
Efficient Aggregation over Moving Objects∗

Peter Revesz Yi Chen

Computer Science and Engineering Department

University of Nebraska-Lincoln

Lincoln, NE68588, USA

{revesz,ychen}@cse.unl.edu

Abstract

We study two types of aggregation queries over a set S
of moving point objects. The first asks to count the num-

ber of points in S that are dominated by a query point Q
at a given time t. The second asks to find the maximum

number of points in S that are dominated by a query point

at any time. These queries have several applications in the

area of Geographic Information Systems and spatiotempo-

ral databases. For the first query and any fixed dimension d,

we give two different solutions, one using O(
√
N) time and

O(N) space and another using O(logN) time and O(N2)
space, where N is the number of moving points. When each

of the points in S is moving piecewise linearly along the the

same line and the total number of pieces is O(N), then we

can do the count query in O(
√
N) time and O(N) space.

For the second query, when all objects move along the x-

axis we give a solution that uses O(logN) time and O(N2)
space in the worst case. Our solutions introduce novel

search structures that can have other applications.

1. Introduction

Aggregation operators are frequently used in database

queries. The efficiency of database queries with aggregate

operators is well understood and studied in the context of

traditional relational data. However, aggregation operators

are also important for more complex data that cannot be

represented in relational databases.

Example 1.1 Suppose that a large company has a number

of manufacturing plants P1, P2, P3, Each plant pro-

duces four different products X1, X2, X3 and X4. The

profit at each plant for each product changes over time as

shown in Table 1.1.

∗This research was supported in part by NSF grant EIA-0091530 and a

Gallup Research Professorship.

Table 1. Profits for various plant and product

combinations.

Id X1 X2 X3 X4 T

1 t2 + 2t+ 10 80 t+ 30 5t− 10 t
2 t3 − 8t− 10 10t t2 − 2t t3 − 3t+ 4 t
3 t2 − 50 3t 5t− 10 t− 10 t
4 t4 − 16 7t 5t2 t− 30 t
5 t3 + 81 4t t3 − 21 t+ 10 t
...

...
...

...
...

...

The company has the opportunity to buy a new plant

Q where profits are rising rapidly. The board of directors

would approve the buy only if five years from now Q will

be more profitable for each product than 10 of the current

plants.

In this case, the input relations

P (Id,X1, X2, X3, X4, T) and Q(X1, X2, X3, X4, T)
form a constraint database [10, 12, 16]. Therefore, we can

find out how many plants are less profitable in 2007 by the

following SQL query:

select count(Id)

from P, Q

where P.X1 < Q.X1 and

P.X2 < Q.X2 and

P.X3 < Q.X3 and

P.X4 < Q.X4 and

P.T = 2007 and

Q.T = 2007;

Suppose that the company has a long-term plan to elim-

inate all products except X1. Therefore, the board of di-

rectors gives an approval for the purchase plan subject to

the following extra condition: Q should have the potential

to some day be more profitable on product X1 than 20 of

their current plants. We can find out the maximum number

of plants that will be less profitable than Q by the following

SQL query:

select count(Id)

from P, Q

where P.X1 < Q.X1 and P.T = Q.T

group by T

having count(Id) >= all

(select count(Id)

from P, Q

where P.X1 < Q.X1 and P.T = Q.T

group by T);

While Example 1.1 can be extended to any higher di-

mension, many practical aggregation queries use only 1, 2
or 3-dimensional moving objects.

Example 1.2 Consider a set of ships moving on the surface

of the ocean. The locations of these ships are known by an

enemy submarine which moves secretly underwater at con-

stant depth. If the submarine fires, it calls attention to it-

self. Hence the submarine wants to wait until the maximum

number of ships are within its firing range (which is some

rectangle with the submarine in the center) before firing at

as many ships as possible.

