X; € C could be true.
Hence X; could have a constant upper bound in the constraint relation associated
with the subformula 3X ¢. Hence X; should be colored red by f. O

4.3 Safe Relational Calculus for C= £ < U Czc z¢ c Constraint Databases

It is possible to use the results of the previous subsections in defining safe rela-
tional calculus programs for C— » < U Cz¢ z¢,c constraint databases. The idea is to
combine the handling of the integer variables in Section 4.1 and the handling of
set of integer variables in Section 4.2. The congraph will be C(V, E, =, #, f) but
the coloring function will assign a color only to set type vertices and only those
are required to be green before negation. If there are no set type vertices, then the
coloring function will be omitted.

ExAMPLE 4.3. Suppose that a hospital laboratory tests each patient for a set
of symptoms $i,...,5,. In addition to the test results, it is also known which
disease is associated with which set of symptoms. Which patients are free from all
symptoms of which diseases?

We are going to use the EDB relations patient_symptom(p, S), disease_symptom
(d,S) and elem(s, S). Here patient_symptom(p, S) is true if p is the id number of
a patient and S is the set of symptoms that patient has, disease_symptom(d, S) is
true if d is a disease and S is the set of symptoms that is associated with it, and
elem(s, S) is true if s is a symptom that is an element of a set of symptoms S. Now
suppose that the congraphs of these relations are the following.

Cpatz’ent_symptom = ({p; S}; 0; 0; @; fpat'ient_symptom) where fpatient-symptam(s) = green.
Cdisease_symptom = ({d7 S}a 07 0; @7 fdisease_symptom) where fdisease_symptom (S) =
green.

Celem = ({37 S}a @7 Q)a @7 felem) where felem (S) = green.

The relational calculus formula ¢(p, d) that we need is the following:

351, S2 patient_symptom(p, S1) A disease_symptom(d, S2) A —(Is (elem(s, S1) A
elem(s, S2))).

Here ¢ expresses that p is free from all symptoms of disease d if there is no
symptom s which is a common element to the set of symptoms found in patient p
and the set of symptoms commonly associated with disease d. We claim that ¢ is
a safe query.

Here the congraph of ¢; = elem(s, S1) A elem(s, S2) is:

Cs, = ({s,51,52},0,0,0, f4,) where fs,(S1) = f4,(52) = green.

The congraph of the subexpression Js¢; is:

C = ({S51,52},0,0,0, f) where f(S1) = f(S2) = green.
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The congraph of the negation of this is the same. The congraph of patient_symptom
(p, S1) A disease_symptom(d, S2) A —(3s (elem(s, S1) A elem(s, S2))) is:

C = (Ip,d, S1,52},0,0,0, f) where f(S1) = £(S2) = green.

Finally, the congraph of ¢ is:

Cy = ({p,d},0,0,0).

Hence ¢ is a safe query. To make the example more concrete let’s evaluate ¢
on the following EDB instance. The patient_symptom relation is (p = 101,S =
{1,2}) Vv (p = 102,S = {3,4}) V (p = 103, S = {3}), the disease_symptom(d,S)
relation is (d = 1,5 = {1,4}) v(d = 2,5 = {2,3}) Vv (d = 3,5 = {3,4}), and the
elem(s,S) relation is (s = 1,1 € S) V...V (s = 4,4 € S). The congraph of each
EDB relation is as required. In this instance, elem(s, S1) A elem(s, S2) evaluates
to:

(s=1,1€851,1€52)v...v(s=4,4€ 51,4 € 52).

Hence 3s elem(s, S1) A elem(s, S2) is:

(1eS1,1€52)v...v(4€S1,4€52).

The negation of that will consist of 16 constraint tuples:
(1¢51,2¢851,3¢51,4¢ S1)v...v(1¢52,2¢52,3¢52,4¢ 52)

The expression patient_symptom(p, S1) A disease_symptom(d, S2) A ~(Is(elem
(s,51) A elem(s, S2))) will be:

(p=101,d=3,51={1,2},52={3,4}) vV (p=103,d =1,51 = {3},52 = {1,4})

Hence ¢(p,d) will be (p = 101,d = 3)V(p = 103,d = 1). This means that patient
101 is free from all symptoms of disease 3 and patient 103 is free from all symptoms
of disease 1. O

The above query can be also expressed in several languages (SQL and others)
that do not use constraint databases [Rao 1996]. However, the use of set variables
and set order constraints enabled a more compact and higher-level expression. The
use of SQL for this and similar queries is more awkward (see Figure 2 in [Rao
1996]).

5. SAFE STRATIFIED DATALOG QUERIES
5.1 Safe Stratified Datalog for Gap-Order Constraint Databases

We start with some basic definitions.

Let C = (V,E,=,#) be a congraph of a relation over C= » . . The transitive
closure of C is C* = (V, E*, =*, %) where =* is the congruence closure of the = rela-
tion, and (x;,2;) € E* if and only if it is in E or there are pairs (z;, 21), ..., (%, ;)
in EU = with at least one pair in E.

Let r be any rule with variables x1, ..., %, and of the form Ag :— A1, As,..., A;.
Then the congraph of r is the transitive closure of the union of the congraphs of
Ai,..., A; after the necessary renamings. If two argument variables x; and z; in
the rectified form(s) of some relation(s) are renamed within the rule body by the
same variable, then (z;, ;) is added to =,.

We define the congraph of IDBs of any semipositive Datalog program as the
output of algorithm Find-IDB-Congraphs.

Algorithm Find-IDB-Congraphs
INPUT: A semipositive Datalog™ <2 program II and a congraph for each EDB.
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OUTPUT: A congraph of each IDB of II.

FOR each IDB relation p,,(z1,-..,zr) DO
assign to p,, a congraph Cp, (Vin, Emy =m, Zm) = Con({z1, -+, 21}, 0,0,0).
END-FOR
WHILE any changes in IDB congraphs DO
FOR each rule 7 with head p,,(z1,...,2x) DO
Find C,(V;, E,,=,,#,) the congraph of rule r.
Let E,, = E,,U {(SL'Z',ZL'J') : (.’L‘i,il)'j) S Er)}
Let =,,==,, U =,
Let #,,=#mn U %,
END-FOR
END-WHILE

In this section let Crn = (Va,m, Er,n, =g, ZR,n) denote the congraph of rela-
tion R in program II.

Let II; and Iy be two semipositive Datalog><% programs. We say that II; is
congraph compatible with Il if and only if for each relation R that is common to
both IT; and My, Egn, C Eru,, =rn, C=R 1., and Zg 1, CZRIL,-

We say that a semipositive Datalog™><Z program is safe if and only if the congraph
of any negated EDB has an empty set of edges.

