Constraint Databases: A Survey*

Peter Z. Revesz
Department of Computer Science and Engineering
University of Nebraska—Lincoln
revesz@cse.unl.edu

Abstract. Constraint databases generalize relational databases by finitely
representable infinite relations. This paper surveys the state of the art
in constraint databases: known results, remaining open problems and
current research directions. The paper also describes a new algebra for
databases with integer order constraints and a complexity analysis of
evaluating queries in this algebra.

In memory of Paris C. Kanellakis

1 Introduction

There is a growing interest in recent years among database researchers in con-
straint databases, which are a generalization of relational databases by finitely
representable infinite relations. Constraint databases are parametrized by the
type of constraint domains and constraint used. The good news is that for many
parameters constraint databases leave intact most of the fundamental assump-
tions of the relational database framework proposed by Codd. In particular,

1. Constraint databases can be queried by constraint query languages that

(a) have a semantics based on first-order or fixpoint logics with constraints.
(b) can be evaluated in closed-form.
(c¢) can be algebraic and (efficiently) evaluated set-at-a-time.

. Constraint databases can be efficiently indexed.

. Integrity constraints can be enforced on constraint databases.

. Aggregate operators can be applied to constraint databases.

. Constraint databases can be extended with indefinite information.

. Constraint databases can be extended with sets, nesting and complex ob-
jects.

S UL W N

* This work was supported by NSF grants IRI-9625055, IRI1-9632871 and by a Gallup
Research Professorship.

This survey will emphasize points 1(b) and 1(c), and give extensive refer-
ences for points 2-6. For point 1(a) one can find several good books on first-
order logic, for example [53], or good surveys on constraint logic programming
and fixpoint semantics [42, 75, 153, 154]. There are also good introductions to
logic programming (without constraints) in [10, 50, 101] and to database query
languages (also without constraints) in [3, 79, 149]. One can also find an ear-

lier tutorial on constraint databases in [80], and an applications-oriented survey
in [61].

Points 1(b) and 1(c) will be illustrated by a new algebra for constraint
databases with integer order constraints. It also analyses the computational com-
plexity of evaluating relational calculus queries with integer order constraints.

The survey is organized as follows. Section 2 reviews first-order theories.
Section 3 reviews relational databases and query languages. This section con-
tains a comparison between relational databases and logic programming. Sec-
tion 4 reviews constraint databases and query languages. This section contains
a comparison of constraint databases and constraint logic programming. Sec-
tion 5 summarizes known complexity results. Section 6 lists results on expressive
power of languages. Section 7 discusses various semantic extensions of constraint
databases. Section 8 mentions some prototype constraint database systems. Fi-
nally Section 8 lists some outstanding open problems.

2 First-Order Theories

2.1 Predicate Calculus

First we define the first-order predicate calculus language. The alphabet of this
language consists of the following;:

— A countably infinite set of variables. We usually denote variables by z, v, z,v, u,

— A countably infinite set § of constants. We usually denote constants by
a,b,c,.... The domain of each variable is d.

— A set R of relation symbols. We usually denote relation symbols by P, Q, R,

— Connectives A (conjunction), V (disjunction), = (negation).

— Quantifiers, 3 (there exists) and V (for all).

It is usual in the literature to restrict consideration in the definitions and
proofs only to the connectives =, A and the quantifier 3 because using only these
all the others can be expressed. It is also possible to express implication — and
double implication <+ using only those connectives.

Each relation symbol R has a fixed arity, that is, number of arguments. We
denote the arity of R by a(R). 0-ary relations are permitted.

We define predicate calculus formulas, abbreviated PC formulas, inductively
as follows:

— If R is an m-ary relation symbol and z1,...,z, are variables or constants,
then R(x1,...,2,) is a PC formula.

— If ¢ is an PC formula, then —¢ is an PC formula.

— If ¢1 and ¢ are PC formulas, then ¢1 A ¢2 and ¢1 V ¢2 are PC formulas.

— If ¢ is a PC formula and z is a variable, then 3z(¢) and Vz(¢§) are PC
formulas.

In the last line of the above definition, we call each occurrence of variable
x within ¢ a bound variable. Variables that are not bound are called free in a
formula.

One of the older problems that was considered by logicians is to decide
whether a given predicate calculus formula is satisfiable, that is, whether there
are relations that can be assigned to the relation symbols within the formula
so that the formula becomes true. Another problem of interest in the area of
theorem proving is whether all possible assignments make the formula true.
Formulas with this property are called valid.

It was shown by Church that whether an unrestricted (both finite and in-
finite assignments are permitted) predicate calculus sentence (formula without
free variables) is valid is undecidable. More precisely, the set of valid sentences
is r.e. (recursively enumerable) but not co-r.e. Even if we restrict all relations to
be finite, the problem remains undecidable. Here the set of valid sentences is co-
r.e. and not in r.e. [140]. The satisfiability problem is also undecidable because
a formula is satisfiable if and only if its negation is not valid. These negative
results imply that there is no hope of using first-order predicate calculus as a
query language. Fortunately, satisfiability can be solved for many subsets of the
predicate calculus described later in the survey.

2.2 First Order Theories with Constraints

In this survey by constraints we mean special named relations. For example, let’s
suppose that our domain is the set of integers. Then the equality constraint =
means the infinite binary relation {(¢,7) : ¢« € Z}. (In the paper we use R for
reals, Q for rationals, N for natural numbers, and Z for integers.) Similarly, the
addition constraint + means the infinite ternary relation such that the sum of
the first two arguments is equal to the third argument. In the following we will
keep using the usual infix notation for common constraints.

By first-order theories with constraints we mean various subsets of first-
order predicate calculus in which the only relations are constraints. In these

theories there is only one assignment of interest: for each constraint symbol the
corresponding constraint relation is assigned.

During the past hundred years many quantifier elimination procedures were
developed for various first-order theories with constraints. By quantifier elimina-
tion we mean rewriting a formula with quantifiers into an equivalent one without
quantifiers. It is out of the scope of this survey to review quantifier elimination
procedures. However, we give a chronological outline of the major results in this
area.

Some works considered only existentially quantified formulas. In the fol-
lowing table we indicate this as 3QE. (For example, we mark as 3QE Fourier’s
method even though it can be easily extended to deal with universal quantifiers.)
It should be remembered that the following is only a partial list.

1828: IQE for Th(R, <, +) by Fourier [58].

1856: QE for boolean algebras by Boole.

1927: QE for Th(Q, <) by Langford [99].

1929: QE for Th(Z,<,+) by Presburger [113].

1931: no QE for Th(Z, +,) by Godel [62].

1951: QE for Th(R, <, +, *) by Tarski [141].

1970: no AQE for Th(Z, +, *) by Matiyasevich [104].

1976: 3QE for integers with modulus constraints by Williams [157].
1982: no QE for Th(R, +, %, exp) by van den Dries [150].

The decision problem is the problem of identifying whether a first-order
formula without free variables is true or false. It is clear that the elimination of
all quantifiers from a formula without free variables should leave as value either
true or false. Hence the decision problem reduces to the quantifier elimination
problem. Most negative results for quantifier elimination follow via reduction
from the undecidability of the decision problem for the corresponding theories.

3 Relational Databases and Query Languages

3.1 Relational Databases and Their Problems

It is well-known that the relational data model enjoys great success in the busi-
ness world. However, the causes of its success are less well-known. Sometimes
it is wrongly assumed that its success is solely due to being based on logic. In
reality the relational data model provides solutions to many practical problems
that more complex logics often do not solve. Let’s see some of these problems.

In the information market there are three important problems that databases
need to solve.

1. Ad-Hoc User’s Problem: Many database users want to enter ad-hoc
queries that they improvise on-the-fly. They also want answers to every syn-
tactically correct ad-hoc query.

2. Application Vendor’s Problem: Application vendors sell libraries of queries
to users. Application vendors must guarantee termination of the queries on
each valid database input. In theory they may use any programming lan-
guage for writing queries. However, guaranteeing termination is difficult in
many programming languages. Hence they also want a restricted language
in which any query they write terminates.

3. Data Vendor’s Problem: Data vendors buy raw data in the form of
databases and produce refined data in the form of databases which they
sell to other data vendors. In the information market, there is often a long
chain of data vendors from raw data to the users. The data model must serve
as a common data communication standard. Each data vendor uses queries
to transform raw data to the data product. Often these queries are secret or
patented.

By looking at the context of how database systems are used in practice we
can see that two important requirements have to be met. First, each query must
terminate. Second, each query must give as output a database. We might call
these the termination and the constructibility requirements.

Both of the above requirements are satisfied in the relational data model [41,
3, 79, 149], which is illustrated in Figure 1. Each relational database is a finite
set of tables. Each table is an abstract data type and is a relation containing a
finite set of tuples. A requirement in the relational data model is that queries be
evaluable functions from finite databases to finite databases. That requirement
is met by three relational query languages that we review in the next three
subsection: (1) Relational Calculus, (2) Datalog, and (3) Stratified Datalog.