Let us assume that we have the relations

Ship(Id,X, Y, T) and Range(X,Y, T), which de-

scribe the ships and the firing range of the submarine,

respectively. A ship is in the firing range at a time instance

if its (X,Y) location is equal to a point in the Range at

the same time instance. Hence the above can be expressed

by the following SQL query using a maximum aggregation

operator.

select max(ship-count))

from (select count(Id) as ship-count

from Ship, Range

where Ship.X = Range.X and

Ship.Y = Range.Y and

Ship.T = Range.T

group-by T);

There are many alternatives to express in SQL the same

query. For example, the above SQL query could be also ex-

pressed in by another SQL query that has a structure similar

to the second SQL query in Exercise 1.1. It is a practi-

cal problem to recognize that these different SQL structures

both express max-count queries, which we will define be-

low. In this paper, we do not deal with the parsing problem.

Example 1.3 We show in Figure 1 three cars driving along

three path, which can be represented by piecewise linear

constraints. We assume each car travels at a constant speed

in each line segment. Assume a plane flying in the air keeps

taking pictures of the ground, which is represented as the

rectangular area in Figure 1. Given a time instance, find out

how many cars will be covered in the picture at that time.

Figure 1. Aggregations on piecewise linearly

moving points

Examples 1.1 and 1.2 are both cases of a group of

frequently occurring aggregation problems where the in-

put data can be visualized as a set S of N number of k-

dimensional moving points. In Example 1.1 each point rep-

resents one plant and the value of the ith dimension rep-

resents the profit of the i-th product at that plant. In Exam-

ple 1.2 each point represents one ship in 2-dimensions using

latitude and longitude. In Example 1.3, the speed and direc-

tion of the cars change as they enter new line segments, but

the movement can still be represented by piecewise linear

constraints.

We say that point Pi dominates point Pj if and only if

Pi has a larger value than Pj has for each dimension. Then

the queries in Examples 1.1 and 1.2 can be generalized as

follows:

Count: Given a moving point Q and a time instance

t, find the number of points in S dominated

by Q at time t.

Max-Count: Given a moving point Q, find the maximum

number of points in S that Q can dominate

at any time.

In this paper we focus only on the above two aggregation

queries, because several other more complex aggregation

queries can be reduced to them or can be solved similarly.

For example:

Range-Count: Given a time instance t and two moving

points Q1 and Q2, find the number of points

in S located in the hyper-rectangle defined

by Q1 and Q2. (This reduces to a sequence

of count queries.)

Max-Time: Given a moving point Q and time instance t,
find out whether Q dominates at time t the

maximum possible number of points in S.

(This reduces to testing whether the results

of a count and a max-count query are the

same.)

Sum: Assign a value to each moving point. Then

given a moving point Q and time instance t,
find the sum of the values of the points in

S dominated by Q at time t. (This requires

only minor changes in the index structures

that we develop for count queries.)

Aggregation queries can be evaluated in O(N logN)
time and O(N) space (see Appendix). However, this per-

formance is not acceptable in applications where the input

data is large and the query evaluation speed is critical, like

in Example 1.2. The goal of this paper is to develop novel

indexing structures that can greatly speed up count and max-

count aggregate query evaluation.

There are some indexing structures for moving objects

[1, 2, 5, 11, 17]. One may use these indices to answer the

count and the range-count query by first finding the set of

points S′ ⊆ S dominated by a new point Q or being within

a hyper-rectangle defined by Q1 and Q2, and then counting

the number of points in S′. However, the counting may

require linear time in the size of S′. Our goal is to find the

count in logarithmic time. Further, these indices cannot be

used to answer the max-count and max-time queries.

As shown by Zhang et al. [20], if we have a static set of

points, then the range-count problem can be solved by gen-

eralizing some earlier work on dominance by Bentley [3].

Zhang and Tsotras [19] also considered the max-count ag-

gregation problem for static sets of points in S. However,

these methods are not easily generalizable to moving points,

which is our focus in this paper. Lazaridis and Mehro-

tra [13] , Choi and Chung [6] and Tao et al. [18] study

the approximation of aggregate queries for spatial and spa-

tiotemporal data. In contrast to them, our algorithm produce

precise answers without a significant loss in performance.

