
Max-Count Aggregation Estimation for Moving Points∗

Yi Chen Peter Revesz
Dept. of Computer Science and Engineering,

University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract

Many interesting problems regarding moving objects
can be reduced to the following question: Given a set S
of moving points on a line and two other movings points
A and B on the same line, what is the maximum num-
ber of points in S that will be simultaneously between
A and B within a time interval (t1, t2)? We propose an
algorithm that can estimate the answer for arbitrary A
and B and any fixed S in a chosen constant time. We
show that the error rate of the estimation is related to
this chosen constant and some other parameters of the
input data. Our experimental results show that high ac-
curacy estimation can be achieved when S has a large
number of points and A and B are not too close to each
other.

1 Introduction

Spatio-temporal databases are increasingly impor-
tant in various areas including e-commerce, meteorol-
ogy, telecommunications, and transportation. In query-
ing such spatio-temporal databases, the common aggre-
gation operations of Count and Max occur frequently.
In addition to these, Revesz and Chen [3] recently in-
troduced a third aggregate operator called Max-Count,
which arises only in the case of moving points and has
no analogue in relational databases. The three aggregate
operators mentioned can be defined as follows:

Let S be a set of N moving points in a
database, and let Q be a query rectangle Q.

Count: For a given time, count the number of
points of S that are in Q.

Max: For a given time and a value for each
point of S, find the maximum of the val-
ues of the points of S that are in Q.

∗This research was supported in part by USA NSF grant EIA-
0091530. Authors’ email:{ychen, revesz}@cse.unl.edu.

Max-Count: Find the maximum number of
points of S that are simultaneously in Q
within a time interval (t1, t2). (Optional:
Return also the earliest time when the
maximum is reached.)

In one-dimensional space, instead of a query rectan-
gle, we talk about a query interval, whose endpoints are
called query points.

Acharya et al. [1] gave an algorithm that can estimate
the Count of the rectangles in the database that intersect
a new query rectangle. Choi and Chung [2] and Tao et
al. [4] proposed methods that can estimate the Count of
the moving points in the plane that intersect a new query
rectangle. Hence while estimation in the case of Count
is an old idea, its consideration in the case ofMax-Count
is new.

In Section 2, we give an algorithm that can estimate
the Max-Count aggregate operator on spatio-temporal
databases that represent a set of one-dimensional and
linearly moving points. In Section 3, we present exper-
imental results that show that our estimation algorithm
provides accurate estimation over various queries.

2 Max-Count Aggregation Estimation

We first discuss the special case when the set of mov-
ing points in one dimensional space has uniform distri-
bution of initial position (at time t = 0) and the veloc-
ity. (This special case is corresponds to the case of one
bucket of a histogram in Definition 2.2. We generalize
later this case to an arbitrary number of buckets.)

Let S be a set of N moving points in one dimensional
space. The position of a point Pi ∈ S at time t can be
represented by a linear function of time P i(t) = ait +
bi. In the dual plane, this point can be represented as
a static point with the coordinate (ai, bi). Suppose that
the N points represented in the dual plane are distributed
uniformly in a rectangular area R as shown in Figure 1.

Definition 2.1 The dual space of the one-dimensional
moving point set is a two dimensional space in which

1

position

velocity

R

Q1

Q2

l l21

A

Figure 1. Estimation idea assuming uni-
formly distributed point sets.

the x and y-coordinates denote the speed and the initial
position, respectively, of the moving points.

Definition 2.2 The spatio-temporal histogram consists
of a finite partitioning into a set of rectangular areas,
called buckets, the two dimensional dual space of the
one-dimensional moving point set. Each bucket is de-
scribed by its corner vertices and the total number of
points in it.

Definition 2.3 Given two moving query points let Q1

and Q2 be their duals and let lines l1 and l2 cross them,
respectively, with slopes −t as shown in Figure 1. Then
the query band is the area between the lines l1 and l2.

In the above definition, the slope of the lines change
with the variable t.

Lemma 2.1 Let Q1 and l1 be as in Definition 2.3. Then
at any time t, the moving points whose duals lie be-
low (or above) l1 in the dual plane are exactly those
that are to the left (or right) of Q1 is the original one-
dimensional line.

Lemma 2.2 Let S be a set of N moving points which
are all mapped with a uniform distribution within a rect-
angular area R in the dual plane as shown in Figure 1.
Then the number of points in S that lie between Q2(t)
and Q1(t) at time t can be estimated to be N · A/R,
where A is the intersection of the rectangular area R and
the query band.