Relationa
DB Output

Relationd
DB Input

Relationdl Query

Fig. 1. The Relational Data Model

3.2 Relational Calculus

Syntactically relational calculus and predicate calculus are the same. However, in
relational calculus —like in first-order theories with constraints— we are interested
in only one assignment to the relations. We assign to each relation symbol an
input relation given by the user.

The semantics of any relational calculus query ¢ is a mapping from relational
databases to relational databases. Let x1,...,z, be the set of free variables of
¢ in some fixed order and let ¢(ai,...,a,) denote the formula obtained by
substituting a; for x; for each 1 <i < n.

Each input database d is an assignment of a finite or infinite number of
tuples over §2(%4) to each R;. The output database is a single relation of arity
n defined as {(ai,...,a,) :< §,d >= #(ai,...,a,)}. Here < §,d > means
satisfaction with respect to a domain § and database d and is defined as follows.
If r; is the set of tuples assigned to relation symbol R;, then

<4,d >E Ri(ar,...,ax) iff (a1,...,ax) €r; (1)
<6, d>=(pAY) iff <d,d>=¢and <§,d>E19 (2)

< 6,d > (—¢) iff not <, d>E¢ (3)

< 6,d >k (Jui¢) iff <6,d > ¢[z;/a;] for some a; € 6 (4)

where [z;/a;] means the instantiation of the free variable z; by a;.

Remark: Unfortunately, not all relational calculus queries preserve finite-
ness. For example, if r is any finite unary relation assigned to relation sym-
bol R and § is any infinite domain, then the query {(a) :< §,r > —R(a)}
defines an infinite relation. There are several approaches to guarantee finite-
ness by syntactically restricting relational calculus queries to various “safe” sub-
sets [13, 72, 86, 149]. Safe relational calculus queries are translatable to relational
algebra, a procedural language.

3.3 Datalog

Datalog [3, 11, 50, 101, 149] is a fragment of predicate calculus extending re-
lational calculus with intensionally defined relations. In relational calculus each
query defines a single output relation which is not named explicitly and all other
relations are inputs. In contrast in Datalog a query may define several output
relations which are referred to by name within the query. Hence in Datalog the
output relations are defined using references to themselves.

Syntactically a Datalog program IT is a finite set of rules of the form:
Ro(.Z'l, PN ,.Z'k) — Rl(xlvl, ... ;ml,k1)7 . ,Rn(mn’l, ... ;mn,kn)-

where the Rs are relation symbols and the zs are either variables or constants.

Semantically each Datalog program is a mapping. To explain this mapping,
we first associate with each rule of the above form the formula:

Vg .. .va(Ro(IL'l, . ,JUk) V —|R1(IL'1’1, . ;xl,kl) V...V —|Rn(xn,1, . ,.’L‘n’k"))

where v1, ..., v, are the variables in the rule. We also associate with IT the
conjunction of the formulas associated with each rule in IT. Let Fr denote this
formula.

We call extensional database relations, or EDBs, those relations whose sym-
bol occurs only on the right hand side of rules. We call the other relation symbols
the intensional database relations, or IDBs. In each Datalog query the EDBs are
the input relations assigned by the user and the IDBs are the output relations to
which assignments are sought. The EDBS and IDBs are disjoint in each Datalog
program.

We call an interpretation of IT any assignment I of a finite or infinite number
of tuples over §%(F) to each R; that occurs in IT. A model of IT is an interpre-
tation of IT satisfying Fpr. A model I is a minimum model if and only if I C J
for all models J.

We call an interpretation an input database if it assigns to each R; that
occurs at least once on the left hand side of a rule in IT the empty set of tuples.

Each Datalog program I7 is a mapping from input databases to interpreta-
tions. Let d be an input database. Then the output of IT on d, denoted IT(d), is
the minimum model of IT containing d. The following theorem assures us that
we really have a mapping.

Proposition 3.1 Let IT be any Datalog program and d be any input database.
Then there exists a minimum model of IT containing d. O

Alternative Operational Semantics An important alternative definition of
the semantics of Datalog programs is called fizpoint semantics.

We call valuation any function from (tuples of) variables to (tuples of) con-
stants satisfying the following: for all tuples ¢; and t2, v(t1,12) = (v(t1), v(t2)),
and for all constants ¢, v(c) = c.

The immediate consequence operator of a Datalog program IT, denoted Ty,
is a mapping from interpretations to interpretations as follows. For each inter-
pretation I:

Ro(a1,...,a,) € Tp(I) iff there is a valuation v and a rule of the form
Ro(z1,...,) = Ri(®11,-. s &1,ky), - - s Rn(@n,15- -+, Tk,) in 1T such that
v(x1,...,&n) = (a1,...,6,) and < 4,d > R;(v(x;1,..., %)) for each 1 <
1 <n.

An interpretation I is called a fizpoint of a program IT iff Tz (I) = I.

Proposition 3.2 Let IT be any Datalog program and d be any input database.
Each fixpoint of IT is a model of F7. Moreover, there is a minimum fixpoint of
IT containing d. O

The following states that the model-theoretic and the fixpoint semantics
coincide.

Proposition 3.3 Let IT be any Datalog program and d be any input database.
The minimum fixpoint of IT containing d equals II(d). O

3.4 Stratified Datalog

Stratified Datalog [3, 50, 149] extends Datalog with negation. Intuitively, an
expression like Ry :(— R; A —Ry means that Ry is the set difference of the
relations R; and R,. The problem is that to say anything definite about Ry we
must know the full value of the negated relation. That motivates the following
definitions.

We call semipositive those Datalog programs with negation that only allow
negation of EDBs. (See [3, 50] for more discussion.)

Semantically, each semipositive Datalog program is a mapping from databases
to interpretations. We can define Fpy similarly to the case of Datalog. We have
that:

Proposition 3.4 Let IT be any semipositive Datalog program and d be any
input database that assigns non-empty relations only to the EDBs. Then there
exists a minimum model of IT containing d. O

Another extension of Datalog is the class of stratified Datalog programs.
Each stratified Datalog program IT is the union of semipositive programs Iy, . .., Iy
satisfying the following property: no relation symbol R that occurs negated in a
II; is an IDB in any II; with j > .

It is usual to associate with each stratified Datalog program II a function
o from rules to positive integers. The function o indicates the grouping of the
rules into semipositive programs in an order that satisfies the above property.
We will assume that a o is associated with each stratified Datalog program.

Each stratified Datalog program is a mapping from databases to interpre-
tations. In particular, if IT is the union of the semipositive programs Iy, ..., II}
with the above property, then the composition IIi(...II;()...) is its semantics.

Proposition 3.5 Let IT be any stratified Datalog program consisting of the
union of some semipositive programs Iy, . .., Il with the above property. Let d
be any database that assigns non-empty relations only to the EDBs of I7;. Then
there exists a minimum model of II containing d. O

Remark: An explicit specification of o is not required. [12] describes an
algorithm to find a o satisfying the above property. Moreover, [12] also shows
that all o’s satisfying the above property are semantically equivalent.

Remark 2: Datalog programs with negation on the right hand side of the
rules can be assigned an inflationary semantics [4, 64, 89]. This semantics is not
equivalent to the one given here and seems less frequently used.

3.5 Relational Databases vs. Logic Programming

It is not our goal here to review logic programming [52, 11], which has known
similarities with relational database queries. We would like only to point out
some essential differences between these two concepts.

Each logic program is a mapping from a finite set of facts to a least model.
Logic programs do not always terminate and least models are not always a
finite set of facts. Therefore, logic programs do not satisfy the termination and
constructibility requirements, which as we saw are crucial problems in databases.

Every relational query can be expressed as a logic program, but the reverse
is not true. Unfortunately, from the database point of view the higher expres-
sive power of logic programs is at the expense of some practicality. The following
is a brief historical summary of the developments in the two areas, based on [10]:

1970: Relational Algebra proposed by Codd [41].

1972: Relational Calculus shown equivalent to Relational Algebra by Codd.
1973-74: Prolog by Colmerauer, Kanoui, and Van Caneghem [44] and Kowalski.
1976: Fixpoint Semantics for Prolog by Van Emden and Kowalski.

1979-80: Datalog by Aho and Ullman [7] and Chandra and Harel [31].

1985-88: Stratified Datalog by Chandra and Harel [33] and Prolog by Apt, Blair
and Walker [12].

4 Constraint Databases and Query Languages

Constraint programming, or programming with constraints as primitives in the
programming language, was first investigated in the early 1960’s by Suther-
land in the SKETCHPAD system [139]. Since then constraint programming
was applied to various problems in artificial intelligence [60, 102, 105, 135],
graphical-interfaces [22, 131], and in logic programming and databases. We re-
view only the developments in the latter two areas, and even in logic pro-
gramming we mention only on those developments that have a relationship to
databases. The reader may find detailed surveys on constraint logic programming
in [42, 75, 96, 153, 154].