This paper is organized as follows. In Section 2, we re-

view some basic concepts, including partition trees for in-

dexing moving objects proposed by Agarwal et al. [1]. In

Section 3, we consider two different methods for answer-

ing count aggregation queries. The first method extends

partition trees, to partition aggregation trees. The second

method uses a novel data structure called dominance-time

graphs. Dominance-Time graphs are faster than partition

aggregation trees and they can also be used when the posi-

tion of moving points are represented by polynomial func-

tions of time. In Section 4 we consider max-count aggrega-

tion queries. Finally, in Section 5 we discuss some open

problems. Our main results are summarized in Table 2,

Table 2. Computational complexity of aggre­
gation on moving objects.

Query I/O S D Function Method

Count
√
N N d linear PA tree

Count log N N2 d polynomial DT graph

Max log N N2 1 linear Dome subdiv

where D means dimensions and S means space require-

ments.

2. Basic Concepts

We review two basic concepts. Duality [8] allows

mapping k-dimensional moving points into 2k-dimensional

static points. Partition Trees proposed by Agarwal et al. [1]

are search trees for moving points.

2.1 Duality

Suppose the positions of the moving points in each di-

mension can be represented by linear functions of time of

the form f(t) = a·t+b, which is a line in the plane. We may

represent this line as a point (a, b) in its dual plane. Simi-

larly, a point (c, d) can be represented as a line g(t) = c·t+d
in its dual plane. Suppose line l and point P have dual point

L′ and dual line p′ respectively. Then, l is below P if and

only if L′ is below p′.

Lemma 2.1 Let P = aP ·t+bP and Q = aQ ·t+bQ be two

moving points in one dimensional space, and P ′(aP , bP)
and Q′(aQ, bQ) be their corresponding points in the dual

plane. Suppose P overtakesQ or vice versa at time instance

t, then

t = − bP − bQ
aP − aQ

Let Slope(P ′Q′) denote the slope of the line P ′Q′. Then

we have t = −Slope(P ′Q′), that is, t is equal to the nega-

tive value of the slope of the line P ′Q′.

Hence, given a time instance t, the problem of finding

how many points are dominated by Q reduces to the prob-

lem of finding how many points are below l, where l is a

line crossing Q in the dual plane with the slope −t.

Definition 2.1 Let S be a set of N points and l be a

line in the plane. We define the function CountBelow(l)

as follows. If l is a vertical line with r1 points on the

left and r2 points on the right, then CountBelow(l) =
max(r1, r2). Otherwise, if r number of points are below

l, then CountBelow(l) = r.

l

l

1

2

(A) (B)

Figure 2. Rank of a line.

Note that Definition 2.1 is logical, because if l is a verti-

cal line, then we can always tilt it slightly left or right to get

another line that has the same value of CountBelow as we

defined.

Example 2.1 Figure 2 shows a set of points and two

lines l1 and l2. There are four points below l1, hence

CountBelow(l1) = 4. There are five points to the left and

one point to the right of l2, which is a vertical line. Hence

CountBelow(l2) = 5.

2.2 Partition Trees

Given a set S of N points in two dimensional

space, we represent a simplicial partition of S as Π =
{(S1,∆1), (S2,∆2), ..., (Sm,∆m)}, where Si’s are mutu-

ally disjoint subsets of S whose union is S, and ∆i is a

triangle that contains all points of Si. For a given parameter

r, 1 ≤ r < N , we say this simplicial partition is balanced

if each subset Si contains between N/r and 2N/r points.