We say that a stratified Datalog™ <% program is safe if and only if it consists of
II; U...UII, where each II; is a safe semipositive Datalog™ <% program and each
IT; is congraph compatible with each II;;1,...,II,,. Note that by repeatedly calling
algorithm Find-IDB-Congraphs on each stratum of a stratified Datalog program,
we can test whether it is safe or not.

THEOREM 5.1. Safe stratified Datalog™> <% programs are functions from valid
gap-order constraint databases to gap-order constraint databases.

PROOF. Let IT = II; U. . .UTL, be a safe stratified Datalog™><Z program where each
I1; is a safe semipositive Datalog™><% program and each II; is congraph compatible
with each IT;44,...,1IL,.

We prove by induction on the strata of I that when II is evaluated by algorithm
Find-Closed-Form each IDB relation of II is valid for its congraph if each EDB
relation of II is valid for its congraph. That is, each IDB relation has in it some
gap-order constraint z; <, x; (or x; = x; or z; # x;) only if the edge (or = or #)
relation of its congraph contains (z;, ;).

Let’s consider first the evaluation of IT;. The semantics of II; is equivalent to
the semantics of II; which is II; with each negated EDB relation replaced by its
complement. The complement of each negated EDB relation must be a constraint
relation over C= »  because each EDB of II; is also an EDB of II and is valid for
its congraph, which by definition of safe semipositive programs cannot contain any
edge. Hence II; can be evaluated by algorithm Find-Closed-Form.

Now suppose that during some iteration of the repeat-until loop of algorithm
Find-Closed-Form a constraint tuple ¢ is added to an IDB relation py such that
to contains a gap-order constraint x;160x;2 for some argument variables z;1 and x;2
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and nonnegative integer g. There are three cases depending on whether 8 is <4, =,
or #. In these cases we have to prove that the edge, the = or the # relation in the
congraph of pp must contain the pair (z;1,2;2). We prove the first case, the other
two cases are similar.

Let po(z1,-.-,2k) — Pp1,.-.,Pn be the rule that was used to derive ¢y and
let y1,...,ym be the variables that occur only in the rule body. To derive t
there must be in the previous iteration constraint tuples ¢1,...,t, in p1,...,Pn
respectively such that (t1,...,t,) is a constraint tuple in the join of py,...,p, and
Twyzr (t1s- < tn) = to. Then elim(yi(...elim(ym, (t1,...,tn))...)) = to by the
definition of 7. Further, this chain of variable eliminations in C— »« < can yield the
constraint ;1 <, x;» only if either it was already a constraint in to or there exist
constraints z;16121,...,2;0;z;2 where at least one 6 is <, and the others are either
= or <, for some nonnegative integer g and each z is one of z1,..., Tk, Y1,--.,Ym-
Since there are such constraints in (¢1,...,t,), each constraint of the form z;;6z;,
must occur in at least one t; for 1 < i < n. Then if 8 is =, then the equivalence
relation = of ¢; contains (2;1,2;2) and if 6 is <, then the edge relation E of ¢; con-
tains (zj1,2;2). In either way, by the definition of transitive closure, the transitive
closure of the congraph of the unions of the congraphs of py, ..., p, will contain the
edge (21, x;2). This shows that the constraint IDB relations of II; will satisfy their
congraphs. By the definition of congraph compatibility, each IDB relation of IT;
that is used in a higher stratum as an EDB relation is valid also for its congraph
in that stratum. Therefore, the above argument for II; can be repeated for each
successive stratum. [

Next we give an example of applying algorithm Find-IDB-Conraphs.

ExXAMPLE 5.1. Suppose that we know the distance in miles between any pair of
cities with a direct road connection on a map and we need to find the length of the
shortest path between any pair of cities. The following Datalog™<Z program with
four rules, 1,79, 73,74 Tespectively, performs this query.

shortest(x,y, s) :— path(z,y,0,s), not_shortest(z,y, s).

not_shortest(z,y, s2) — path(z,y,0,s1),path(z,y,0,s2),51 < Sa2.

path(z,y, s1, 82) :— path(z, z, 51, $3), distance(z,y, s3, $2)-

path(z,y, s1, 82) :— distance(z,y, 51, $2)-

In the program II; = {rs,r3,r4} is the first stratum and Iy = {r;} is the
second stratum. The input relation distance describes direct distances between
cities in miles using constraint database tuples. For example, the constraint tuple
=95,y = 77,51 <59 s expresses the fact that city 77 is 60 miles from city 95, or
to read it more literally, if we can reach city 95 within s; miles then we can reach
city 77 within s, miles for any s; and s that satisfies s; <s9 s2.

Let’s compute the IDB congraphs in II;. Figure 1 shows the edges in the con-
graphs of each rule and each relation at the end of each iteration ¢. For ¢ = 0 the
congraphs of the input database are shown. The input database relation distance
will have in its congraph only the edge (s1, s2), and all the other relations will not
have any edge in their congraphs. None of the rule congraphs will have any edge
in them either.
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no. | distance path not_shortest T2 r3 T4
(s1,52)
(s1,82) | (s1,82) (s1,82) (s3,82) (515 52)
(s1,82) | (s1,52) (s1,82) | (s1,53),(s3,52),(s1,82) | (s1,52)

S

D~

Fig. 1. The edges in the relation and rule congraphs after each iteration

After the first iteration, the congraph of 75 will have only the edge (s1, s2) because
of the constraint s; < sz occuring in the rule, the congraph of rule r3 will have
(s3,82) in it because of the renaming of the congraph of the distance relation, while
the congraph of r4 will have the edge (s1, s2) added to it, because on the right hand
side the distance relation also contains this edge. Because of the changes in r4, the
congraph of path will also have the edge (s1,s2) added to it.

After the second iteration, the congraphs of rules ro and r4 will remain un-
changed, while the congraph of r3 will have the edge (s1,s3) added to it because
of the renaming of the congraph of the path relation, and also the edge (s1,s2)
added to it because it is the shortcut of the edges (s, s3) and (s3, s2) already in the
congraph. This change in r3 however will not cause any change in the congraph of
the path relation. Therefore, none of the IDB relation congraphs will change from
the end of iteration 1 to the end of iteration 2. Hence the algorithm will terminate
and return the congraphs of the IDB relations within the last row.

Further, let’s find the IDB congraphs of II,. In there the relations path(z,y,0, s)
and not_shortest(x,y, s) have no edges in their congraphs. Hence the congraphs of
rule r; and the shortest relation will also have no edges. Note that II; is congraph
compatible with IIs and that IT; U IT, is a safe program because the congraph of
the only relation which is negated contains no edges.