4.1 Constraint Databases and Their Problems

Many database applications have to deal with infinite concepts like time and
space. However, in practice only those databases can be used which can be
finitely represented. Fortunately, many infinite data can be finitely represented
using constraint databases. A general framework for using constraint databases
is presented in [82]. The following three definitions are from that paper.

A generalized k-tuple is a quantifier-free conjunction of constraints on k
variables ranging over a domain . Each generalized k tuple represents in a finite
way an infinite set of regular k-tuples. For example, suppose that relation R
contains the set of points on the line that passes through the origin and has
slope two. While R has in it an infinite number of tuples, it can be finitely
represented by the generalized 2-tuple R(z,y) :— y = 2 x z.

A generalized relation of arity k is a finite set of generalized k-tuples, with
each k-tuple over the same variables.

A generalized database is a finite set of generalized relations.

If we use generalized databases, then all the definitions of query language
semantics still apply except that we have to also generalize the meaning of .
That can be done as follows.

Let r; be the generalized relation assigned to R;. We associate with each r; a
formula F}, that is the disjunction of the formulas on the right hand side of each
generalized k-tuple of r;. Let ¢ be any relational calculus formula. Satisfaction
with respect to a domain § and database d, denoted < §,d >|=, is defined
recursively as follows:

<é4,d >E Ri(ar,...,ar) iff F,(a1,...,a) is true (5)

<&d>=(pNY) iff <d,d>=¢and <d6,d>E7y (6)
< d6,d > (—¢) iff not <4, d>E¢ (7
< 4,d > (Fx;9) iff < 6,d > ¢lx;/a;] for some a; € § (8)

The following alternative semantics that is equivalent to the above is dis-
cussed in [82]:

Let ¢ = ¢(z1,...,2m) be a relational calculus program with free variables
Z1,...,Tm. Let relation symbols Ry, ..., R, in ¢ be assigned the generalized
relations rq, ..., r, respectively. Let ¢[R1/Fy,,- .., Rn/Fy,] be the formula that
is obtained by replacing in ¢ each database atom R;(z1,...,2;) by the formula
F.[z1/21,-..,%, /2] where F,. (1, ...,z}) is the formula associated with r;. The
output database of ¢ on input database r1,...,7, is the relation {(ay, ..., an) :<
(5,d >|: ¢1(a1, . ,am) where ¢1 = ¢[R1/Fr1, . ;Rn/Frn]}-

Congtrant DB Qupt

Refationd
DB Qutput

Consrat DB It Consrant Quey

Refationd
DB Input

1 |Reidiond Quey

Fig. 2. The Constraint Data Model

In the generalized database model of [82] queries are functions from general-
ized databases to generalized databases using the same type of constraints. This
closed-form requirement is the analogue of the termination and constructibility
requirements in relational databases and stems from the same practical con-
siderations that were discussed in Section 3.1. Constraint query languages are
generalizations of relational query languages with constraints, i.e., reference to
built-in relations are allowed in them. These ideas of the constraint data model
are summarized in Figure 2. We present an example constraint query language
and closed-form evaluation in Section 4.2.

As a consequence of the alternative semantics above we have:

Proposition 4.1 Let 7 be any first-order theory with constraint relations. If 7
admits quantifier elimination, then the output of each relational calculus query
on generalized relations containing only constraints in 7 can be evaluated in
finite time. Moreover, the output can be represented as a generalized relation
containing only constraints in 7. O

Proposition 4.1 implies that all of the quantifier elimination results in Sec-
tion 2.2 help realize the goal of closed-from evaluation. Hence they are very
much relevant for querying generalized databases. Because of them relational
calculus on many types of constraint databases can be used without any restric-
tion, i.e. not even the “safety” problem is a concern. For Datalog and stratified
Datalog queries however closed-form evaluation is more difficult and sometimes
impossible (see Section 5). Recently [145] presented broadly applicable sufficient
conditions for termination and closed-form evaluation of Datalog queries with
constraints.

4.2 An Example Closed-Form Evaluation

Quantifier elimination algorithms provide closed-form evaluations for queries.
Unfortunately, many quantifier elimination algorithms are computationally in-
efficient. Efficiency can be improved by algebrizing the quantifier elimination
procedure. Algebraic operators are desirable because they provide efficient set-
at-a-time computations with generalized relations. The idea of using algebras
instead of simple quantifier elimination goes back to Tarski and Thompson [142].
Codd’s relational algebra [41] is another example of algebrization of query evalu-
ation. Relational algebra is a procedural language that is equivalent in expressive
power to safe Relational Calculus. Relational Calculus queries are translated to
relational algebra for quicker evaluation [3, 149).

More recently some algebraic operators are considered in the case of linear
constraint databases in [23], in the case of dense order constraints in [81], and
in the case of discrete order constraints in [120], which shows a partial algebra
with only select, project, and join operators. Next we extend those to the full
set of the relational algebra operators and give that as an illustration of algebras
for generalized databases. Our definitions will follow mainly [120].

Definition 4.1 Let z and y be any two integer variables or constants. Given
some assignment to the variables, a minimum gap-order constraint z <, y for
some gap-value g € N holds if and only if ¢ < y—=x holds in the given assignment.
A minimum gap-order constraint x = y holds if and only if = and y are equal
in the given assignment. A mazimum gap-order constraint z <" y for some gap-
value h € N holds if and only if 0 < y — 2 < h holds in the given assignment.
O

Definition 4.2 Let z1,...,z, be integer variables and ¢i,...,c, be integer

constants. Any graph with vertices labeled z1,...,2,,¢1,...,¢, and at most
one undirected edge labeled by = or at most one directed edge labeled by <Z
for some g € N and h € N U +00 between any pair of distinct vertices is called
a mm-gapgraph. O

Remark: Any g = 0 and h = +00 may be considered as default values and
not written out explicitly within the mm-graphs.

Definition 4.3 Any mm-gapgraph with vertices labeled with variables z1, ...,z
and constant 0 is in normal form. Furthermore, any set of mm-gapgraphs each
with vertices labeled with z1,...,z,,0 is in normal form. O

It is easy to see that any mm-gapgraph of size n can be put into normal form
in O(n) time. We have change each constraint of the form ¢ <, x (respectively
¢ <" z) where ¢ > 0 into 0 <., = (respectively 0 <¢*"). The cases when ¢ < 0
or is on the right hand side of the minimum (respectively maximum) gap-order
constraint are similar.

For the rest of this section, assume that all gap-graphs are in normal form.
Furthermore, assume that each order constraint has both a minimum and a
maximum bound. If that is not true in some constraint than add the default
values of 0 for minimum and +oo for maximum gap-values.

Definition 4.4 Let G be a mm-gapgraph with vertices y,vy,...,v,,0. Then a
shortcut operation over vertex y transforms G into an output mm-gapgraph with
vertices v1,. .., Un, Unt1 where v,41 = 0 as follows. First, for each 0 < ¢, j,< n+1
do the following.

If v; =y and y = v; are edges in G, then add v; = v; as an undirected edge to
G.
Ifv,=yandy <Z v; are edges in G, then add v; <g v; as a directed edge to G.

If v; <Z y and y = v; are edges in G, then add v; <Z v; as a directed edge to G.

If v; <gll y and y <g; v; are edges in G, then add v; <Z:i;22;11 v; as a directed

edge to G.

Second, if there are two or more edges of the form <§”11, cee, <§‘: between
vertices v; and v; then delete these edges and replace these with the edge
v; <$2;((};11".'.'.’2:§ v;. If more than one edge remains between any two vertices,

then the shortcut operation fails, returns an error message, and it does not pro-
duce a shortcut mm-gapgraph as output. Otherwise, y and its incident edges are
deleted and the resultant mm-gapgraph is returned. O

In the above, the first part of the shortcut operation adds only constraints
that follow by transitivity from the set of original constraints represented by the
input mm-gapgraph. In the second part the simplification is needed to ensure

that the graph remains in mm-gapgraph form and has at most one edge between
any pair of vertices. Note that if after the simplification more than one edge
remains between any pair of vertices, then they must be differently oriented or
one directed and another undirected, i.e. equality, constraint. This clearly implies
that the mm-gapgraph is not satisfiable. Note that apart from this obvious case
the shortcut operation does not check the mm-gapgraph for satisfiability.

Definition 4.5 Let G and G2 be two mm-gapgraphs over some (maybe differ-
ent) subsets of the variables vy, ..., v, and the constant 0. Then a merge opera-
tion on GG; and G2 creates a mm-gapgraph G with vertices vi,...,v,,0p41 =0
as follows. For each 0 < 4,5 <n + 1 do the following.

If there is no edge between v; and v; in G1 and G2, then do nothing.
If there is an edge between v; and v; in only one of G or G2, then add that
edge to G.