Figure 3(A) shows an example of balanced simplicial

partition for 35 points with r = 6. The crossing number

of a simplicial partition is the maximum number of trian-

gles crossed by a single line. The following is known about

crossing numbers:

Theorem 2.1 (Matousek[14]) Let S be a set of N points

in the plane, and let 1 < r ≤ N/2 be a given parameter. For

some constant α (independent of r), there exists a balanced

simplicial partition Π of size r, such that any line crosses at

most cr1/2 triangles of Π for a constant c. If r ≤ Nα for

some suitable α < 1, Π can be constructed in O(Nlog r)
time.

Using Theorem 2.1, it is possible to recursively partition

a set of points in the plane. This gives a partition tree.

3. Count Aggregation Queries

In this section, we first make a simple extension of parti-

tion trees, described in Section 3.1. With the modification,

we can answer the count query in O(
√
N) time. Then we

describe a more novel data structure, called an dominance-

time graph, that needs only logarithmic time.

3.1 Partition Aggregation Trees

Definition 3.1 Let S be a set of N points in k dimensional

space and T be a multi-level partition tree for S. Let vi
be an internal node in T , which stores a triangle ∆i. We

attach a new value Ai to node vi, such that Ai is the number

of points in Si. We call the new tree structure Partition

Aggregation Tree (PA Tree).

Theorem 3.1 PA Tree is a linear size data structure that an-

swers the count query in O(
√
N) I/Os.

Example 3.1 Figure 3(B) shows a partition tree with four

top level triangles A,B,C and D. The query line q crosses

two top level triangles A and B. There are three second

level triangles A4, B2 and B3 that are crossed by q. Fig-

ure 3(C) shows the structure of the PA-tree. For simplicity,

we only show for each node the triangle name and the count

of the points contained in that triangle.

To find CountBelow(q), we start from the root of the

PA-tree, load all top level triangles into memory and com-

pare them to the query line q. Since both triangles C and D
are below the line, we add the precomputed value to the re-

sult CountBelow(q) = 12 + 17 = 29. For the triangles A
and B, we traverse their children recursively. In this case,

triangle B4 is below q, then we have CountBelow(q) =
CountBelow(q) + CountIn(B4) = 29 + 4 = 33, where

CountIn(B4) is the number of points in the subset associ-

ated with B4. When we reach the leaf nodes of the PA-tree,

we compare each point in the node with q, and add the num-

ber of points below q. There is one point in triangle B3 that

is below q. Finally, the answer to the aggregation problem

is 34. In Figure 3(C), we indicate using double sided rect-

angles those nodes that are accessed by this algorithm.

In Example 1.3, the movement of a car can be repre-

sented by piecewise linear functions. When the direction or

speed changes, we may consider the car to be replaced by a

new car with different direction or speed. We have the fol-

lowing theorem for the piecewise linearly moving points in

one dimensional space:

Theorem 3.2 Let S be a set of piecewise linearly mov-

ing points with N number of pieces in one dimensional

space. The dominance-sum problem of S can be answered

in O(
√
N) I/Os with O(N) space.

The above talks about one dimensional space. That may

occur when each car is going on a straight highway, but each

car may slow down in certain intervals due to road construc-

tion or heavy traffic, and they change direction only if they

A 16 B 16 C 12 D 17

D1 D2 D3 D4
4 4 4 5

C1 C2 C3
4 4 4

B1 B2 B3 B4
4 4 4 4

A1 A2 A3 A4
5 4 4 3

C

A B

D

q

A2
A3

A1

A4

C1

C2

C3

D3

D4

D2
D1

B4

B3

B2

B1

(B)

61

(C)

(A)

S

Figure 3. A partition aggregation tree.

make U-turns. It is an open problem to find a similarly effi-

cient solution for two or higher dimensional space.

3.2 Dominance­Time Graph

Partition aggregation trees are limited because they only

work when the points are moving linearly. In this section

we introduce dominance-time graphs, a novel index data

structure that can handle polynomial functions of time.