Next we prove that for safe programs the query evaluation algorithm returns in
finite time the perfect model as expected.

THEOREM 5.2. There is an algorithm that for any safe stratified Datalog™ <2
program IT and valid input database d returns the perfect model of IT in constraint
database form.

PROOF. Let IT = II; U...UTII, be any safe stratified Datalog <% program where
each II; is a safe semipositive Datalog™ <% program and each II; is congraph com-
patible with each II;41,...,IL,.

The perfect model of II is equivalent to IIj(...II1(d)...) where each II; is II;
with each negated EDB relation replaced by its complement. The complement of
each negated EDB can be found using the type-restricted complement operator T,
which returns a relation over C= <. Then the semantics of II; can be evaluated
using algorithm Find-Closed-Form. This can be repeated for each II; for 1 <i < n
because of the safety restriction and Theorem 5.1. Since each of the successive com-
putation of algorithm Find-Closed-Form terminates as proven in [Revesz 1993], the
computation of the perfect model also terminates. The proof that the computation
returns the perfect model follows from the general fixpoint semantics theory [van
Emden and Kowalski 1976] and Lemma 3.1. [J

The next example illustrates that the query evaluation algorithm always returns
relations with a type that conforms to our expectations.
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EXAMPLE 5.2. Let’s return to Example 5.1. We have seen that it was identified
to be a safe query.

Let ¢% and FJz denote the constraint relations assigned respectively to relation
R and to rule r; at the end of iteration 7 of the repeat-until loop.

Suppose we have ¢g = (z = 1,y = 2,51 <19 $52)V(z =1,y = 3, 31 <44 82)V (z =
2,y = 4,51 <29 $2)V(x =3,y = 4,51 <14 52). We also have ¢ = = ¢° = false.

Let’s see now what happens when algorithm Find- Closed—Form 1s evaluated on
stratum 1 which contains rules 72, r3 and r4. For each iteration i of the repeat-until
loop, the algonthm finds:

FQ. = (p82/81 Usl 0¢ ) X (&

Fsz = 7Tav,y,51,sz ((py/z¢ )m

F{ = ¢a

In the first iteration of the repeat-until loop, we have (;52 = (). Therefore, both
Fj and F3 will be false. As we noted, F} = ¢4. This has the net effect of copying
each constraint tuple in the distance to the path relation. Hence by the end of the
first iteration, we have ¢} = @), = false, and ¢}, = 4. Note that the ¢ variables
are used only to detect whether any ¢ changed. Since ¢, changed in value, we enter
the loop again.

In the second iteration of the repeat-until loop, by substituting into the second
of the above equations, we find that p,/,¢5 " is:

(z=1,2=2,581 <1983)V(r =1,2=3,51 <gs 83)V(r =2,2=4,51 <99 83)V (=
3,z = 4, S1 <14 53)

and ﬁw/z¢d is
(z=1,y=2,83 <19 82) V(2 =1,y = 3,83 <44 82) V(2 =2,y = 4,583 <29 82) V(2 =
3,y =4,53 <14 82)

The join of the above two will be:

(z=1,2=2,9y =4,81 <19 83,83 <29 82)V (x = 1,2 =3,y = 4,51 <44 83,83 <14
52)

and after projection we get: (x = 1,y = 4,51 <49 82) V (z = 1,y = 4,51 <59 S2).
Both of these constraint tuples will be added to the path relation. Similarly, FZ2
will be:

(z=1y=220<s)V(x=1y=3,45<s2)V(z =2,y =4,30< s2)V(z =
3,y =4,15 < s9)

We find that ¢2 = ¢4V F§ and ¢2, = F3. Since there are changes in the IDB
relations, we again enter the repeat-until loop.

In the third iteration of the repeat-until loop, similarly to the above, we find that
F3=FVv(rz=1y=4,50<s3)V(z=1y=4,60< s2), F§ = FZ and F} = ¢.
We also find that ¢2, = ¢,V (z =1,y =4,50 < 52) V (z = 1,y = 4,60 < s2) and
¢3 = ¢2. Since ¢p, changed we enter the repeat-until loop again.

In the fourth iteration of the repeat-until loop, none of the F's and ¢s will change.
We exit the repeat-until loop and enter stratum 2.

In stratum 2 the only IDB relation is shortest. To find the value of this relation,
we have to enter again the repeat-until loop. Here path(z,y,0, s) is the relation:
(z=1,y=2,19<s)V(z=1,y=3,44<s)V (z =2,y =4,29 < 5)V
(z=3,y=4,14<s)V(z=1,y=4,49<s)V(z =1,y = 4,59 < 5)

while not_shortest(z,y, s) is:
(z=1y=220<s5)V(@=1y=3,45<s5)V(z=2y=430<s)V

sl 1) X ¢<
(pw/z¢d))
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(z=3,y=4,15<s)V(z=1,y=4,50<s)V (z =1,y = 4,60 < s)

We find the negation of not_shortest using De Morgan’s laws and simplifying:
(s<16)V(z#3,s<2)V(y#4,s<2)V(z# 1,2z #3,s<31)V
(x#£3,y#2,s<3)V(c #2,2 #3,y#2,s<46)V (y # 2,y # 4,5 < 46)V
(x#2,2#£3,y#2,y#3,s<b)V(x#Lxz#2,2#3)V(x#Ly#4)V
(y#2,y#3,y#4)

Finally the join of path and the negation of not_shortest will be:
(z=1Ly=2,s=200V(z=1y=3,5=45)V (r =2,y =4,5s = 30)V
(z=3,y=4,s=15)V(z=1,y=4,5s=50)

Note that we get a unique s for each pair of z and y. The s is the length of the
shortest path between = and y as we expected. O

It should be noted that the shortest path length query cannot be expressed using
stratified Datalog with only relational databases (see page 954 in [Ullman 1989]).
Hence the use of constraint databases was important in the above example.

5.2 Safe Stratified Datalog for Set Order Constraint Databases

For Datalog *<PZ®) programs we define the congraph of a rule as follows.

DEFINITION 5.1. Let 7 be any rule with variables Xi,...,X,, and of the form
Ao i— A1, As, ..., A;. Then the congraph of r is C, = (V;, E,, f) where V,. is the
union of the vertices and E, is the transitive closure of the edges in the congraphs
of Ay,...,A; after the necessary renamings. Also, f, is red for any vertex if and
only if it is red in any of the A;s.

We define the congraph of IDBs of any semipositive Datalog™SP(Z*) program as
the output of algorithm Find-IDB-Congraphs?2.

Algorithm Find-IDB-Congraphs2
INPUT: A semipositive Datalog<P* program II and a congraph for each EDB.
OUTPUT: A congraph of each IDB of II.