If v; = v; is an edge in both G and G3, then add v; = v; as an edge to G.
min(hi,h2)

If v; <! v; in Gy and v; <P v; in G, are edges, then add v; (1.9

an edge to G.
If v; <M v; in Gy and v; <!2 v; in G, are edges, then add v; <
an edge to G.
In any other case the merge operation fails, and it does not return any graph. O

v; as

min(hi,h2)

maz(g1,92) Y; as

In the merge operation we want any assignment that satisfies the output
mm-gapgraph to satisfy both of the input mm-gapgraphs. The operation guar-
antees this by checking that the corresponding edges in the two input mm-
gapgraphs are compatible and by combining the stricter minimum and the
stricter maximum gap-order constraints in the corresponding edges and adding
the combination to the output mm-gapgraph. The last condition “in any other
case” includes the cases when GG; and G2 are not compatible, for example, when
for some variables v and w, one specifies that v is less than w while the other
says that v is greater than w. In these cases there is clearly no assignment that
can satisfy both graphs, hence the merge operation will fail. Next we prove the
semantic correctness of the operations defined, that is, we show that shortcut
is a valid existential quantifier elimination procedure and join is consistency
preserving.

Lemma 4.1 Let G be a mm-gapgraph over variables y,v1, ..., v, and constant
0. Let G' be the mm-gapgraph obtained by shortcutting over y in G (if exists).
Let ag,a1,...,a, be any sequence of integer numbers. Then G(ag, a1, ..., a,) is
true if and only if G' exists and G'(ag, a1, ..., ay,) is true. O

For the merge operation we show that the and of the input mm-gapgraphs
is consistent if and only if the output mm-gapgraph is consistent.

Lemma 4.2 Let G; and G2 be two mm-gapgraphs over some (maybe differ-
ent) subsets of the variables vq,...,v, and over 0. Let G be the mm-gapgraph
obtained by merging Gy and G (if exists). Let aq,...,a, be any sequence of
integer numbers. Then Gy (ag,as,...,a,) and Ga(ag, a1, ...,a,) are true if and
only if G exists and G(ag, a1, - ..,ay) is true. O

Based on the above operators, we define the generalized project 7 and the
generalized join X operators. Let R; and R be two relations that are both in
normal form. Then the generalized join of R; and R,, denoted R;X R, is the set
{merge(G1,G2) : G1 € R;,Gs € Ry}. Assume that R; is a k-ary relation with
argument symbols S = {z1,...,z}. Then the generalized project of R; onto a
subset S’ = S\ {z;} of the arguments is the set {shortcut(z;,G) : G € R;}.

The generalized selection operation on R, denoted o¢ R, where C is any
selection condition that is the conjunction of minimum and maximum gap-order
constraints, is the set {merge(G, graph(C)) : G € R}. Here graph is a function
that transforms each conjunction of gap-order constraints into an mm-gapgraph.

The generalized rename operation p just renames the argument vertices in
each mm-gapgraph in the given generalized relation.

Now let R; and R, be two k-ary generalized relations with the same scheme.
Then the generalized union operation U is defined as the union of the mm-
gapgraphs in R; and R».

Also, the generalized difference of R; and Ry, denoted R;—Ry, is defined
to be the set {R1XR3 : R3 = - Ry} where —Ry is the complement of R, in
the standard sense. That is, if Ry represents any set of regular tuples B C &%,
then =Ry is the set of regular tuples 6% \ B. The following can be proven using
De Morgan’s laws.

Lemma 4.3 Let R be a k-ary relation represented by a set of mm-gapgraphs
of size n. Ther; a generalized relation representing the complement of R can be
found in O(n*") time. O

We have defined the generalized versions of all the fundamental relational
algebra operators. (Note that cross product is the case of join when there are
no overlaps in the arguments of the two input relations. Our definition of join
allows that possibility.) Next we give an example of the use of the generalized
algebraic operators.

Example 4.1 Suppose that two persons want to schedule a meeting during a
given month. The first person is free from the 3rd to the 6th and from the 16th
to the 26th. The second person is free from the 6th to the 18th and from the
25th to the 30th. Also suppose that they don’t want to meet on the 6th and the
13th. Which days could they meet?

The relation FREE telling which person is free on which days and the
relation BAD_DAYS can be represented in normal form as follows.

[FREE|Person-ID|Day
p

0<pA0<Tt

0<*pA0<ilt
0<ipAO<t
0<ipAO<3it

| S| S|

p
p
p

[BAD_DAYS|Day
t 0<%t
t [0<i3t

The query that finds the good days for meeting is the following;:
(" pay Go<2p FREE) X (T pay Go<sp FREE)) — BAD_DAY S

Here 6¢<2,FFREE will be the first two tuples of FREE. (Note that the se-
lection condition when added to the other tuples will result in an inconsistency.)
That projected into Day will give a temporary relation Ry (t) = {G1,G2} where
G represents 0 <} ¢ and G represents 0 <2 ¢.

Similarly, 7paydo<s, FREE will yield Ry(t) = {G3,G4} where G5 repre-
sents 0 <3% t and G4 represents 0 <3} ¢. The generalized join of R; and Rs will
be {merge(G1,G3),
merge(G1,Ga), merge(Ga, G3), merge(Ga,G4)}. The temporary output will be
the following generalized relation:

|R3 Day

t [0<It
t 0<it
t 0<3Tt

In the above we do not show the merge of G; and G4 because it is incon-
sistent. Next we take the complement of BAD_DAYS. This will yield:

—((0<E)V (0<i3t)

((0<5tA0<Tt) V(0 <12t A0 <M 1))

(=(0 <5 t) V(0 <7 £)) A (—(0 <12) V =(0 <'* £))

(t<0Vvt=0vOo<St)v(E<0OVEt=0VO0<gt))A
(t<0Vvt=0vOo<BHv(Et<0OVt=0V0<3t))
(t
(t

<OVE=0VO<StVO<gt)A(t<OVE=0VO<3tVvO0<ist)
<0Vvt=0vOo<itvOo<i®tv0o<ist)

Hence the complement of BAD_DAYS is a generalized relation with five tu-
ples. Finally, we take the generalized join of R3 and the complement of BAD _DAYS.
We obtain:

|R5 Day
t 0<iit
t 0<37t

The above generalized relation expresses that the two persons could meet
any day from the 16th to the 18th and from the 25th to the 26th inclusive.

4.3 Constraint Databases vs. Constraint Logic Programming

Let us briefly compare constraint databases and constraint logic programming [42,
75, 153, 154].

Each constraint logic program is a mapping from a finite set of constraint
facts to a least model. The most general framework for constraint logic pro-
gramming was given by Jaffar and Lassez [74] who show that under very mild
assumptions about the constraint predicates, the semantics of Prolog-like lan-
guages with constraints changes only slightly, in particular queries can still be
given a least model semantics.

Constraint query languages are a subset of constraint logic programs. How-
ever, Jaffar and Lassez do not give any criteria for effectively evaluating the least
model or even whether the least model is finitely representable. For constraint
query languages the least models are effectively computable and finitely repre-
sentable. Therefore, constraint query languages solve the user’s constructibility
requirement and the data vendor’s problem, which are NOT solved by constraint
logic programs in general. The main contribution of constraint database research
is the set of algorithmic solutions to these problems.

Some important constraint programming languages are the following: Pro-
log IIT which allows constraints over the 2-valued Boolean algebra and linear
arithmetic constraints over the rationals [43]. CHIP [49] which allows linear
arithmetic constraints over both the rationals and bounded subsets of the inte-
gers. CLP(R) [76] which provides polynomial constraints over the reals. LIFE [8]
which allows constraints over feature trees and also provides a notion of objects.
Trilogy [156] which allows constraints over strings, integers, and real numbers.
The following is a brief historical outline of the developments in constraint logic
programming and constraint databases:

1982: Prolog I, first instance of CLP.
1987: CLP semantics by Jaffar and Lassez [74].
1990: CQL database framework by Kanellakis, Kuper and Revesz [82].

5 Complexity Issues

In this section, we first review the known complexity results for first-order theo-
ries with constraints in Section 5.1. Then we review the known data complexity
results for both relational and constraint query languages in Section 5.2. We
discuss how data complexity is related to closed-form evaluation in Section 5.3.
Finally Section 5.4 discusses optimization techniques to speed up query evalua-
tion.

5.1 The Decision Problem for First-Order Theories with
Constraints

The computational complexity of the decision problem for first-order theories
was investigated in depth during the past twenty years. We list only some of the
important results in this area.

The computational complexity of Th(R, <, +, *) is investigated in [19, 45,
92, 119]. The complexity of Th(R, <,+), a subset of the previous theory, is in
DSPACE(2°") where n is the size of the formula [55] and also in alternating Tur-
ing machine class T A(2°",n) [29]. (See [77] for definitions of various complexity
classes.) Another interesting subset of the above theory allows only difference
constraints, i.e. only constraints of the form z; —x; > c for z;, z; variables and ¢
constant. The complexity of this language is considered in [90, 91] and is shown
to be PSPACE-complete in general and to be X%-complete for k alternation of 3
and V quantifiers in the prenex form. The complexity of the theory of rational or-
der is considered in [54] and is shown to be in DSPACE(n logn). The complexity
of Presburger arithmetic is considered in [21, 57, 118].

