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Abstract

This paper shows thatconstraint databasescan be used
for the approximation of several types of discretely recorded
continuous data, for exampletime seriesdata and some
spatio-temporal geographicdata. We show that time se-
ries data can be approximated by a piecewise linear ap-
proximation that runs in linear time in the number of data
points, and the piecewise linear approximation can be rep-
resented in a linear constraint database. Similarly, the
spatio-temporal geographic data that is composed of a set
of spatial locations, where each location is associated with
a time series, can be also approximated and represented in
a linear constraint database. The approximations provide
data compression, faster query evaluation— that preserve
high precisionand recall— andinterpolationenabling the
evaluation of queries that could not be evaluated before.

1. Introduction

Databases often record continuous data at discrete time
instances, for example,time seriesandgeographic time se-
riesdata.

A time series is a sequence of data points
(t1, y1), · · · , (tn, yn) where eachti is a time instance
andyi is the value of a measured attribute at timeti, and
thets are monotone increasing. Ageographic time seriesis
a set of location and time series pairs. It can be represented
as a set of ordered triples(lj , ti, yi) wherelj is a location
and (ti, yi) is a time series data point associated with
locationlj .

Suppose that we record the daily high temperature at lo-
cation 1 on Mondays and Fridays, at location 2 on Tuesdays
and Thursdays, at location 3 on Saturdays, and at location
4 on Sundays. This may yield a geographic time series data
that can be represented for a month, that starts on a Monday,
as shown in Table 1.
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The geographic time series data is not convenient for
querying for several reasons. Suppose we would like to get
the daily high temperature for each station on day 10 using
the following straightforward SQL query:

select Temp

from Temperature

where t = 10
(1)

This query would return an empty set because at none
of the four weather stations was the daily high temperature
recorded on day 10.

Recognizing such problems, we suggested in [3] to rep-
resent time series data by apiecewise linear approximation
which in turn can be easily stored in alinear constraint
database[8]. For example, the above geographic time se-
ries can be represented by the linear constraint database in
Table 2.

The approximation has the following advantages:

Interpolation: Queries such as (1) can be evaluated using
the linear constraint representation, which provides an
interpolation for the time series data for each day of
the month.

Data Compression: The number of pieces in an approx-
imation is usually much fewer than the number of
points in the time series. For example, Table 1 has
26 tuples, while Table 2 has only 8 tuples.

Query Evaluation Efficiency: With fewer number of tu-
ples, some queries can be evaluated faster.

Piecewise linear approximation is studied in computa-
tional geometry and image processing. Some “optimal” al-
gorithms have been proposed that return a solution with the
minimum number of possible pieces. In 1991, Hakimi and
Schmeichel [7] gave anO(n2) optimal piecewise linear ap-
proximation algorithm, wheren is the number of time series
data points. Recently, Agarwal and Varadarajan [2] gave an
improved algorithm that requiresO(n

4

3
+δ) time, whereδ

is any arbitrarily small positive constant. Both of these al-
gorithms run slowly for large data sets. In addition, they



SN t Temp

1 1 68
1 5 71
1 8 76
1 12 73
1 15 71
1 19 68
1 22 70
1 26 74
1 29 80
2 2 71
2 4 69
2 9 68
2 11 66
2 16 70
2 18 68
2 23 71
2 25 75
2 30 77
3 6 75
3 13 78
3 20 72
3 27 68
4 7 72
4 14 75
4 21 72
4 28 74

Table 1. The Temperature Relation

generate solutions that are not easy to update. These dis-
advantages make the algorithms very inefficient for large
databases when the data changes frequently.

We develop a new piecewise linear approximation algo-
rithm that is not optimal in the number of pieces (usually
returns about 10-20 percent more pieces) but runs inO(n)
time. This improves our earlier algorithm in [3] that re-
quiredO(n2) time in the worst case. We also show that
under some reasonable assumptions, the data compression
of the new algorithm is proportional toΨ2, whereΨ is the
error tolerance value. We also extend the piecewise linear
approximation to geographic time series data, that is, we
use spatio-temporal approximation.

Geographic and spatio-temporal objects are considered
within the European Chorochronos project [5], the Mov-
ing Objects Spatio-Temporal model (MOST) [11, 13], and
object-relational databases such as Oracle8i [10] and Post-
greSQL [9]. Grumbach et. al. [6] also propose an alterna-
tive data model to interpolate spatio-temporal data.

The rest of the paper is structured as follows. Section 2
describes our linear time piecewise linear approximation al-
gorithm for time series data. We also give in this section an

SN t Temp

1 t f f = 68 + 5

11
(t− 1), 1 ≤ t ≤ 12.

1 t f f = 73 − 3

10
(t− 12), 12 ≤ t ≤ 22.