Definition 3.2 For two k-dimensional moving points P =
(f1, ..., fk) and Q = (g1, ..., gk), we say P dominates Q at

time t, denoted as dom(P,Q,t), if and only if fi(t) > gi(t)
for 1 ≤ i ≤ k. If P does not dominate Q at time t, then we

write ndom(P,Q,t).

Definition 3.3 Let S be a set of N moving points in k di-

mensional space. The dominance-time graph G(V,E) for

S is a directed labeled graph, such that for each point in

S, there exists a corresponding vertex in V , and there is an

edge in G from P to Q labeled by the set of disjoint inter-

vals {(a1, b1), ..., (am, bm)}, if and only if dom(P,Q, t) is

true for time instance t that is within any of the open in-

tervals. Note that any real number and −∞ and +∞ are

allowed as interval endpoints.

Example 3.2 Suppose that we are given the following set

of two dimensional moving points:

P1 = (t+ 10, t− 5)

P2 = (2t, 2t− 10)

P3 = (3t+ 5, 3t− 15)

P4 = (4t− 5, 0)

The dominance-time graph of these moving points is

shown in Figure 3. Note that for any time instance t ∈
(5, 10) the condition dom(P3, P4, t) is true. Hence the edge

from P3 to P4 is labeled {(5, 10)}. The labels on the other

edges can be found similarly.

Definition 3.4 Let P and Q be two moving points and t0
and t be two time instances such that t0 < t. We say that

8

P P

PP

21

(5, 10)
3 4

(10, +)

(− , 5)

(− , −5)

(5, +)8

8

8

(2.5, 5)

(− , 2.5)
(5,+)8

8

Figure 4. A dominance­time graph.

between t0 and t an increment event happens to P with re-

spect to Q if ndom(P,Q, t0) and dom(P,Q, t). Similarly,

we say that between t0 and t a decrement event happens to

P with respect to Q if dom(P,Q, t0) and ndom(P,Q, t).

Definition 3.5 Let Rank(P,t) be the number of points that

are dominated by P at time t.

Lemma 3.1 An increment event happens to P with respect

to Q if and only if there is an outgoing edge from P that has

a label in which no interval contains t0 and some interval

contains t. Similarly, a decrement event happens to P with

respect to Q if and only if there is an outgoing edge from P
that has a label in which some interval contains t0 and no

interval contains t.

Lemma 3.2 Let t0 and t be two time instances such that

t0 < t. Let P be any vertex in a dominance-time graph.

Let m (and n) be the number of increment (and decrement)

events that happen to P with respect to different other ver-

tices between t0 and t. Then the following is true:

Rank(P, t) = Rank(P, t0) +m− n

Example 3.3 Table 3 shows the rank of each point of Ex-

ample 3.2 at time instances t = −8 and t = 12. Note

that dom(P2, P3,−8) and ndom(P2, P3, 12) are both true.

Hence, an increment event happened to P2 between time

t = −8 and t = 12. Similarly, ndom(P2, P1,−8)
and dom(P2, P1, 12) are also both true.Hence a decrement

event happens to P2 between the same times. Thus, accord-

ing to Lemma 3.2, we have

Rank(P2, 12) = Rank(P2,−8) + 1− 1 = 1

Table 3. Location and rank of points at times

t = −8 and t = 12.

Point Location Rank Location Rank

t = -8 t = -8 t = 12 t = 12

P1 (2, -13) 2 (22, 7) 0

P2 (-16, -26) 1 (24, 14) 1

P3 (-19, -39) 0 (41, 21) 2

P4 (-37, 0) 0 (43, 0) 0

3.3 Time and Space Analysis

In this section we describe the basic structure of

dominance-time trees and show how to use them to answer

count aggregation queries in O(log mN) I/Os, where N is

the number of moving points and m is the maximum degree

of the polynomial functions used to represent the position

of the points.