In the above complexity analyses the Ehrenfeucht-Fraissé game technique [51,
59] plays a major role. In this section, we illustrate a simple case of this important
technique by applying it to the first-order theory of integer order.

In general, Ehrenfeucht-Fraissé games are used to show that quantifiers
ranging over all elements of a domain of a theory may be restricted to small finite
subsets of the domain. This makes the validity of formulas of a theory decidable
by exhaustive search. Upper bounds on the size of the finite subsets yield upper
bounds on the time or space required to evaluate the formulas. The theory
of integer order provides a simple case of the power of this general technique.
Ferrante and Rackoff [55] used Ehrenfeucht-Fraissé games in a compact proof to
show an O(n?) space upper bound for deciding formulas of size n that have no
constants other than possibly 0. Their analysis is more complex than necessary
because they are concerned with several theories at once. In the following we
simplify their proof for the case of the theory of integer order only and also add
a means to deal with constants other than 0.

First, the infinite set of possible integer tuples that may satisfy a first-order
formula is divided into a finite number of equivalence classes. The goal is to show
that any member of an equivalence class satisfies a formula if and only if every
member of the equivalence class satisfies that formula. This limits the number
of possible cases that needs to be considered during evaluation, because it is
enough to pick just one member from each equivalence class to test whether it
is a solution. At first we look at the case when the formulas have no constants
in them.

Definition 5.1 Let a; = (ay,...,ax) and by, = (b1, ...,by) be tuples of integers.
For each k,d € N we write that @y ~,q by if and only if for each 1 < 4,5 <k, if
| a;—a; |< 297k then a; —a; = b;—bj, and if a; —a; > 2¢7F, then b;—b; > 24-F.
O

In the next lemma, we use |= to mean satisfaction in the standard sense.

Lemma 5.1 Let F(z1,...,zx) be any formula of the theory of integer order,
and let d be the quantifier depth in F'. Then for any tuples @y, b, if @ ~,q b,
then @y, |= F(x1,...,2x) if and only if b, = F(x1,...,2k).

Proof: We prove the lemma by induction on the number of v, =, 3 operators
in F. Assume that @y, ~,q by,. For the base case, we have a single order constraint
of the form z; < z; or z; = z;. Clearly, each of these is either true or false in
both @ and b;. For more complex formulas we have the following cases:

(1) F(z) = F'(z) vV F"'(z). Suppose a; = F'(Z) V F" (7). Then, without loss
of generality a;, = F'(Z). By induction, by, = F'(Z). Hence, by, = F'(Z) V F"(Z).

_ (2) F(z) = ~F'(z). Suppose @, |= —F'(T). Then, ay % F'(Z). By induction,
b, £ F'(Z). Hence, by, = —F'(T).

(3) F(z) = 32F'(T,z). Suppose ap, = FzF'(T,z). Then for some ap4q,
G, apt+1 = F'(T, 2). If agy1 = a; for some 1 < j < k, then we choose b1 = b;.
Otherwise, let aj, < ary1 < aj, be the pair of integers within @, between
which a4 lies. If aj, — aj, < 297% then choose byi1 = bj, + ap1 — ajy. If
aj, —aj, > 297% then choose b1 = bj, + 297%. Since @ ~p,q bi, it is easy
to see that in both cases the choices make @41 ~ky1,d bry+1. By induction,
bet1,a = F'(T, 2). Hence, by, | F(T).

These cases prove the “if” part of the lemma. By arguing similarly for by
we prove the “only if” part of the lemma. O

The above lemma can be generalized to the case when there are constants
in the formula. Moreover it can be turned into an effective quantifier elimination
procedure. The quantifier-free formula that is returned however, will have to use
gap-order constraints, that is atomic formulas of the form z; — z; > k where k
is a nonnegative integer number.

Theorem 5.1 Let F(x1,...,2;) be a formula in the first-order theory of integer
order. Then we can find a quantifier-free formula F'(z1,...,2) in the theory of
integer gap-order such that F' < F" is true.

Furthermore, the size of F" is at most O((k!(k — 1)2+2((2¢+" + 3)m)*)n) where
d is the quantifier depth of F, m is the number of distinct integer constants in
F and n is the total size of F.

Proof: We want to find one member from each equivalence class — in the
sense of Definition 5.1- whose members satisfy F. By Lemma 5.1, if F' had no
constants in it, then we would have to try only O(k!(k — 1)2°*2) sequences of
integers, i.e., k! ordering of the variables in a; and between each adjacent pair
trying out only equalities and gaps of size 1 to 2¢ + 1. However, if F contains
constants, then the relative ordering and gap-sizes among the constants and the
variables have to be also known to be able to evaluate atomic formulas that
contain constants, e.g., x; = ¢, x; < ¢, Or ; > C.

We can extend Definition 5.1 as follows. We write that @ ~.q by, if and
only if for each constant or variable w in F' the following condition holds: for
each 1 <i <k, if | a; —u |< 297% then a; — u = b; — u, if a; —u > 297F, then
b; —u > 2%k and if u —a; > 297%, then u — b; > 29-F,

Hence we would need for each of the possible ordering-gaping of the vari-
ables only a gap assignment with respect to the constants that occur in the
formula. With respect to each constant ¢, a variable z; can be placed into
24+1 4 3 distinguishable positions, that is, z; less than ¢ by 1,...,2% + 1, ;
equal to ¢, or x; greater than ¢ by 1,...,2% + 1. With m constants in F, this
leaves (2%*! 4 3)m choices for each variable. Hence we have the upper bound
of O(k!(k — 1)2°+2((2¢+1 + 3)m)¥) many different equivalence classes with con-
stants. (Actually, we may have much less, as only a part of the gap choices will
be consistent with the variable orderings, and only part of the gap assignments
with respect to the constants will be consistent with the variable orderings and
gap choices.)

Similarly to Lemma 5.1 it can be shown that if any member of an equivalence
class satisfies the formula, then each member of the equivalence class satisfies the
formula. Moreover, we can pick a representative from each equivalence class and
test whether it satisfies the formula. It is clear that each equivalence class can be
written as a quantifier-free formula over the free variables that is a conjunction of
gap-order constraints. The formula F' will be the disjunction of the conjunctive
formulas representing the equivalence classes that satisfy F'. Clearly the size of
each conjunctive formula is less than the size of F. This proves the theorem. O

Lemma 5.1 shows that the formulas with integer order cannot distinguish
between gaps than are more than exponential in their size. We show in the
following example as a lower bound a formula which does distinguish between
gaps that are up to an exponential in the size of the formula.

Many possible formulas can be found with that property. Our example is
quite simple and is in disjunctive normal form. That is an improvement over
previous examples of hard formulas. That is, Ferrante and Rackoff’s method of
writing short formulas that define complicated properties exactly exploit the fact
that the formula is not in normal form. If their example were put into normal
form its size would increase exponentially.

Example 5.1
Gapan (s,t) = JxVy Gapan-1(z,y) V(s <y <t) V (t <y <)

Gap(s,t) = s #1

The formula Gapan (s,t) is satisfied if and only if | ¢ — s |> 2™. This is easy
to prove by induction as follows. For n = 0, Gapao (s, t) = Gap (s, t) is satisfied
if and only if | t — s |> 1, as claimed. For Gaps» without loss of generality let
s < t. We reason as follows.

(if) Suppose that t — s > 2™. Then let z = s + 2" 1. Then for all y < s the
condition z —y > 27! holds. Also, for all y > t the condition y — z > 277!
holds. For all s < y < t the second condition holds. Hence Gaps- (s,t) holds.

(only if) Suppose that t — s < 2™. For any z if s < z < t, then either
z — 5 < 2" 1 and Gapyn-1(z,t) is false or t — z < 2"~ and Gapyn-1(z,s) is
false, and since s < s <t and s < t < t are both false, the formula must be false
when either y = s or y =t. If x < s or ¢ > ¢, then the formula is false because
each of the three disjuncts fails when y = z. O

5.2 Query Evaluation Formulated as a Decision Problem

When analyzing the complexity of query evaluation, it is common to reformulate
the query evaluation problem as a decision problem.

Data Complexity: For each fixed program IT we define a language Ly =
{(t,d) : t € II(d)}. The language Lz consists of the set of strings which are pairs
of a regular relational database tuple ¢ and an input database d (written as a
string of generalized relational database tuples) such that ¢ is in the semantically
defined output of IT on d (that is, independent of any particular representation).
Following Chandra and Harel [31] and Vardi [155] we call data complezity the
computational complexity of deciding whether a pair (¢, d) is in the language Ly .
Data complexity is a commonly used measure in databases because it expresses
the intuition that usually the size of the database dominates by several orders
of magnitude the size of the query program.