FOR each IDB relation p,,(X1,...,X;) DO
assign to py, a congraph Cp, (Vin, Em, frm) with Vi, = {X4,..., X}, En =0,
and f,, coloring each vertex in V,,, green.
END-FOR
WHILE any changes in IDB congraphs DO
FOR each rule r with head p,,(Xy,..., X;) DO
Find C.(V;, E,, f.) the congraph of rule r.
Let Em = Em U {(X,,X]) : (X“XJ) € Er)}
Let fn (V) =red iff f.(V) = red or exist V;,...,V}, such that
V,V1)y ooy (Vie1, Vi) € Ep and f-(Vy,) = red.
END-FOR
END-WHILE

Let II; and I, be two semipositive Datalog™<P* programs. We say that II; is
congraph compatible with Il if and only if for each relation R that is common to
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both II; and Is, Ern, C Egrm,, and for each V vertex, if frm, (V) = red then
frm, (V) = red.

We say that a semipositive Datalog><P(z* program is safe if and only if the
congraph of any negated EDB has an empty set of edges and only green vertices.

We say that a stratified Datalog><P(z*) program is safe if and only if it consists
of IT; U ... UTI, where each II; is a safe semipositive Datalog™*<?z*) program and
each II; is congraph compatible with each II;;,...,IL,.

Similarly to Theorems 5.1 and 5.2 we can show the following.

THEOREM 5.3. Safe stratified Datalog *<P=® programs are functions from valid
set order constraint databases to set order constraint databases.

PRrROOF. The proof of this is similar to that of Theorem 5.1. [

THEOREM 5.4. There is an algorithm that for any safe stratified Datalog™><P@*
program IT and valid input database d returns the perfect model of IT in constraint
database form.

PROOF. The proof of this is similar to that of Theorem 5.2. O

5.3 Safe Stratified Datalog for C— < U Czc z¢,c Constraint Databases

Safe stratified Datalog programs for C— + - U Czc z¢,cconstraint databases, denoted
Datalog »<z'<Pz® _ can be defined and handled by a combination of the techniques
in the previous two subsections. We will illustrate the combination in the following
example.

EXAMPLE 5.3. Let’s consider the following semipositive Datalog™><Z-5P(z*) program
0= {r,rs,r3}.

out(S) — select(k, S), last(k).

select(j,S) — select(i, S),next(i, ), ~cond(j, S).

select(0,S) — S CC.

where C is some set constant. In II the EDB relations are next(i,j), last(k),
and cond(j,S), while the IDB relations are select(j,S) and out(S). Program II
can be used to make a selection from a group of items C by taking care that a
set of conditions is avoided. We illustrate this further in Example 5.4, but here
we only show that II is a safe program assuming that the EDBs have the following
congraphs

Chert = ({i,7},0,0,0)).

Clast - ({k} @ 0 @)
Ceond = ({.7; S}a 0: @, @7 fcond) where fcond(s) = green.

Note that the —cond is safe and its congraph will be the same as that of the cond
relation. Now let’s look at how the IDBs change. Initially there are no edges in
the IDB congraphs and all set type vertices are green. In the first iteration we find
that
Cr, = ({k,5},0,0,0, f;,) where f,,(S) = green.

rog — ({17.75 S}: 05 @7 wa fT‘2) where sz (S) = green.

Cr, = ({5},0,0,0, fr;) where f.,(S) = red.

In the above f,,(S) is red because of the upper bound constant C. From the rule

congraphs we calculate that:

Cout = ({S},0,0,0, four) where fou:(S) = green.
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Cselect = ({.77 S}7 (07 (07 @; fselect) where fselect(S) = red.

In the second iteration we find no changes. Hence we exit the while loop and
conclude that II is a safe program. O

We continue the previous example by considering the following problem:

EXAMPLE 5.4. A department needs to select a team of students to participate in
a programming contest. The students eligible to participate are Cathy, David, Pat,
Mark, Tom, Lilly, and Bob. The selection must avoid the following conditions. (1)
Bob is selected and David is not selected. (2) David, Pat, and Mark are all selected.
(3) Tom, Cathy, and Bob are all selected. (4) Pat is selected and neither Tom nor
Lilly is selected. (5) Neither Cathy nor Lilly is selected. (6) Both Cathy and Lilly
are selected. Find all possible teams that may be sent to the programming contest.

Let ¢,d, p,m,t,1,b be the integer constants denoting the id numbers of the candi-
date team members. We use the program in Example 5.3 with C' = {¢,d, p,m,t,1,b},
the last relation equal to k = 6, the next relation equal to (i = 0,7 =1)V...V(i =
5,7 = 6) and the cond relation, expressed in Prolog style, equal to:

cond(1,8) — be S,d¢ S.

cond(2,S) — {d,p,m} C S.
cond(3,S) — {t,c,b} C S.
cond(4,5) — pe S, t ¢ S, ¢ S.
cond(5,5) — c ¢ S,1 & 8S.

cond(6,S) — {c¢, I} CS.
Clearly the congraph of each of the EDB relations is as required in Example 5.3.
O

6. THE COMPUTATIONAL COMPLEXITY OF SAFE QUERIES

In this section we analyze the time and space required for testing whether a program
is safe and for evaluating safe queries (safe programs+valid constraint database
inputs).

When analyzing the evaluation of queries, we are interested in data complezity.
Data complexity is the measure of the computational complexity of fixed queries
as the size of the input database grows [Chandra and Harel 1982; Vardi 1982]. The
rationale behind this commonly used measure is that in relational database practice
the size of the database typically dominates by several orders of magnitude the size
of the query. We assume that data complexity will be also a realistic measure for
constraint databases. However, this assumption may or may not be actually true
in future constraint database systems.

6.1 The Complexity of Testing the Safety of Programs

At first we show that it is relatively easy to test whether a given program is safe or
not.
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THEOREM 6.1. Whether a RC<z , RC<Pz® | stratified Datalog™<% , or strati-
fied Datalog™S<P* program is safe can be tested in PTIME in its size.

PRrROOF. The proof in the case of RC<Z and RC<?= follows from induction on
the structure of the formulas. For each expression of the form ¢ A v, or ¢, or
Jz¢ the congraph can be found in PTIME in the size of the congraphs of ¢ and .
The proof in the case of Datalog™<%? and Datalog <Pz follows from the fact that
each EDB and IDB relation has a unique congraph and that the computation of
the congraphs by algorithm Find-IDB-Congraphs is monotone. That is, if C is the
congraph of any IDB relation of the form p,(z1,...,zx), then its set of vertices is
fixed V = {x1,..., 2k}, while its edge relation is a subset of V' x V and is monotone
increasing. Further, in the case of Datalog™ <% the = and # relations are also a
subset of V x V and are monotone increasing. In the case of Datalog™<P= the
coloring function is also monotone as it can only change a green color to a red,
but never a red to green. Hence for each stratum the computation of algorithm
Find-IDB-Congraphs must terminate in PTIME in the size of V', which is bounded
linearly by the size of the program. Finally, the number of IDB relations and the
number of strata are also bounded linearly by the size of the program. O

6.2 The Complexity of Safe Relational Calculus Queries

Since relational calculus queries can be translated into relational algebra queries,
we will study first the computational complexity of the algebraic operators for
constraint databases.