1 t f f = 70 + 10

7
(t− 22), 22 ≤ t ≤ 30.

2 t f f = 71 − 3

16
(t− 2), 1 ≤ t ≤ 18.

2 t f f = 68 + 3

4
(t− 18), 18 ≤ t ≤ 30.

3 t f f = 75 − 3

14
(t− 6), 1 ≤ t ≤ 20.

3 t f f = 72 − 4

7
(t− 20), 20 ≤ t ≤ 30.

4 t f f = 72 + 2

21
(t− 7), 1 ≤ t ≤ 30.

Table 2. The Constraint Representation of the
Temperature Relation

algorithm that efficiently updates the piecewise linear ap-
proximation in the case of inserting new time series data
points. We also analyse, in terms of the error tolerance
value, the data compression that can be achieved using our
piecewise linear approximation. Section 3 describes our ap-
proximation algorithm for geographic time series data. Sec-
tion 4 discusses the approximate query evaluation based on
the piecewise linear approximation and gives some exper-
imental results on precision and recall. Finally, Section 5
discusses future work.

2. Approximation of Time Series Data

2.1. A Piecewise Linear Approximation Algorithm

The piecewise linear approximation problem of a time
seriesS given some error tolerance valueΨ is the problem
of finding a piecewise linear functionf such that the end-
points of each piece off occur in S and the following holds:

|f(ti) − yi| ≤ Ψ for each(ti, yi) ∈ S. (2)

For example, Table 2 is a piecewise linear approximation of
Table 1 withΨ = 5.

Definition 2.1 For any two pairs of points(tb, yb) and
(te, ye) where(b < e), we denote byYb,e the line segment
connecting them. For any given error tolerance valueΨ we
also define alower lineLb,e and anupper lineUb,e between
the two data points as shown in Figure 1.

Note thatYb,e could be used as a linear approximation
for the sequence of data points between(tb, yb) and(te, ye).
That would introduce at each time instanceti for b < i < e

some interpolation errorψb,e(ti), where

ψb,e(ti) = |Yb,e(ti) − yi| . (3)
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Figure 1. Lines Yb,e, Lb,e and Ub,e.

We propose below anO(n) time algorithm that finds a
piecewise linear function that approximates any time series
dataS.

PIECEWISE LINEAR APPROXIMATION ALGO-
RITHM:

Input: A time series(t1, y1), . . . , (tn, yn).
Ψ the error tolerance value.

Output: A piecewise linear function.
Local Vars:Theb ande are integer variables such that

Yb,e−1 satisfies Condition (2).
L andU stand for two lines.

LetL := L1,2 andU := U1,2.
Let b := 1, e := 3

while e ≤ n do
Construct the linesLb,e andUb,e

if L(te) < Lb,e(te) thenL := Lb,e end-if
if U(te) > Ub,e(te) thenU := Ub,e end-if
if L(te) > U(te) then

Create a pieceYb,e−1

Let b := e− 1
LetL := Lb,e andU := Ub,e

end-if
e := e+ 1

end-while
Create a pieceYb,e−1.

First, we prove the correctness of our approximation al-
gorithm.

Theorem 2.1 The piecewise linear approximation algo-
rithm is correct for any error tolerance valueΨ and time
seriesS.

Next, we analyze the computational complexity.

Theorem 2.2 The computational complexity of the piece-
wise linear approximation algorithm isO(n) time, wheren
is the number of points in the time series.

Now we analyze the expected number of points in a
piece, assuming that the time series(t1, y1), · · · , (tn, yn)
satisfies the following property, for some constantM and
for each1 < i ≤ n







y1 = 0
Prob(yi − yi−1 = M) = 0.5
Prob(yi − yi−1 = −M) = 0.5

(4)

For example, consider the time series which starts with
(0, 0) and records, at each later time when a coin is flipped,
the number of heads minus the number of tails seen since
the beginning. This time series satisfies Property (4) with
M = 1 if heads and tails have the same probability.

As another example, the daily temperature could be de-
scribed by a time series that satisfies Property (4), if we use
a thermometer in which the adjacent scales areM Fahren-
heit degrees apart instead of the usual single Fahrenheit de-
grees, whereM is the largest daily change, and if we record
only on those days when there is a change in temperature
according to the rougher thermometer.

LetE(Ψ,M) be the expected number of original points
spanned by a single piece of the piecewise linear approxi-
mation, including the two endpoints, when the approxima-
tion uses the toleranceΨ and the time series satisfies Prop-
erty (4). We can prove the following.

Theorem 2.3 If a time series satisfies Property (4), then

E(Ψ,M) ≥

(⌊

Ψ

2M

⌋

+ 1

)2

.