6 Constraints|Relational Calculus|Datalog Stratified Datalog

D ACh (s) [81] PTIME-comp (s) |[PTIME-comp (s)
LOGSPACE (s) [31] |[[7, 31] [12, 33]

#,<,< ACo [81] PTIME-comp PTIME-comp

LOGSPACE [82, 54] |[82] [82]

N,Z |=g for fixed |in PTIME PTIME-comp PTIME-comp

set of k’s [78, 157] [147] [145]

N,Z |18 in NC PSPACE-comp (s) |[PSPACE-comp (s)
[120] [38] [36]

P(D)|C,k€,k¢ |in PTIME (3 only) |DEXPTIME-comp DEXPTIME-comp (s)
[134] [122] [124]

Bm |=s.. in PTIME (3 only) [22"-comp in 227 (s)
82] 82, 125] [125]

Z #,<,<,<k [in NC DEXPTIME-comp|non-elem-comp (s)
[120] [121, 122] [123]

R <,+ in NC undec. undec.
[55]

N,7Z |<,+,=x in 0(2"m) undec. undec.
[118, 21]

R +, NC undec. undec.
82, 19, 119]

Z +, % undec. undec. undec.
[62]

Q +, * undec. undec. undec.
[128]

Fig. 3. The Data Complexity of Constraint Query Languages

Figure 3 summarizes some of the known data complexity results for rela-
tional and constraint query languages. The yet unmentioned domain symbols in
the table are: D for any discrete domain (for example the integers), B,, for free
Boolean algebra with m elements, and P(Z) for sets of integers. In the figure
(Jonly) means that only relational calculus without — and V is considered and
(s) means other syntactical restrictions. The = is not listed as a constraint in
any row of the table, but it is assumed to be present in each row.

Most of the complexity results in Figure 3 assume Turing machines as the
computational model. The exceptions are the NC-ness results which assume the
PRAM model of computation and the ACy results which assume random-access
alternating Turing machines [14, 30].

The known data complexity results for relational databases are shown in the
first row. For relational databases (safe) relational calculus has LOGSPACE [31]
and AC) [81] data complexity in the PRAM and Alternating Turing machine
models, respectively. Also, for relational databases both Datalog [7, 31] and
Stratified Datalog [12, 33] have PTIME-complete data complexity.

In the Figure 3 the constraint <; where £ is a nonnegative integer is called
a gap-order constraint. For variables z; and x;, the constraint z; <j z; is true
if and only if z; + k < x; is true.

[120] considered relational calculus with #, <, < constraints on the integers
in the input database and showed it to be decidable within PTIME data com-
plexity. Theorem 5.2 in this paper is an improvement of that result to NC and
with the remarks after it an extension with gap-order constraints within the
input database. (Note that without the extension the closed-form requirement
is not satisfied.)

Koubarakis [91] considered the first-order language of difference constraints,
i.e. only constraints of the form z; — z; > c for x;,z; integer variables and
¢ integer constant. Koubarakis shows that the expression complexity of this
language is PSPACE-complete and provides a quantifier elimination method.
When the reals are considered as the domain, the expression complexity remains
the same.

It turns out that the expressive power of the languages in [120] and [91] in
the case of integers is the same. That is because z; —x; > cis equivalent to z; <,
z; if ¢ > 0 and is equivalent to —(z; <(_.—1) #;) if ¢ < 0. Furthermore, any gap-
order constraint z; <. x; can be expressed by the subformula 3z; ...3z.(z; <
21Nz < ... < 2 N2Ze < Tj).

The constraint =; is the usual modulus constraint on integers, that is,
x; = x; is true if and only if the remainder of z; divided by k equals the
remainder of z; divided by & where £ is a positive integer. The set of solutions
{c+ kn : n € Z} of a modulus constraint of the form z =, ¢ is called a linear
repeating point.

Datalog with a successor function, which is denoted 1S in the table, has the
safety requirement that addition is applied only to the first argument of each
relation. This distinguished argument of relations is called a temporal argument.
The languages of [78, 38, 39] can express many interesting temporally recurring
events. For example, they can express that employees in a company get paid
every week. In the language of [39] this would be:

paid(t,p) — employee(p, ¢), paid(ta,p),t =ta+1+1+1+1+1+1+1

However, the languages are different in expressive power. [78] cannot express
transitive closure queries, while [39] cannot express the difference of relations.
The expressive power of these languages is compared in [16] which also present
an undecidable language. The expressive power of point and interval-based query
languages is compared in [146].

[147] also combines modulus constraints with integer gap-order constraints.
Datalog with gap-order constraints is shown to have a closed form and a DEXPTIME-
complete data complexity in [121, 122]. The expression complexity of the same

language is shown to be in DEXPTIME in [47]. Recent work adds stratified nega-
tion to Datalog with gap-order constraints with some syntactical safety restric-
tions. The resultant language has a non-elementary data complexity [123]. The
relationship between syntactical safety as given in [123] and semantical safety is
discussed in [136] and it is shown that syntactical safety cannot be extended to
include all semantically safe queries.

Datalog with set order constraints of the form U C V, k € U, and k &
U, where k is an integer (or element of some other infinite domain D) and
U,V are set variables or sets of constants, is considered in [134, 122, 124]. The
first reference shows that conjunctive queries have PTIME, and the other two
show that Datalog and safe stratified Datalog have a DEXPTIME-complete data
complexity.

The data complexity of relational calculus and Datalog queries with Boolean
equality constraints over a free Boolean algebra with m generators is analyzed
in [82, 125].

Some related results that do not appear in the table are works on decid-
ing set constraints. The set constraints considered in [5] are much more general
than the ones in the table. Quantifier elimination is not possible in the more
general case considered there. There sets appear as leaves of functional terms
and unification and other methods are considered for the decision problem only.

When we have addition and multiplication, then we can express the order
relation in both the R and the Z case. When the domain is Z, then we can also
express exponentiation. The undecidability results in the table are based in part
on these observations.

5.3 From the Decision Problem to Closed-Form Evaluation

Next we give an example of how one can translate the complexity results for
the decision problem of a first-order theory with constraints to a closed-form
evaluation result for relational calculus queries.

Theorem 5.2 Let IT be any fixed Relational Calculus program. Then IT can
be evaluated in NC in the size of any generalized database with integer order
constraints such that the output will be a generalized relation with integer gap-
order constraints.

Proof: First using Proposition 4.1 translate the query evaluation problem
into a quantifier elimination problem in the theory of integer order. Also trans-
form the formula into a prenex normal form, i.e. where all the quantifiers occur
only at the front. A formula can be put into prenex-form in NC.

The theorem follows from Theorem 5.1 taking advantage of the fact that the

quantifier depth and the number of free variables are fixed constants. When we
test a representative of each equivalence class whether it satisfies the formula for
each new existential variable ay; we need to test only O((2(k —i)+1)2¢(2¢+! +
3)m) many choices depending where ay.; is inserted into the current order of the
variables ay, . .., ar+i—1 and the m constants. Since d and k are fixed constants,
employing an exhaustive search on these possibilities the total number of cases
is still only O(m?). Since m < n the total number of cases is only a polynomial
in the size of the generalized database input. Each case should be tested on a
quantifier-free formula which can be done individually in NC' and all of them
in parallel in NC'. Once the value of each case is known, the quantifiers can be
evaluated in NC' too. O

Remark 1:1t is possible to improve the above result by allowing the general-
ized database input to contain gap-order constraints. If the maximum gap-value
in the input database is some constant ¢ then similarly to Example 5.1 we can
express it by a formula which adds only log ¢ quantifier-depth and size. That is,
the problem with gap-order constraints in the input generalized database can
be still reduced to evaluating in the theory of integer order a formula that has
O(k + log ¢) quantifier depth. Hence this problem is also in NC.

Remark 2: The theory of integers with a successor relation, i.e. +1, can
be also reduced to case of the theory of integer order. That is because any
constraint of the form z+1 = y in the former can be expressed by the subformula
(r < y) A —=3z(z < 2z Az < y) in the latter. This implies that with successor
constraints also query evaluation is in NC'.

The following is the analogue of Theorem 5.2 in the case of algebraic queries.

Theorem 5.3 Let II be any fixed generalized relational algebra query. Then IT
can be evaluated in NC' in the size of any generalized database input that is in
normal form.

Proof: The proof is by induction on the parse tree of the relational algebra
expression showing that the temporary relation T; associated with each internal
node i has a size that is polynomial in the size of the input relations (at the
leaves) below it and that T; can be evaluated in NC. To show polynomial size
is easy because generalized select, project, and rename can only decrease the
number of mm-gapgraphs in the temporary relation and join can only return at
most n * m mm-gapgraphs where n and m are the number of mm-gapgraphs
in the two input relations. By Lemma 4.3 the number of mm-gapgraphs can
also grow only polynomially by each negation (and therefore difference). Since
the relational algebra expression is fixed the output relation at the root node
must have a number of mm-graphs that is polynomial in the size of the input
generalized database. Finally, we note that the size of each mm-gapgraph is
bounded by a constant because the number of arguments in each relation is
fixed.