Let’s consider constraint databases over C— « ~ . We define a normal form for
constraint tuples as follows. The normal form contains at most one constraint
between any two distinct variables, and at most one upper bound and one lower
bound constraint for each variable. A constraint relation is in normal form if all
tuples in it are in normal form. Putting a constraint relation into normal form
requires only a polynomial time in the number of atomic constraints in it [Revesz
1993].

THEOREM 6.2. Let py(z1,-..,x) and pa(y1,---,Yr,) be any two fixed relation
schemes where some of the s may equal some of the ys. Then for any constraint
relation instances of p; and py in normal form with n; and ns tuples respectively,
the projection, selection, rename, and complement operators on p; can be done in
time polynomial in n; and the join of p; and ps can be done in time polynomial in
ni + ns.

PROOF. Note that here we take k and ks to be fixed constants while n; and no
are variables. Also, ny and ns are proportional to the size of the constraint relation
instances for p; and ps because in normal form each constraint tuple has at most a
constant 2k + k(k — 1) number of atomic constraints. Hence for each tuple the elim
and sat functions can be done in constant time. Hence it is easy to see that for
the project operation the time complexity is proportional to the number of tuples
and for the join operation the time complexity is proportional to the product of
the number of tuples in p; and po. It is also straightforward that for the select and
rename operations the time complexity is linear in n.

For the type-restricted complement operator we can assume that the constraint
database instance of p; is over C— + . Let p1 be t; V...V t,, where each t; =
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(@ig A ... Nagy,) for l; < 2k + k(k —1). The complement of p; can be found using
De Morgan’s law as follows:

S(t1 V... Vitg,) ="t A Aty =

(—|a1,1 V...V —|0/1,[1) AN...A (_‘anl,l \Y ---V_‘a/nl,l )

n1

We need to put the above formula into disjunctive normal form. A naive way of
doing that would be the following. Let relation temp, contain the negation of the
atomic formulas in ¢;. Let for each 2 < i < n; the relation temp; contain the join of
relation temp;_1 with the negation of the atomic formulas in ¢;. The complement of
p1 is equal to tempy, . This process in the worst case may take O((2k+k(k—1))™)
time and yield that many constraint tuples. However, we can do better than that.

Let S = {c+ g+ 1 : 3z suchthat (¢ <, z) occursin pj}U{c—g—1:
Jz such that (z <, ¢) occursin p;}. Note that =(c <, ) =2 <o (¢ +g+ 1)
and ~(z <, ¢) = (c—g—1) <o z. Hence it is easy to see that the complement rela-
tion of p; can be written such that it contains only atomic constraints =, #,s <, < s
where s € S. Let m be the size of S. Obviously, m is at most linear in the size of n;
because there are only a constant number of atomic constraints in each normalized
constraint tuple.

Within normal form tuples between each pair of vertices there is one of the
following: an equality constraint, an inequality constraint, a less-than constraint
with zero gap-value, a greater-than constraint with zero gap-value, or no constraint.
Also, each vertex has no lower (upper) bound or one of the elements of S as a lower
(upper) bound. Hence there are at most 5¥=1 x (m + 1)k x (m + 1)* = O(nt")
number of possible tuples in normal form in the complement of p;. Hence if we
modify the naive evaluation suggested above by putting the temp relation into
normal form after each join and eliminating duplicate tuples, we obtain an algorithm
that runs in polynomial time in n; as required. O

Now let’s consider constraint relations over Cgc z¢,c, for which we already de-
scribed a normal form.

THEOREM 6.3. Let p1(X1,...,X) and pa(Y3,...,Y:,) be any two fixed relation
schemes where some of the X's may equal some of the Y's. Then for any constraint
relation instances of p; and ps in normal form with n; and ns tuples respectively, the
projection, selection, and rename operators on p; can be done in time polynomial
in ny and the complement of p; can be done in DEXPTIME in n;. For any positive
integer n; there is an input relation p; of size n; such that the complement of p;
requires 2! number of tuples. The join of p; and ps can be done in time polynomial
in niy + na.

PROOF. The proof is similar to Theorem 6.2 for the operators of project, select,
rename and join. For the complement operator a modification similar to that in the
proof of Theorem 6.2 yields DEXPTIME complexity because the possible number
of constraint tuples in normal form is exponential in n; (Counting the set of possible
constraint tuples can be done similarly as in Lemma 6.2.)

For the lower bound of the complement operator consider the constraint relation:

r(X,2Y)=(a €XANaa €Y)V ... V(cn, € X ANep, €Y).
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where ¢; for 1 < 4 < n; are distinct constants. Let S = {c1,...,¢n, }. The
complement of r is:

cor(X,Y) = \V SCX AS,CY.
(S1US2=S5) A (81NS2=0)

This representation cannot be reduced to fewer tuples because no tuple entails
another. Clearly, the size of r is ny, while the size of co_r is 2™ number of constraint
tuples. O

We will now consider the computational complexity of yes/no relational calculus
programs. These programs have zero arity output relations which either contain the
empty tuple (true) or no tuples (false). Consideration of yes/no relational calculus
programs is convenient for analyzing data complexity, because many complexity
classes are defined based on yes/no decision problems.

THEOREM 6.4. For each fixed program II in safe RC<Z deciding whether TI(d)
is yes for variable database d is in PTIME. For each fixed program II in safe
RCS&P® deciding whether II(d) is yes for variable database d is £¢-hard for some
constant k£ and is in DEXPTIME.

PRrROOF. For any fixed safe RC<Z or safe RCP(z) program we always need to
perform a fixed number of constraint select, project, rename, join, or type-restricted
complement operations. Since by Theorems 6.2 and 6.3 the computational com-
plexity of these operators is in PTIME (respectively DEXPTIME) in the size of
the constraint relations that are the arguments to these operators, any fixed safe
RC<z (respectively safe RC<P(z® ) program can be evaluated in PTIME (respec-
tively DEXPTIME) in the size of the input relations.