For example, for the coin flipping time series whenΨ =
6 each piece of the piecewise linear approximation function
is expected to span at least16 original time series points.

2.2. Updating Piecewise Linear Functions

In this section we consider what happens if we approxi-
mated by a constraint relation some time series and the user
requests an insertion or deletion of a point in the time series.
Note that the user can request insertions and deletions of
time series points (i.e., tuples of the relational database) and
not the constraint database, because the constraint database
representation is hidden from the user.

If the user requests a deletion of a time series data point,
then the request can be ignored because the approximation



function still satisfies the error tolerance for the remaining
points.

The insertion of points is much more complex. In this
case, we have to update the piecewise linear function. Con-
sider Figure 2. In (1) the original piecewise linear function
is shown by a solid line and the edges of the error tolerance
range are shown by dashed lines. In (2) the pointP1 is to
be inserted, but the piecewise linear function is not changed
sinceP1 is within the error tolerance range. In (3) the point
P2 is to be inserted, and the piecewise linear function is up-
dated by splitting the middle piece into two pieces. In (4)
the pointP3 is to be inserted, and the piecewise linear func-
tion is updated by splitting the third piece into two pieces.
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Figure 2. Inserting Points into a Piecewise
Linear Function

Note that a piecewise linear approximation can be rep-
resented as a set of endpoints of the pieces. We also add a
Boolean tago to each point. The tag will betrue if it is a
point that is an original point, otherwise it is a point which
was inserted and the tag will befalse. This allows us to
reconstruct from any updated piecewise linear functionf ,
the original piecewise linear function, denotedfo, as the se-
quence of points with thetrue tags. Finally, we assume that
for no point(tα, yα) to be inserted is there already a point
with time tα.

Theorem 2.4 Suppose that a time seriesS is approximated
by a piecewise linear functionfo with n “pieces” andΨ
error tolerance. Then any setI of m insertions such that
each insertion point is at most some constantδ ≥ Ψ dis-
tance fromfo can be done by the insertion algorithm in
O(m logn) time such that the updated piecewise linear
functionf has at mostn + m “pieces” and the following

INSERTION ALGORITHM:

Input: A piecewise linear functionf represented as a
sequence of points(t1, y1, o1), . . . , (tn, yn, on).
Ψ the error tolerance value.
(tα, yα) the point to be inserted.

Output: An updated piecewise linear function.

if tα < t1 then
Add (tα, yα, false) as the first point inf .

else iftα > tn then
Add (tα, yα, false) as the last point inf .

else iffo(tα) − Ψ > yα then
Add (tα,

1

2
((fo(tα) + Ψ) + yα), false)

between points with timesti < tα andti+1 > tα.
else iffo(tα) + Ψ < yα then

Add (tα,
1

2
((fo(tα) − Ψ) + yα), false)

between points with timesti < tα andti+1 > tα.
end-if

holds.

|f(ti) − yi| ≤
Ψ + δ

2
for each(ti, yi) ∈ S ∪ I.

For example, ifδ = 3Ψ, then the error tolerance for the
updated piecewise linear approximation will be2Ψ for all
original and newly inserted data points.

3. Approximation of Geographic Time Series
Data

Geographic data is usually represented using either the
raster or the vector data models.Triangulated Irregular
Networksor (TINs) andVoronoi diagramsare example data
structures that are used in the vector data model [1, 4, 12].

A TIN can be created for any given set of loca-
tions in the plane, and ARC/INFO, the most popu-
lar GIS software, supplies several functions to generate
TINs. Given a geographic time series data setS =
{(P1, S1), (P2, S2), · · · , (Pn, Sn)}, where thePis are the
2D locations of the form(xi, yi) and eachSi is a time
series corresponding toPi, we can use the TIN gen-
eration algorithm to transform the set of spatial points
{(x1, y1, 0), (x2, y2, 0), · · · , (xn, yn, 0)} into a TIN struc-
ture. Then we convert each TIN triangle to a linear con-
straint tuple. For each triangle with verticesPi, Pj andPk,
we approximate the temporal value of this triangle for each
time instance by Equation (5) below.



Definition 3.1 Given a triangle with pointsPi, Pj andPk,
and their corresponding series of temporal dataSi, Sj and
Sk. The series of the temporal data of the triangleSijk is
defined as follows:

Sijk(t) =
1

3
(Si(t) + Sj(t) + Sk(t)) (5)

This definition is motivated by the following. In each
TIN triangle, we have a plane within 3D that passes through
the verticesPi, Pj andPk, that are associated with the time
seriesSi, Sj andSk. The time series give thez coordinates
of the three corner vertices. Hence the centroid of the tri-
angle is a time series as defined in Equation (5). Further,
the time series of the centroid of each triangle can be trans-
formed into a piecewise linear function and a linear con-
straint tuple.