To show NC-ness of the evaluation it is enough to show that each generalized
algebra operation can be evaluated in NC in the size of the input relation(s). For
select, project, and rename and join that is obvious. Negation can be done in NC
similarly to Theorem 5.2, that is, we precompute and test in parallel all O(nkZ)
mm-gapgraphs whether it satisfies the negated formula that is the disjunction
of all the mm-gapgraphs in the input relation. O

Unfortunately, there are no general techniques to use data complexity results
for Datalog and Stratified Datalog to bound the time required by a closed-form
evaluation algorithm. Even worse, for constraint query languages a finite data
complexity does not imply that there is a closed-form evaluation.

5.4 Optimization Problems

Many optimization methods are based on the idea of transforming programs
into semantically equivalent ones that however can be evaluated faster. Trans-
formation from a relational calculus query to an algebra discussed above is one
example. Other examples includes the propagation of selection and projection
operators and the ordering of join operators in both relational calculus and sim-
ilarly by magic set techniques in Datalog. Recent extensions of these techniques
for constraint queries can be found in [26, 27, 71, 97, 98, 106, 133, 144, 152].

The testing for equivalence during program transformations often is ac-
complished by testing for query containment first. Recall that each relational
calculus program ¢ defines a mapping from any input database d (which may
be represented finitely) to an output database ¢(d) (which may also be repre-
sented finitely). We say that a program ¢, is contained in program ¢,, denoted
¢1 C ¢o, if and only if for each input database d, all the tuples in ¢;(d) are
also in ¢o(d). The containment problem is: Given two programs ¢, ¢» decide
whether ¢1 - ¢2.

The containment problem is particularly important for a subclass of rela-
tional calculus queries that are formed without the connectives = and V and the
quantifier V. These queries are called Conjunctive Queries.

The containment problem is NP-complete for conjunctive queries without
constraints [34]. It remains NP-complete with only linear equality constraints [82].
The problem becomes IT5-complete with dense linear order constraints [151]. The
containment problem for conjunctive queries with quadratic equation constraints
over the reals is IT5-hard [82].

Besides query transformations, good indexing techniques on the generalized
tuples in the input database relations can also improve the efficiency of query
evaluation. A typical problem in query evaluation is 1-dimensional range search-
ing, which asks to return all tuples that have an z attribute with values between
two constants.

Range searching on regular relations can be implemented by B-trees and
and BT -trees [17, 46] which are good in minimizing the number of accesses to
secondary storage. Range searching requires O(logg N + K/B) secondary mem-
ory accesses in the worst case, where B is the number of tuples in a block, N
is the total number of tuples in the relation searched, and K is the number of
tuples returned.

The problem of range searching on generalized relations can be implemented
using grid-files, quad-trees, and R-trees (see the books [112, 129, 130] for a review
of these and other spatial data structures). The idea is to index each generalized
tuple by the interval that is the projection of the tuple onto the x axis. The data
structures mentioned above can easily accommodate insertions and deletions as
well as range searching. Unfortunately, they work well only with main-memory
storage but do not give worst-case guarantees on the number of accesses to
secondary storage. [84] gives a data structure and an algorithm with optimal
worst-case performance with regard to secondary storage accesses. The data
structure is static in the sense that it allows insertions but no deletions. [117,
116] also considers multi-dimensional searching, i.e. range searching when several
attributes are involved.

6 Expressive Power

Relational calculus queries without constraints (see Section 3.2) can be evaluated
using a quantifier elimination procedure over the first-order theory of equality if
in the input database each relation is a finite set of regular tuples. However, a
quantifier elimination procedure may be slow compared to the usual evaluation of
“safe” relational calculus queries (see [3, 149] for definition of safe). The efficiency
of “safe” queries is due primarily to the fact that in them the quantifiers can
be restricted to range over the set of constants occurring explicitly in the query,
called the active domain, denoted J 4, without a change in the output relation.

Using a version of Ehrenfeucht-Fraissé games, Aylamazyan, Gilula, Stol-
boushkin and Schwartz showed that in any relational calculus query (safe or
unsafe) it suffices to let quantifiers range over the active domain plus ¢ number
of additional constants from the full domain § where ¢ is the number of quanti-
fied variables [13]. This means that we can evaluate “unsafe” relational calculus
queries with almost the same efficiently as safe relational queries.

Let’s call active-domain semantics the mapping defined as in Section 3.2
but é replaced by §4. Hull and Su considered whether relational calculus queries
under the unrestricted and the active-domain semantics have the same expressive
power. They found that when the input database consists of relations with a
finite set of regular tuples, then the answer is yes, that is, for each unrestricted
query it is possible to find an active-domain query that gives always the same
output [72]. Paredaens, Van den Bussche and Van Gucht show the equivalence

when the input database consists of generalized relations with linear inequality
constraints over the reals [111].

Another interesting question is the relative expressibility of relational calcu-
lus queries over different types of generalized databases. The problem of finding a
convez hull and a voronoi diagram is expressible in relational calculus with poly-
nomial inequality constraints over the reals. These queries cannot be expressed
in relational calculus without generalized databases and constraints. That is be-
cause the latter queries are always generic or isomorphism preserving, that is, if
two input databases are isomorphic, then their outputs are also isomorphic [31].
Clearly, this property of genericity is lost when constraints are added. Necessary
modifications of the concept of genericity are investigated in [95, 109, 111].

Negative results are also interesting. The strongest negative result is that
relational calculus with polynomial constraints over the real numbers cannot
express even simple recursive queries like connectivity, transitive closure and
parity of a relation [18]. This results extends earlier work on linear inequality
constraints [6, 68, 94], and on rational numbers and order constraints [65, 137].

Finally, another negative result from [65] is that valid sentences of the
first-order predicate calculus when relations range over finitely representable
databases is undecidable. This case is similar to the finite relations case, that is,
validity here is also co-r.e. and not in r.e.

7 Further Extensions

There are a number of recent extensions of the constraint data model. Among
these are the addition of (1) integrity constraints, (2) aggregation operators,
(3) indefinite information (4) complex objects, and (5) spatial and topological
databases.

Integrity constraints play an important part in regular relational database
design and have been investigated in great detail (see [143]). Dependency the-
ory among integrity constraints for generalized databases is however a fairly
open area, which was investigated only recently [15, 103]. [15] defines constraint
generating dependencies and studies the computational complexity of their im-
plication and consistency problems. Let emp(name, salary,boss) be a relation
storing information about employees in a company. An example of a simple case
of constraint generating dependency is

Vn1V31Vb1Vn2V32Vb2((emp(m, S1, b1) A emp(ng, S92, b2) ANb = TLQ) — (81 < 82))

meaning that bosses always earn more than their employees. Even this is more
general than typical integrity constraints on relational databases because it as-
sumes that the domain of the second attribute is an interpreted domain with

order. (The usual assumption is an uninterpreted domain with no constraint
relations defined on it.)

Aggregation operators [87] have an important use in practical database
query languages such as SQL. It is a challenging problem to define meaningful
and efficiently evaluable aggregation operators on generalized databases. Maxi-
mum, minimum and area were proposed as aggregation operators in [95]. More
recent work on this problem appears in [40, 37, 67].

Indefinite information represented by null values is also a practical con-
cern. Null values represent either unknown or unexisting values. Evaluation of
constraint queries with null values is considered in [90, 91, 134].

Complex values are important for the convenient representation of many
kind of real-life data [3]. Values such as Booleans, strings, integer, real or ratio-
nal numbers are all scalar values. Complex values are built from scalar values
using in a nested way set and tuple constructors. It is a challenge to define con-
straints and find good constraint solving algorithms for complex objects. The
introduction of set constraints and a quantifier elimination algorithm on set
variables in [134, 122] can be considered as a preliminary step in that direction.
In [134] complex values are further enhanced by object identifiers, leading to
an interesting combination of constraint and object-oriented programming. An-
other proposal to combine constraints and objects is presented in [24]. Nested
databases with dense order constraints are considered in [66)].

Recent work on spatial and topological databases that extend the constraint
data model can be found in [93, 108, 126]. In [108] constraint queries where
variables range over regions instead of points are considered. In [126] constraint
database and knowledge-base change operators, including revision, update, and
arbitration are described. A survey on spatial databases can be found in [110].

8 Prototype Systems

It is encouraging to see that some prototype constraint database systems are just
starting to appear. The constraint database system DISCO (short for Datalog
with integer and set constraints) [25] implements two data types: integers and
(finite and cofinite) sets of integers. In DISCO the following constraint relations
are allowed: (1) between integers variables and constants: =, #, <,<,>,> and
gap-order constraint <j (see Section 5.2), (2) between set variables and con-
stants: =, C, and (3) between integer constants ¢ and set variables or constants
X:c € X and ¢ ¢ X. Seminaive evaluation and projection and selection pushing
is implemented in DISCO. The DISCO system was used recently for example in
genomic database applications [127].