A dominance-time tree for point P is a B-tree to index

the consecutive time intervals:

(−∞, t1), (t1, t2), . . . , (ti, ti+1), . . . , (tn,+∞)

such that during each interval (ti, ti+1), the rank of P re-

mains unchanged. The rank of P during these intervals and

the ti endpoints of these intervals can be precomputed and

stored in the B-tree. Therefore, the B-tree can find the rank

of P for any time instance in (−∞,+∞).
Let S be a set of N moving points. For any point P in S,

we may compute (precisely for polynomials up to degree 5

t

e

e

e

e

1

2

3

4

5 9 18 22 30 35

Figure 5. A time line.

and approximately for higher degree polynomials) a set of n
time instances ti (1 ≤ i ≤ n) such that during each interval

(ti−1, ti) the rank of P remains unchanged.

Example 3.4 Suppose in a dominance-time graph, there

are four outgoing edges, e1, e2, e3 and e4 for a point P .

They are labeled as the following respectively:

e1 : (5, 18), (22, 35)

e2 : (9, 30)

e3 : (0, 9), (22,+∞)

e4 : (0, 22)

Figure 5 shows the intervals contained in the labels with

thick line segments. In this case, the B-tree contains the

time instances 0, 5, 9, 18, 22, 30, 35 and the following time

intervals:

(−∞, 0),(0, 5),(5, 9),(9, 18),(18, 22), (22, 30),(30, 35),
(35,+∞)

Definition 3.6 Suppose G is a dominance-time graph for a

set of moving points and P is a vertex in G. A Dominance-

Time Tree TP is a data structure based on a B-tree, which

indexes all end points of time intervals contained in the la-

bels of outgoing edges from P .

The leaf node of the dominance-time tree contains a list

of consecutive time instances, t1, t2, ..., tb, and b + 1 data

fields v1, v2, ..., vb+1 where b is chosen according to the

size of the disk pages. For each field vi for 1 ≤ i ≤ b
we store the precomputed rank of P during the interval

(ti−1, ti). Given a time instance t, the rank of P can be

found by searching the dominance-time tree until we find

the leaf node with the interval that contains t.
Now we can prove the following.

Theorem 3.3 Let S be a set of N moving points in k-

dimensional space. Let m be a fixed constant and assume

that the position of each moving point in each dimension is

represented by a polynomial function of degree at most m.

Given a point P in S and a time instance t, the Dominance-

Time Tree for each P ∈ S requires O(N) space. Hence the

count aggregation problem can be done in O(logB N) I/Os

using a total of O(N2) space.

The preprocessing of the dominance-time tree structure

involves computation of polynomial functions. However,

for a moving point which is represented by a polynomial

function, it is not difficult to use piecewise linear func-

tions to approximately represent its trajectory. Using this

approximation method, the number of time intervals when

the rank of a particular point remain unchanged will remain

unchanged.

4. Max-Count Aggregation Queries

Our max-count aggregation algorithm uses a novel data

structure built on the concept of domes, which we introduce

here as a new type of spatial partition of the dual plane of a

set of one-dimensional moving points. We start this section

with a few definitions.

Definition 4.1 Let S be any set of points in the plane. For

any new point Q, we define MaxBelow(Q) to be the max-

imum number of points below any line that passes through

Q.

Definition 4.2 Let S be any set of points in the plane. Let L
be the set of lines that cross at least two points in S or cross

at least one point in S and are vertical. For 0 ≤ i ≤ N , we

define Li = {l ∈ L|CountBelow(l) + CountOn(l) ≥ i},

where CountOn(l) is the number of points in S crossed by

line l.

Definition 4.3 For any line l, let Below(l) be the half-

plane below l, or if it is a vertical line, then the half-plane

on that side of the line that contains more points. Let

Below(Lk) be the intersection of the half-planes associated

with the lines in Lk. Let k-dome, denoted as dk, be the

boundary of the region Below(Lk).

The intuition is that any point above dk has a line through

it with at least k points below.

Definition 4.4 Layer(k)= {Q|Q ∈ Below(Lk+1) and

Q 6∈ Below(Lk)}.