Alternatively, instead of a TIN, we can construct a
Voronoi diagram for thePi locations. For each cell of the
Voronoi diagram containing pointPi we useSi to approxi-
mate the attribute of interest for each point within the whole
cell. This can be also represented in a linear constraint
database.

4. Approximate Query Evaluation Methods

Instead of querying the original (geographic) time series
data, we can query their approximations. Since the approx-
imations are linear constraint relations, we can use several
recent linear constraint database systems.

In this section, we give some sample SQL queries and
compare their regular and approximate query evaluations.
We compare the number of tuples, the precision, and the
recall of the output relations.Precision is the percent of
the tuples that are relevant out of those retrieved, andrecall
is the percent of the relevant tuples retrieved. Because the
approximation is equivalent to an infinite number of regular
tuples, in the calculation of precision and recall, we only
counted tuples with integer time values.

4.1. Approximate Evaluation for Time Series Data

We did some experiments using a temporal dataset
that contained the daily high temperature and the daily
low temperature between January 1,1987 and Decem-
ber 31,1996 for weather station number 252820 in Ne-
braska. We used differentΨ values to restrict the piece-
wise linear transformation. We obtained the weather data
from the website of the National Climatic Data Center
athttp://www.ncdc.noaa.gov and smoothened the
data using the running window method with window size
7. Table 4.1 gives some data compression characteristics of
the modified data set using different values ofΨ.

Ψ #Pieces in High # Pieces in Low
Temperature Dataset Temperature Dataset

— 3,653 3,653
1.0 1,426 1,084
2.0 790 594
4.0 428 335
8.0 197 140

Table 3. Number of Pieces in Datasets

LetR1(day, high temp) be the daily high temperature
relation, andR2(day, low temp) be the daily low temper-
ature relation, and letR(day, high temp, low temp) be
the join ofR1 andR2.

The following are some query evaluation tests for SQL
queries using relationR. In these tests, we evaluated
the relational queries in ORACLE and the approximate
queries (first translated to a Datalog) in the MLPQ con-
straint database system. After the MLPQ evaluation, we
converted the output constraint relation to pairs of days,
where the values of the days were restricted to be integers.

Example 4.1 Find all pairs of days such that for each the
high temperature in one day is greater than or equal to that
in the other. The SQL query is as follows and the test results
are shown in Table 4.

select R1.day, R2.day
from R as R1, R as R2
where R1.high temp > R2.high temp

(6)

Ψ MLPQ
Constraints Precision Recall

— 6,645,646 100.00% 100.00%
1.0 2,006,001 99.39% 99.49%
2.0 1,208,010 98.54% 98.67%
4.0 235,639 96.83% 96.97%
8.0 51,681 93.39% 93.53%

Table 4. R1.high temp > R2.high temp.

Example 4.2 Find all pairs of days such that for each the
high temperature in one day is greater than or equal to that
in the other and the low temperature in one day is also
greater than or equal to that in the other. The SQL query
is as follows and the test results are shown in Table 5.

select R1.day, R2.day
from R as R1, R as R2
where R1.high temp > R2.high temp
and R1.low temp > R2.low temp

(7)



Ψ MLPQ
Constraints Precision Recall

— 6,091,441 100.00% 100.00%
1.0 1,836,631 99.30% 99.44%
2.0 639,797 98.40% 98.66%
4.0 215,649 96.45% 96.67%
8.0 46,449 92.72% 92.68%

Table 5. R1.high temp > R2.high temp and
R1.low temp > R2.low temp.

4.2. Approximate Evaluation of Geographic Time
Series Data

Approximation can be used in many spatio-temporal ap-
plications. Suppose there are several weather stations in
some region, and each weather station records a series of
precipitation values for each month. For each station, we
can approximate its precipitation by a piecewise linear func-
tion. We construct the Voronoi diagram for these stations,
and for each cell of the diagram we use the precipitation for
the station within the cell to approximate the precipitation
value of the whole cell.

Example 4.3 We define the relations
Precipitation(id, prec,month) and V oronoi(id, cell),
whereid is the station number,prec is the precipitation at
the monthmonth, andcell is the Voronoi cell for station
id. Suppose that we would like to find for month47
the drought areas, i.e., the areas where the precipitation
is lower than0.5 inches. This can be expressed by the
following SQL query:

select cell

from Precipitation, V oronoi

where Precipitation.id = V oronoi.id and
month = 47 and prec < 0.5

(8)

5. Conclusion and Future Works

This work raises the possibility of using approximate
query evaluation for large (geographic) time series data. Re-
maining open problems include finding an optimalO(n)
time approximation algorithm, and generalizing the query
evaluation method to queries with negation.
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