Hence if we can calculate the area of the intersec-
tion, we can efficiently calculate the estimated aggrega-
tion result. Let A1 be the area in the rectangle R below
l1. Similarly, let A2 be the area in the rectangle R below
l2. If l1 is above l2, then area of the intersection A can

be represented as A = A1 − A2. If l1 is below l2, then
we have A = A2 − A1.

It is also clear that A1 and A2 can be calculated in a
constant time. For example, given a time instance t, we
have (i) if l1 is above the rectangular area, then A1 =
R; (ii) if l1 is below the rectangular area, then A1 =
0; (iii) if l1 intersects the rectangular area, we have the
following cases as shown in Figure 2:

1. Only the upper-right vertex is above l1.

2. Only the upper-left vertex is above l1.

3. Upper-left and upper-right vertexes are above l 1.

4. Upper-left and lower-left vertexes are above l1.

5. Upper-right and lower-right vertexes are above l 1.

6. Only lower-left vertex is below l1.

7. Only the lower-right vertex is below l1.

Lemma 2.2 and the above imply that we need a con-
stant number of calculations to find the Count aggregate,
because we need to consider only one value of t, hence
the slopes of l1 and l2 are fixed. When we pose Max-
Count aggregates on moving points, the situation is more
complex, because we have to consider all possible t val-
ues in the time interval (t1, t2), meaning that the slopes
of l1 and l2 vary. This looks a daunting task. However, in
the following, we show that we still need only a constant
number of calculations to find Max-Count aggregates.

Lemma 2.3 Let S be a set of moving points in one di-
mensional space, such that in the dual plane they are
uniformly distributed in a rectangular area R. Let Q1

and Q2 be two moving points. Given a query time inter-
val (t1, t2), we can estimate the Max-Count aggregation
by a constant number of calculations.

Lemma 2.4 Let R be a rectangle and l a line. Then,
the area in R that is below (or above) l can always be
represented by a function of the form A = a · t + b

t + c,
where a, b and c are constants.

Now we prove that the area that is the intersection
of R and the query band can also be represented by a
similar function of time.

Lemma 2.5 Let S be a set of moving points in one di-
mensional space, and let Q1(t) and Q2(t) be two mov-
ing query points. Then for any given histogram H of S,
the estimated number of points that are located between
the two query points at time t can be represented by a
function of the form

count(t) = a · t +
b

t
+ c

2

l1

Q1 Q2

l1

l1 l1

l1l1
l1l1

(A) (B) (C) (D)

(E) (F) (G) (H)

l2

Figure 2. Cases with one bucket and one line.

where a, b and c are constants and t ̸= 0. When t = 0,
then count(t) = d where d is a constant.

Lemma 2.6 Suppose the dual plane is partitioned into
rectangular buckets. We can calculate the Max-Count
of a query band during a query time interval when the
query band covers the same set of corner points of the
buckets.

Definition 2.4 Let H be a histogram. Let Q1(t) and
Q2(t) be two query points. Let (t[, t]) be the query time
interval. We define the Time Partition Order to be the
set of time instances TP = {t1, t2, ..., ti, ..., tk}, such
that k is a constant and t1 = t[and tk = t] and for each
time interval [ti, ti+1) the set of bucket corner vertices
that lie within the query band remains the same.

Note that a query band changes with t as the slope
of the lines l1 and l2 changes. For the query band to
remain in one of the states shown in Figure 2 during a
time interval [ti, ti+1), it cannot change so much that it
either leaves a corner vertex or adds a new corner vertex
of a bucket.

Therefore, throughout the time interval [t i, ti+1) the
number of points within the query band can be estimated
by the same function of the form a · t + b

t + c, where a,b
and c are constants.

All the above lemmas and observations lead to the
following algorithm to estimate the Max-Count value.

Algorithm 2.1 Max-Count Algorithm
Input: A histogram H , query points Q1(t) and Q2(t)
and a query time interval (t[, t]).
Output: The estimated Max-Count value.

1. Find all bucket corner vertices in H . Find the lines
between the corner vertices and the dual of the

query points. Order the lines by their slopes. Find
the Time Partition Order of the time interval (t [, t]).

2. For each time interval associated with the Time Par-
tition Order calculate the function of time having
the form a · t + b

t + c, where a, b and c are con-
stants.

3. For each such function of time, calculate the maxi-
mum value within the corresponding time interval.
Store the result in a list.

4. The maximum value in the list is the final result.

Theorem 2.1 Let H be a histogram with B number of
buckets. Let Q1(t) and Q2(t) be two moving query
points, and let (t[, t]) be a time interval. It takes
O(B log B) time to calculate the estimated Max-Count
value.