Example 4.1 We show in Figure 6 a set of seven points.

In this case, L7 is composed of the dotted lines (i.e., the

lines crossing P2P3, P3P4,P4P5 and the two vertical lines

crossing P2 and P5), while L6 is composed of the union

of the dotted and dashed lines (i.e, the lines crossing P2P7,

P3P5, P4P6, P4P7 and the two vertical lines crossing P3

and P6). The two thick polygonal lines in the figure are

d7 and d6, respectively, and Layer(6) is the area between

them.

Now we prove some properties of the above concepts.

Lemma 4.1 For any i and j such that i ≤ j, the following

hold.

(1) Li ⊆ Lj .

(2) Below(Li) ⊆ Below(Lj).
(3) no point of dome di is above any point of dome dj .

Lemma 4.2 Layer(k) consists of those points that are

strictly outside dk and on or inside dk+1.

Lemma 4.3 Each point belongs to only one layer.

We can now show the following characterization of lay-

ers.

Theorem 4.1 Q ∈ Layer(m) ↔ MaxBelow(Q) = m.

Theorem 4.1 implies that the layers partition the plane

in such a way that there is a one-to-one correspondence

between any element of the partition and the MaxBelow
value of the points in that element. We can use this theorem

to build a data structure for efficiently identifying which el-

ement of the partition a new point is located in, using the

following well-known result from computational geometry.

Theorem 4.2 [15] Point location in an N-vertex planar sub-

division can be effected in O(log N) time using O(N) stor-

age, given O(Nlog N) preprocessing time.

Lemma 4.4 Any dome dk has O(N) edges.

Lemma 4.5 Let S be any set of N points in the plane and

Q a query point. Then we can find in O(logN) time using

an O(N2) space data structure MaxBelow(Q) = m.

Lemma 4.6 Let S be a set of N points and Q a query point

moving along the x axis. Let S′ and Q′ be the duals of S
and Q, respectively. Then the following hold.

(1) For any time instance t the moving point Q dominates

CountBelow(l) number of points in S, where line l crosses

Q′ and has slope −t. (2) The maximum number of points

that Q dominates is MaxBelow(Q′).

Finally, we have the following theorem.

Theorem 4.3 The Max-Count aggregation query can be an-

swered using an O(N2) size data structure in O(logN)
query time and O(N2 logN) preprocessing time.

The above considers only objects that exist at all times.

Suppose that objects only exist between times t1 and t2.

That means that only lines passing Q and having slopes be-

tween −t2 and −t1 are interesting solutions. Let L
(t1,t2)
i

be the modification of Li that allows only lines that have

slopes between −t2 and −t1 and cross two or more points

or cross only one point and have slopes exactly −t2 or −t1.

With this modification, we can correspondingly modify the

definition of layers. Then Theorems 4.1 and 4.3 still hold.

5. Further Work

There are several interesting open problems. We list be-

low a few of these.

1. Are there count or max-count aggregation algorithms

that are more efficient in time or space than our algo-

rithms, or can a tight lower bound be proven for these

aggregation problems?

2. Can the count aggregation algorithm for piecewise lin-

ear moving points in one dimension be extended to

higher dimensions while keeping the O(
√
N) time and

O(N2) space in the worst case?

3. Can the max-count aggregation algorithm in one di-

mension be extended to higher dimensions while keep-

ing the O(logN) time and O(N2 logN) space in the

worst case?

4. How can we make the data structures dynamic, that is,

allow efficient deletions and additions of new moving

points? We have partial solution to this problem when

only insertions are considered.

5. What is the average case of the count and max-count

algorithms?

6. Can the algorithms be improved by considering ap-

proximations? As described in Section 1, approxima-

tions for the count aggregation query were considered

in the work of [13, 6, 18]. However, there are no ap-

proximation algorithms for the max-count aggregation

problem.