For the lower bound we will show that there is a fixed safe RC<P(* program with
variable input database that expresses the class of Quantified Boolean Formulas
of the form I71VZ23Z3...VZr¢p where without loss of generality ¢ is a boolean
formula in disjunctive normal form. This subclass of quantified boolean formulas
is referred to as X} and forms a complexity class. Therefore, we will show that
there is a safe RC<P(z*) program with Yh-hard data complexity for each k. Since
PSPACE= | J, X%, it follows that the class of safe RC<P*) programs has PSPACE-
hard data complexity.

In our translation set S; will represent the variables T;. A variable in Z; be-
ing true or false will correspond to belonging or not belonging to set S;. The
safe RC<P= program expressing the quantified boolean formula problem above
will be the following:

351V52353 .. .VSkp(Sl, ceey Sk)

where p(Sy, ..., Sy) is the translation of the formula ¢. The above RC<P(Z*) program
has a fixed size even though the exact number of variables bounded by the quanti-
fiers as well as ¢ may vary. Any change only effects the input database relation p.
For example the class of Quantified Boolean formulas with & = 2 can be expressed
by the following RC<Pz* query where only p varies:

351V52p(51, SQ)
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We express any instance of X5 by using an input relation p such that in any
satisfying assignment for ¢ the variable z; is true if and only if there is a satisfying
assignment for p such that i € S;.

For example, let Jx1,2x2,23Vx4, 25¢ be the quantified boolean formula where
¢ is (mxy Axa A xg) V (-2 A o3 Axs) V (21 A xz3 A —x5). Then we use the
above RC<P(® program where the input relation p is (1 € S1,2 € S1,4 € So) V
(2 ¢ 51,3¢ 51,5€ Sa)Vv (1€ S1,3€851,5¢S52). Clearly, the translation is a
safe RC<P(z®) query because only ¢ € and ¢ ¢ constraints are used. [

6.3 The Complexity of Safe Stratified Datalog"><% Queries

Although safe stratified Datalog™ <% queries can be evaluated in finite time, in this
section we show that their evaluation may require a large data complexity. We
start with a definition of families of functions F; of type N — N. Let Fy be the
set of polynomial functions, and let F; = {2f cfeF_;}fori >0 IfFisa
family of functions, let F-TIME denote the class of languages that can be accepted
within some time f € F. Now we will show using a Turing machine reduction that
evaluation of safe stratified Datalog™><Z queries is F-TIME-hard.

Let d be a database instance in normal form and let | d | denote its size in
number of tuples. Then the size of d in number of bits representation on a tape is
O(| d|)- Let D denote the set of possible database instances. We define a function
f of type N x D = N as follows. Let f(0,d) =| d | and f(i,d) = 2fG=14) . (Here
f@G,d)e F; —TIME.)

We start with a lemma that shows that the successor function on integers from 0
to f(i,d) can be defined using a safe stratified Datalog™><% program with i strata.

LEMMA 6.1. There is a safe stratified Datalog™ <% program with a single nega-
tion that given as inputs a relation containing the number s and a relation that
enables counting from 0 to s, defines both (1) a relation containing the number 2°
and (2) a relation that enables counting from 0 to 2°.

PROOF. Let us assume that the input relations are no_digits(s) and next(0,1), ...,
next(s—1, s). Using a safe stratified Datalog™ <% program we define two output rela-
tions, (1) arelation two_to-s(2%) and (2) the successor relation succ(0,1), .. ., succ(2°—
1,2°).

To show (1): We write a rule for exponentiation as follows.

e:cp(j, Z1, m2) — nemt(ia .7)7 6.71])(7:, T, $3)7 empu: z3, x2)'

exp(l,z1,22) :— 11 <1 Ta.

This will define the constraint tuples exp(i,z1,%2) :— x1 <g9i_; x2 for each
1 < i < s. In particular, exp(s,x1,%2) :— @1 <as_1 Ta is one of the constraint
tuples defined. Therefore, we can find the value 2° as follows.

two_to_s(x) — geq_two_to_s(x), ~grt_two_to_s(x).

grt_two_to_s(z) — geqitwo_to_s(y),y < .

geq_two_to_s(x) — no_digits(s),exp(s,0, ).

Notice that we use only one stratified negation in these rules. This is the only
place where we need negation.

To show (2): In this step it helps to think of each number being written in
binary notation. Since the number 2° has s binary digits, what we really need is
given a counter on the digits and the value 2° define a counter from 0 to 2°.
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We start by representing the value of each digit using a constraint interval, where
the gap-value is one less than the actual value. That is, for each 1 < i < s, we
want to represent the value of the ith digit from the right as: digit(i, z1,22) —
21 <g6-1_1 2. The following rules define the desired constraint tuples.

digit(j,z1,x2) — next(i,j),digit(i, z1,x3), digit(i, x3, T2).

digit(1,x1,22) — x1 < Ta.

Note that we can represent each number i by a pair of constraints: —1 <; =
(which is equivalent to (i — 1) < z) and = <ps_(;41) 2° (which is equivalent to
x < i+1). Since each number can be expressed as the sum of a subset of the values
of the n digits, if we start out from the constraint —1 < x and = < 2% and choose
to increment for each 1 < 4 < s either the first or the second gap-value by the value
of the ith digit, then we will get a single integer between 0 and 2° — 1 as output.
This gives an idea about how to define any number that we need. For example, the
following rules define the number 2% — 1.

two_to_s_minus_one(x) :— no_digits(s), add_-digit(z,x, s).
add_digit(x1, T2, ) :— next(i, ), add _digit(xs, x2,1), digit(j, x3, z1)-
add_digit(x1,x2,0) — —1< z1,22 < n,two-to_s(n).

The above rules recursively define x; to be bounded by higher and higher con-
stants from below while x5 is always bounded by 2° from above. That is, for each
0 < j < s the value of add_digit(z,j) will be equivalent to —1 <o; _; z1,T2 < 2°.
Hence in the top rule when j = s we have x = 2° — 1. We used a separate xz; and
Zo in all the rules except the top rule to make it easy to tighten the lower bound
constraint while preserving the upper bound constraint.

In the rules we always added the value of a binary digit to the lower bound. Note
that in general we can define any integer between 0 and 2° — 1 if for each binary
digit value we add it to the lower bound if the corresponding binary digit is 1 in the
number or subtract it form the upper bound as if the corresponding binary digit is
0 in the number we want to define.

To express the successor function, we define pairs of integers. Let z; and x5
represent the first and y; and ys represent the second integer. The following rules
make sure that when we add a digit to the xs we also add the same digit to the ys
the right way.

suce(x,y) — two_to_s-minus_one(x), two_to_s(y).

suce(z,y) — succ2(z,z,y,y, ), nodigits(s).