Example 2.1 We show in Figure 3 a histogram which
contains three buckets and in which P and Q are the
duals of the two moving query points. There are a total
of eight corner vertices for the buckets in the histogram,
as shown in the figure. Figure 3(ti) shows the query
band at time ti. The query band consists of two parallel
lines which have the slope −ti. The line crossing Q also
crosses G. This means that at time ti, F lies in the query
band, and G enters the query band. We sweep the query
band clockwise as time increases and slope decreases.
Then we find that at a later time ti+1, G still lies in the
query band, but F is leaving the query band, as shown
in Figure 3(ti+1).

During the time interval [ti, ti+1), the query band in-
tersects with all three buckets. Moreover, the intersec-
tion between each bucket and the query band remains in
one of the states shown in Figure 2. For example, for
the intersection of the query band and bucket 1 remains

3

F

P

Q

P

Q

G

Bucket 1

Bucket 2

Bucket 3

Bucket 2

Bucket 1

Bucket 3

i i+1(t)(t)
H

F

H

G

Figure 3. The query band at two different times.

in the case shown in Figure 2(5). Hence, the area of the
intersection between the query band and bucket 1 can be
represented by the same function of time. According to
Lemmas 2.2 and 2.4, the number of points can be es-
timated by a function of time f1 = a1 · t + b1

t + c1.
Similarly, the number of points in the intersection of
the query band and buckets 2 and 3 can be estimated by
functions f2 = a2 · t+ b2

t + c2 and f3 = a3 · t+ b3
t + c3.

Then, the total number of points during the time interval
[ti, ti+1) can be estimated by the function of time f =
f1+f2+f3 = (a1+a2+a3)·t+ b1+b2+b3

t +(c1+c2+c3).
Observe that theMax-Count value during this time inter-
val can be calculated with constant time. Since the Time
Partition Order forms O(B) number of such time inter-
vals, it takes O(B) time to calculate the Max-Count of
all such intervals and the final result.

3 Experiments

We study the impact of various parameters for the
performance of the algorithm. We systematically gener-
ate several synthetic datasets that consist of a large num-
ber of one-dimensional moving points. Both the initial
positions and the speeds of these points are distributed
between 0 and 10, 000 according to the Zipf distribu-
tion. In the Zipf distribution we assumed that the higher
speed and higher displacement points were denser. This
is similar to the dataset used in [2, 4]. Therefore, in the
dual plane the dataset was distributed within a rectan-
gular area with height 10, 000 and width 10, 000 with a
greater density of points in the upper and right regions
of the histogram.

3.1 Experimental Parameters

We consider the estimation accuracy with respect to
the following parameters:

Number of Buckets: We used the histogram algorithm
of [1] that allowed us to specify the number of
buckets as an input. We used either 10 or 20 buck-
ets in our experiments.

Number of Points: This is the number of points in the
histogram. Since we used the same Zipf distribu-
tion in all of our experiments, the higher number of
points also mean a higher density of the points. We
varied the number of points from 8000 to 40000.

Query Range: This is the distance between the duals of
the two moving query points. We varied the query
range from 400 to 2000, that is, from 2% to 20% of
the width of the histogram.

Query Type: The position of the dual of the two mov-
ing query points can be either in a dense region or a
sparse region of the histogram. We used one dense
and one sparse query in the experiments.

Originally we did not consider the query type as a pa-
rameter. However, we added it when we realized that it
is actually an important parameter. Presenting only an
average running time of a set of different queries would
actually hide an interesting and non-obvious relation-
ship.

3.2 Dense Queries

In our first set of experiments we considered queries
where the location of the duals of the moving query

4

points was in a dense region of the histogram. We call
these cases dense queries.

3.2.1 10 Buckets

We fixed the number of buckets to be 10 and varied the
number of points and the query range.

400 600 800 1000 1200 1400 1600 1800 2000

Range

5000
10000

15000
20000

25000
30000

35000
40000

Number of points

0
10
20
30
40
50
60

Error Rate

Figure 4. Performance measures for a
dense query and 10 buckets.

Figure 4 shows that the error rate (the absolute value
of the difference between the estimated and the actual
values divided by the actual value) decreases exponen-
tially as the number of points increase. The error rate
also decreases slightly as the query range increases.
Discussion: These findings were as expected. Obvi-

ously, as the number of points increases, the points are
more clearly Zipf distributed. With a clearer Zipf distri-
bution in the entire plane, the bucketing algorithm can
find buckets in which the points are more uniformly dis-
tributed than before, because it has to consider only the
Zipf factor and less random factors. Hence the accuracy
increases.