7. Moving objects can be represented not only by moving

points but also by parametric rectangles [4], by geo-

metric transformation objects [7, 9], or by some other

constraint representation [12, 16]. These constraint

representations are more general because they also rep-

resent the changing (growing, shrinking) shape of the

objects over time. It is possible to consider count and

max-count aggregation queries on these more general

moving objects. Is it possible to solve these queries

within the same time complexity?

P

P

P P

P

P

d d

layer(6)

P4

1

6

7

2

5

76

3

Figure 6. Layer(6) for seven points.

We are also interested in implementations of these algo-

rithms and testing them on real data, for example, aviation

data sets, and truck delivery data sets.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Index-

ing moving points. In Symposium on Principles of

Database Systems, pages 175–186, 2000.

[2] J. Basch, L. J. Guibas, and J. Hershberger. Data struc-

tures for mobile data. In SODA: ACM-SIAM Sympo-

sium on Discrete Algorithms (A Conference on The-

oretical and Experimental Analysis of Discrete Algo-

rithms), 1997.

[3] J. L. Bentley. Multidimensional divide-and-conquer.

Communications of the ACM, 23(4), 1980.

[4] M. Cai, D. Keshwani, and P. Revesz. Parametric

rectangles: A model for querying and animating spa-

tiotemporal databases. In Proc. 7th International Con-

ference on Extending Database Technology, volume

1777, pages 430–44. Springer-Verlag, 2000.

[5] M. Cai and P. Revesz. Parametric r-tree: An index

structure for moving objects. In Proc. 10th COMAD

International Converence on Management of Data,

pages 57–64, 2000.

[6] Y.-J. Choi and C.-W. Chung. Selectivity estimation for

spatio-temporal queries to moving object s. In SIG-

MOD, 2002.

[7] J. Chomicki and P. Revesz. A geometric framework

for specifying spatiotemporal objects. In Proc. Inter-

national Workshop on Time Representation and Rea-

soning, pages 41–6, 1999.

[8] M. de Berg, M. van Kreveld, M. Overmars, and

O. Schwarzkopf. Computational Geometry: Algo-

rithms and Applications. Springer Verlag, Berlin,

1997.

[9] S. Haesevoets and B. Kuijpers. Closure properties of

classes of spatio-temporal objects under Boolean set

operations. In Proc. International Workshop on Time

Representation and Reasoning, pages 79–86, 2000.

[10] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Con-

straint query languages. Journal of Computer and Sys-

tem Sciences, 51(1):26–52, 1995.

[11] G. Kollios, D. Gunopulos, and V. J. Tsotras. On in-

dexing mobile objects. In ACM Symp. on Principles

of Database Systems, pages 261–272, 1999.

[12] G. Kuper, L. Libkin, and J. Paredaens. Constraint

Databases. Springer Verlag, 2000.

[13] L. Lazaridis and S. Mehrotra. Progressive approxi-

mate aggregate queries with a multi-resolution t ree

structure. In SIGMOD, 2001.

[14] J. Matousek. Efficient partition trees. Discrete Com-

put. Geom., 8:315–334, 1992.

[15] F. P. Preparata and M. I. Shamos. Computational Ge-

ometry: An Introduction. Springer Verlag, New York,

1985.

[16] P. Revesz. Introduction to Constraint Databases.

Springer Verlag, 2002.

[17] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.

Lopez. Indexing the positions of continuously mov-

ing objects. In SIGMOD Conference, pages 331–342,

2000.

[18] Y. Tao, J. Sun, and D. Papadias. Selectivity estimation

for predictive spatio-temporal queries. In ICDE, 2003.

[19] D. Zhang and V. J. Tsotras. Improving min/max aggre-

gation over spatial objects. In ACM-GIS, pages 88–93,

2001.

[20] D. Zhang, V. J. Tsotras, and D. Gunopulos. Efficient

aggregation over objects with extent. In Symposium

on Principles of Database Systems, pages 121–132,

2002.