SUCC2(.Z'3,.Z‘2,y3,y2,j) B SUCC2($17$2;y17yQai)Jnemt(iaj)adiQit(ja 1'17'773)7
digit(j,y1,ys)-

succ2(x1,23,Y1,Y3,J) i— succ2(x1,T2,Y1,Y2,1), next(i, j), digit(j, 3, x2),
digit(j,ys, y2)-

SUCCQ(x17$37y37y27j) — succ3(x1,x2,y1,yg,i),nemt(i,j),digit(j, 1'3,.1'2),

digit(j,y1,ys)-

suce3(xs3, T2,Y1,Y3,J) — suced(x1,T2,Y1,Y2,1), next(i, ), digit(j, 1, x3),
digit(j,ys, y2)-
suced(z1, T2,Y1,Y2,0) — —1 < z1,22 <n,—1 < y1,y2 < n,two_to_s(n).

In this program, in each recursive step, z; will be bounded by higher and higher
constants from below and x5 will be bounded by lower and lower constants from
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above. In the second rule the possible values of z; and z» will overlap exactly on
one integer. A similar note applies to y1 and ys.

As an example, let s = 3. Then we can prove that succ(4,5) is true. It helps to
think that the numbers 4 and 5 are written in binary notation as 100 and 101. The
sequence of derived facts leading to the conclusion is the following:

suce3(x1,T2,Y1,Y2,0) i — =1 < 1,220 < 8, =1 < y1,y2 < 8 by the last rule.
succ2(x1, T2,Y1,Y2,1) — =1 < 21,22 <1 8, =1 <1 y1,y2 < 8 by the fifth rule.
succ2(x1, T2,Y1,Y2,2) — =1 < x1,22 <3 8, —1 <1 y1,y2 <2 8 by the fourth rule.
succ2(r1, T2, Y1,Y2,3) — —1 <4 1,22 <3 8, —1 <5 Y1,y2 <2 8 by the third rule.

Note that the right hand side of the above is equivalent to 4 < 1,22 < 4 and
5 < wy1,y2 < 5. Hence we get succ(4,5) by the second rule. [

We call Datalog programs with a selected IDB relation with zero arity a yes/no
program. This is because this output relation either contains the empty tuple (true)
or no tuples (false). Consideration of yes/no Datalog programs is convenient for
analysing data complexity, because many complexity classes are defined based on
yes/no decision problems.

THEOREM 6.5. There is a fixed yes/no program II in safe stratified Datalog™ <2
with ¢ negations such that deciding whether II(d) is yes for variable database d is
deterministic F; — T IM E-hard.

Proor. To prove the theorem we show that we can simulate an f(i,d)-time
bounded deterministic Turing machine using a safe stratified Datalog™><Z program
with ¢ negations.

Lemma 6.1 implies that we can find the value of f(i,d) using a safe stratified
Datalog™ <% program P. All we have to do is to use ¢ copies of the program fragment
within Lemma 6.1 and rename them such that the output of one copy will be the
input to the next copy. We can copy the value f(i,d) into the time_bound relation:

time_bound(t) — two_to . . . two_to(t).

By Lemma 6.1 the program P also defines the successor relation on integers from
0 to f(i,d). Now assume that we want to simulate a deterministic f(i,d)-time
bounded Turing machine running on a tape input of size n, where n is any integer
less than f(i,d). We record the value of n into the tape_size relation:

tape_size(n).

Let the deterministic f(7,d)-time bounded Turing machine be T = (K, g, d, so, h),
where K is the set of states of the machine, o is the alphabet, § is the transition
function, sg is the initial state, and h is the halting state.

First we use a relation T to describe the initial content of the tape. We create
n facts T'(4,¢;), one for each 1 < ¢ < n. If i > n, then the content of the ith tape
cell will be a special tape symbol # denoting that it is blank. (Here # can be any
integer not already denoting a tape symbol.) We express this by:

T(m,#) :— tape_size(n),n < m.

Second we use relations Left, Right and Write to describe the transition func-
tion § of 7. We create for each possible machine input state s;, output state s,
tape symbols ¢ and w, a fact Left(s1, ¢, s2), Right(s1, ¢, s2) or Write(s, ¢, s2,w) if
according to 6 when the machine is in state s; and pointing to ¢, then the machine
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must go to state s2 and move one tape cell to the left, or to the right, or stay and
write w on the tape, respectively.

Third we use a relation C' to describe the configuration of the machine. The
relation C'(t,4,s) describes that at time step ¢ the machine is pointing to tape
position ¢ and is in state s. We can assume that the Turing machine is pointing at
time zero to the first tape cell. Therefore we create a fact C(0,1, sp).

Fourth we express the sequence of transitions of the machine by a relation
R(t,j,c) which is true if and only if at time ¢ the j* tape cell contains the tape
symbol ¢. To initialize R we write the rule: R(0,j,¢) :— T'(4,¢).

We express the requirements for a valid deterministic computation of the machine
as follows.

C(t2,0,82) — succ(t,t2),C(t,1,51), R(t,i,¢), Left(s1,c, s2), succ(o,i).
C(t2,0,82) — succ(t,t2),C(t,4,51), R(t,1,c), Right(s1, ¢, s2), succ(i, 0).
C(ta,i,82) — succ(t,t2),C(t,1,51), R(t,i,c), Write(s1, ¢, s2,w).
R(ta,i,¢) — succ(t,ta),C(t,1,81), R(t,i,c), Left(s1,c, s2).

R(ta,i,¢) — succ(t,ta),C(t,1,81), R(t,i,c), Right(s1,c¢, s2)-
R(ts, i, w) — succ(t,tz),C(t,1,s1), R(t,1,c), Write(s1, ¢, $2,w).
R(t27p7 C) B succ(t,tg),C(t,i,sl),R(t,p, C)Ji <p.

R(t2ap7 C) —_ SUCC(t,tg),C(t,i,sl),R(t,p, C),i > D.

yes :— C(t,i,h),time_bound(t2),t < to.

The last rule expresses that by time f(i,d) the machine is in the halting state h. [

It is easy to see that Theorem 6.5 is true even if the size of each integer constant
occuring in the input database d is logarithmic in the size of d. [Revesz 1993] proved
that yes/no Datalog<Z programs can be decided in PTIME data complexity if we
restrict and in DEXPTIME data complexity if we do not restrict the size of the
integer constants in d. For the lower bound in the latter case we have the following.

THEOREM 6.6. There is a fixed yes/no program II in Datalog<Z such that de-
ciding whether TI(d) is yes for variable database d is DEXPTIME-hard.