The query range data is harder to explain. Intu-
itively, in general the higher the intersection area be-
tween a bucket and the query band the less is the error
rate. When the query range is wider the intersection ar-
eas between the buckets and the query band tends to be
greater, in fact, the query band may completely cover
many buckets. For those buckets that are completely
covered the estimation would be accurate.

3.2.2 20 Buckets

Figure 5 shows that the error rate decreases exponen-
tially as the number of points increase. The error rate

400 600 800 1000 1200 1400 1600 1800 2000

Range

5000
10000

15000
20000

25000
30000

35000
40000

Number of points

0
10
20
30
40
50
60

Error Rate

Figure 5. Performance measures for a
dense query and 20 buckets.

also decreases slightly as the query range increases. This
results are similar to the results in Section 3.2.1, with a
slightly lower error rate here than in the previous section
for most combinations of number of points and query
ranges.
Discussion: Intuitively, when we allow more buck-

ets in the histogram, the distribution in each bucket is
more uniform, hence the total error rate should be lower.
However, there is no visible decrease of the error rate
when the number of buckets increases from 10 to 20.
Apparently most of the extra buckets do not intersect
with the query band, hence increasing the number of
buckets does not significantly lower the error rate.

For dense queries, with either 10 or 20 buckets, a
slight change in time could result in a large change in
the estimate of the number of points in the query band.
This explains why the error rate can be high (up to 50%)
in the case of a relatively few number of points but re-
mains low in the case of a high number of points. Ap-
parently the estimate and the actual values change more
in tandem with the higher density.

3.3 Sparse Queries

By sparse queries we mean queries that are the oppo-
site of dense queries. In sparse queries the duals of the
moving query points are located in a sparse region of the
histogram.

3.3.1 10 Buckets

Figure 6 shows the relationship of the error rate, number
of points and query range when the number of buckets

5

400 600 800 1000 1200 1400 1600 1800 2000

Range

5000
10000

15000
20000

25000
30000

35000
40000

Number of points

0
1
2
3
4
5
6
7
8
9

10

Error Rate

Figure 6. Performance measures for a
sparse query and 10 buckets.

is 10 and we have sparse queries.
The error rate is always relatively small, that is, it is

always below 10%. There is no clear relationship be-
tween the error rate and query range. In fact, the error
rate decreases about linearly when the number of points
is 24,000, but it increases linearly when the number of
points is 8,000 and 40,000. Similarly, there is no clear
relationship between the error rate and the number of
points. For example, the error rate goes up and down
for query range 400 and down and up for query range
2, 000.
Discussion: The lack of a clear relationship between

the error rate and the query rate in this case may be due
simply to the fact that the error rate remains lower than
7% in most cases. With such a relatively small error
rate the ups and downs in Figure 6 cannot be statistically
significant.

3.3.2 20 Buckets

Figure 7 shows that the error rate is again very small in
most cases when we use sparse queries and fix the num-
ber of buckets to be 20. The highest error rate occurs in
one corner of the picture when the number of points is
8, 000 and the query range is 2, 000. There seems to be
a decrease in the error rate as we go away from that cor-
ner in any direction, either decreasing the query range or
increasing the number of points.
Discussion: In many ways these results were simi-

lar to those in Section 3.3.1. The most surprising result
again was that the error rate was small, always less than
10%. It was also noteworthy that in the case of sparse
queries the average error rate seems to be slightly lower

400 600 800 1000 1200 1400 1600 1800 2000

Range

5000
10000

15000
20000

25000
30000

35000
40000

Number of points

0
1
2
3
4
5
6
7
8
9

10

Error Rate

Figure 7. Performance measures for a
sparse query and 20 buckets.

with 20 buckets than with 10 buckets.
For sparse queries, with either 10 or 20 buckets, a

slight change in time results only in a small change in
the estimate of the number of points in the query band.
This explains why the error rate is always small even
when we have relatively few number of points.

Our experiments show that the query type is an im-
portant, perhaps the most important, parameter in the
performance of the Max-Count estimation algorithm.
That is surprising, because it is a less obvious variable
than the others. However, even in the case of dense
queries a good performance can be guaranteed if the
number of points is high, the query range is not too
small, and the number of buckets is 10 or higher.

References

[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selec-
tivity estimation in spatial databases. In Proc. ACM
SIGMOD, pages 13–24, 1999.

[2] Y.-J. Choi and C.-W. Chung. Selectivity estimation
for spatio-temporal queries to moving objects. In
Proc. ACM SIGMOD, 2002.

[3] P. Revesz and Y. Chen. Efficient aggregation on
moving objects. In TIME-ICTL, 2003.

[4] Y. Tao, J. Sun, and D. Papadias. Selectivity estima-
tion for predictive spatio-temporal queries. In ICDE,
2003.

6