ProOOF. If we do not restrict the size of the integer constants in the input
database, then d may contain the relation two_to_s(2%), as well as no_digits(s)
and the next relation from next(0,1) to next(s —1,s). Then we can use part (2) of
Lemma, 6.1 which does not need any negation and can skip part (1) that is only used
to define the relation two_to_s(2°) which we are given in d. That means that we can
define the successor function from 0 to 2°. Then we can use the rules in the proof of
Theorem 6.5 which also do not contain any negation. This shows that we can sim-
ulate any DEXPTIME bounded Turing machine with a fixed Datalog<Z program
and variable database d. [

6.4 The Complexity of Safe Stratified Datalog™><P(z*) Queries
First we consider the upper bound of the problem of tuple recognition.

LEMMA 6.2. For any fixed semipositive Datalog <Pz program II with output
relation r, variable input database d, and set constant tuple (C1,...,Cg), we can
test whether r(C1,...,Ck) € points(Tl(d)) in DEXPTIME in the size of d.
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PrROOF. Let A = {ci1,...,cn} be the set of integer constants that occur in the
program or in the input database. Let p(X3, ..., X) be any k-ary relation in normal
form. In each constraint tuple of p there are (29™)* = 29*" possible different, lower
bounds and 2¥("+1) possible different upper bounds for each of the k argument
variables. (Any subset B of A can be a lower bound or an upper bound and Z*\ B
can be also an upper bound.) Further, there are k(k — 1) ordered pairs with two
distinct argument variables. Between any ordered pair we either have or not have
a C constraint. Hence there are 20kn x 20k(n+1) » 9k(k—1) different normal form
tuples for p. Since we are interested in data complexity and take the program to
be fixed, k is also a fixed constant. Hence there are O(22¢%") different normal form
tuples in p.

Let kmax be the maximum arity of a relation in II. From the above follows that
each relation in II will have at most O(22%=ax") normal form tuples. Further, the
complement of any relation will also have at most that many normal form tuples
because the type-restricted complement operator I's does not introduce any new
constants.

Since there is a fixed constant number of IDB relations, O (22¢kmax") is a bound on
the number of iterations required in evaluating the model of II. Since the program
has a fixed size, each iteration will take O (2¢24#maxn) time where c is the number of
relation symbols in the body of any rule (implying a cartesian product operation
in the worst case). Clearly c is a fixed constant for each program. 0O

THEOREM 6.7. For any fixed stratified Datalog™<P(z*) program II with output
relation 7, variable input database d, and set constant tuple (C1,...,Cy), we can
test whether 7(C1,...,Ck) € points(Il(d)) in DEXPTIME in the size of d.

ProOF. It follows from Lemma 6.2 that evaluating any stratum of a stratified
Datalog™<? =) program takes DEXPTIME in the size of A. Going from one stra-
tum to the next stratum cannot increase .A. Hence each stratum will be evaluated
within DEXPTIME in the size of the original input database d. 0O

Now let’s consider the lower bound data complexity of the query evaluation. In
this lower bound we will not even use any negation symbol.

THEOREM 6.8. There is a fixed yes/no program II in Datalog=Pz* such that
deciding whether TI(d) is yes for variable database d is DEXPTIME-complete.

PROOF. The upper bound follows by Theorem 6.7. The lower bound is by sim-
ulation of deterministic exponential time bounded Turing machines. At first we
show that we can express the successor function for values between 0 and 2% — 1
using only O(s) space. The idea is to encode the binary notation of each number as
some subset of {s1,s0,...,21,20,11,10}, where i1 or 0 will be present according
to whether in the binary encoding the ith digit from the right is 1 or 0, respectively.
For example, let s = 4. Then the number 9 can be represented as {41, 30,20, 11}.

We first create a relation digit(N, I, D) which is true if and only if N represents
the integer n as described above and in the binary notation of n the ith digit from
the right is d, and I = {i} and D = {d}.
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digit(N, {1},{0}) :— 10 € N,11 ¢ N.
digit(N,{1},{1}) — 11 € N,10 ¢ N.

digit(N, {s},{0}) — s0 € N,s1 &€ N.

digit(N, {s},{1}) — sl € N,s0 & N.

We also add to the input database the facts next({0}, {1}),...,next({s—1},{s})
and the fact no.-digits({s}) and time_bound({sl,...,11}) that describe that we
have s binary digits in each number and the largest number is 2° —1. Note that the
size of the input databaseis O(s). Now we express the successor relation succ(N, M)
which is true if and only if M, N represent the numbers m,n respectively and
m=mn+ 1 for any 0 < n,m < 2°.

succ(N, M) — succ2(N, M, S), no_digits(S).

succ2(N,M,I) :— succ2(N,M,J),next(J,I),digit(N,I,D),digit(M,I,D).
SUCC2(N7 M7 {1}) S dngt(Na {1}7 {0})7 dlg"'t(Ma {1}7 {1})

succ2(N,M,I) +— succ3(N,M,J),next(J,I),digit(N,I,{0}),digit(M,I,{1}).
succ3(N,M,I) +— succ3(N,M,J),next(J,I),digit(N,I,{1}),digit(M,I,{0}).

SUCC3(N7 M7 {1}) S dzgzt(N, {l}a {1})5 dngt(Ma {1}7 {0})

During the rest of the simulation the successor relation will be used for counting
the current position on the tape and the running time similarly to Theorem 6.5. The
only important change is to replace the integer variables by integer set variables,
integer constants by integer set constants that contain a single element and instead
of the < relation use the following:

greater(I,J) :— succ(I, K), greater(K, J).

greater(I,J) :— succ(l,J).

The greater relation can be used to initialize and update the first 2° — 1 tape
cells. That is enough for the simulation because the Turing machine never needs
to move beyond the 2% — 1st tape cell due to the time limit. [

7. CONCLUSIONS AND FUTURE WORK

The relative expressive power of various constraint query languages is an interesting
issue. [Benedikt et al. 1996] proved recently that even simple recursive queries
like transitive closure cannot be expressed in relational calculus with polynomial
arithmetic constraints over the real numbers. What is the relative expressive power
of the various safe stratified Datalog queries of constraint databases?

There are also many practical questions about the implementation of constraint
query languages. The issues here include efficient indexing of constraint tuples, in-
tegrity constraints, built-in aggregate operators, user interfaces, concurrent access
to data, security etc. Many of these problems have to be rethought in the con-
text of constraint databases (see the surveys [Cohen 1990; Jaffar and Maher 1994;
Kanellakis 1995; Kanellakis and Goldin 1994]). The constraint database system
DISCO [Byon and Revesz 1995] under development at the University of Nebraska
implements the constraint query language Datalog<z-<®(z*) . We plan to imple-
ment safe stratified Datalog™><%:SP(z®) presented in this paper in a future version
of that system.
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