An implementation of Datalog with periodicity constraints was described re-

cently in [144] . Also, a compile-time constraint-solving method is implemented
within the DeCoR database system in [63]. The C® constraint object-oriented
system is also being implemented recently [28]. These prototype systems are
important feasibility demonstrations for the theoretical ideas about constraint
databases. They also may give interesting feedback for further theoretical study.

9 Open Problems

There are obviously many research topics that need further consideration. The
list below collects only some of the most interesting and it seems difficult open
problems concerning constraint query languages and generalized databases.

(1) What is the relative expressive power of relational calculus queries over
generalized databases with polynomial inequality constraints over the reals under
the unrestricted vs. the active-domain semantics? This problem was studied
in [109)].

(2) What is the size of the generalized database output for Datalog queries
with integer order constraints, i.e. in Th(Z, <)? This problem was studied in [121].
Note that without constraints, this problem reduces in an obvious way to the
data complexity problem. A similar reduction however still needs to be shown
when constraints are present.

(3) What is the data complexity of relational calculus with only linear in-
equality constraints, i.e., in Th(R,+,<)? For k-bounded queries, that is, queries
where the number of occurrences of the addition symbol in each constraint is
bounded, it was shown that the problem is in ACy in [65]. Is the data complexity
still in ACy without this restriction?

(4) Ajtai and Gurevich [9] showed that the queries that are expressible in
both Datalog and relational calculus over regular databases are those that are
bounded. Here bounded means that the number of iterations needed in the naive
evaluation of the query is always a constant for any input database [3, 79]. Is
this result true also if we allow generalized databases?

(5) What is the upper bound for the computational complexity of testing
containment, of conjunctive queries with quadratic equation constraints? The
lower bound of IT}-hard is shown in [82].

(6) Can we design a data structure that implements insertion, deletion,
and range searches with optimal worst-case access to secondary storage? This
problem is investigated in [84, 117, 116].

Acknowledgement: I thank the editors, Leonid Libkin and Bernhard
Thalheim, for their encouragement in writing this survey. I also thank the ref-
erees for numerous helpful comments.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. S. Abiteboul, C. Beeri. On the Power of Languages for the Manipulation of
Complex Objects. INRIA Research Report 846, 1988.

S. Abiteboul and P. Kanellakis. Database Theory Column: Query Languages
for Complex Object Databases. SIGACT News, 21, pp. 9-18, 1990.

S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-
Wesley, 1994.

S. Abiteboul and V. Vianu. Datalog Extensions for Database Queries and
Updates. J. Comput. System Sci., 43 (1991), pp. 62-124.

A. Aiken. Set Constraints: Results, Applications and Future Directions.
Proc. 2nd Workshop on Principles and Practice of Constraint Programming,
171-179, 1994.

F. Afrati, S.S. Cosmadakis, S. Grumbach, G.M. Kuper. Linear vs. Poly-
nomial Constraints in Database Query Languages. Proc. 2nd Workshop on
Principles and Practice of Constraint Programming, 152-160, 1994.

A.V. Aho, J.D. Ullman. Universality of Data Retrieval Languages. Proc. 6th
ACM Symp. on Principles of Programming Languages, 110-117, 1979.

H. Ait-Kaci, A. Podelski. Towards a Meaning of LIFE. Journal of Logic
Programming, 16, 195-234,1993.

M. Ajtai, Y. Gurevich. Datalog vs. First Order. Journal of Computer and
Systems Sciences, 1994.

K.R. Apt. Logic Programming. Handbook of Theoretical Computer Science,
Vol. B, chapter 10, (J. van Leeuwen editor), North-Holland, 1990.

K.R. Apt, M.H. van Emden. Contributions to the Theory of Logic Program-
ming. J. ACM, Vol. 29 (3), 841-862, 1982.

K.R. Apt, H.A. Blair, A. Walker. Towards a Theory of Declarative Knowl-
edge, in: J. Minker, ed., Foundation of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann, 1988.

A K. Aylamazyan, M.M. Gilula, A.P. Stolboushkin, G.F. Schwartz. Reduc-
tion of the Relational Model with Infinite Domain to the Case of Finite
Domains (in Russian). Proc. USSR Acad. of Science (Doklady), 286(2):308—
311, 1986.

D.A. Barrington, N. Immerman, H. Straubing. On Uniformity within NC*.
Journal of Computer and System Sciences, 41:274-306,1990.

M. Baudinet, J. Chomicki, P. Wolper. Constraint-Generating Dependencies.
Proc. 5th Int. Conf. on Database Theory, 322-337, 1995.

M. Baudinet, M. Niezette, P. Wolper. On the Representation of Infinite
Temporal Data and Queries. Proc. 10th ACM Symp. on Principles of
Database Systems, 280-290, 1991.

R. Bayer, E. McCreight. Organization of Large Ordered Indexes. Acta In-
formatica, 1:173-189, 1972.

M. Benedikt, G. Dong, L. Libkin, L. Wong. Relational Expressive Power
of Constraint Query Languages. Proc. 15h ACM Symp. on Principles of
Database Systems, 5-16, 1996.

M. Ben-Or, D. Kozen, J. Reif. The Complexity of Elementary Algebra and
Geometry. Journal of Computer and System Sciences, 32:251-264, 1986.
C. Bell, A. Nerode, R. Ng, V.S. Subrahmanian. Implementing Deductive
Databases by Linear Programming. Proc. 11h ACM Symp. on Principles of
Database Systems, 283-292, 1992.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43

. L. Berman. Precise Bounds for Presburger Arithmetic and the Reals with
Addition. Proc. 18th IEEE FOCS, pp. 95-99, 1977.

AH. Borning. The Programming Language Aspects of ThingLab, A
Constraint-Oriented Simulation Laboratory. ACM TOPLAS 3:4:353-387,

1981.

A. Brodsky, J. Jaffar, M.J. Maher. Toward Practical Constraint Databases.
Proc. 19th VLDB, 322-331, 1993.

A. Brodsky, Y. Kornatzky. The Lyric Language: Querying Constraint Ob-
jects. Proc. SIGMOD, 35-46, 1995.

J. Byon, P.Z. Revesz. DISCO: A Constraint Database System with Sets.
Proc. Workshop on Constraint Databases and Applications, Springer-Verlag
LNCS 1034, 68-83, 1995.

A. Brodsky, C. Lassez, J.L. Lassez, M.J. Maher. Separability of Polyhedra
for Optimal Filtering of Spatial and Constraint Data. Proc. 14th Symp. on
Principles of Database Systems, 1995.

A. Brodsky, Y. Sagiv. Inference of Inequality Constraints in Logic Programs.
Proc. 10th ACM Symp. on Principles of Database Systems, 227-241, 1991.

A. Brodsky and V. Segal. The C® Constraint Object-Oriented Database
System: An Overview, 134-159, In: [61].

A R. Bruss, A.R. Meyer. On Time-Space Classes and their Relation to the
Theory of Real Addition. Proc. 10th ACM STOC, pp. 233-239, 1978.

S.R. Buss. The Formula Value Problem is in ALOGTIME. Proc. 19th ACM
STOC, pp. 123-131, 1987.

A K. Chandra, D. Harel. Computable Queries for Relational Data Bases.
Journal of Computer and System Sciences, vol. 21, 156-178, 1980.

A K. Chandra, D. Harel. Structure and Complexity of Relational Queries.
Journal of Computer and System Sciences, vol. 25, 99-128, 1982.

A K. Chandra, D. Harel. Horn Clause Queries and Generalizations. Journal
of Logic Programming, vol. 2, 1-15, 1985.

A K. Chandra, P.M. Merlin. Optimal Implementation of Conjunctive
Queries in Relational Databases. Proc. ACM STOC, 77-90, 1977.

J. Chomicki. Polynomial Time Query Processing in Temporal Deductive
Databases. Proc. 9th ACM Symp. on Principles of Database Systems, 379—
391, 1990.

J. Chomicki. Functional Deductive Databases: Query Processing in the Pres-
ence of Limited Function Symbols, Ph.D. Thesis. Rutgers University, 1990.

J. Chomicki, D. Goldin, G. Kuper. Variable Independence and Aggregation
Closure. Proc. 15th ACM Symp. on Principles of Database Systems, 4048,
1996.

J. Chomicki, T. Imielinski. Relational Specifications of Infinite Query An-
swers. Proc. ACM SIGMOD, 174-183, 1989.

J. Chomicki, T. Imielinski. Finite Representation of Infinite Query Answers.
ACM Transactions of Database Systems, 181-223, vol. 18, no. 2, 1993.

J. Chomicki, G. Kuper. Measuring Infinite Relations. Proc. 14th ACM
Symp. on Principles of Database Systems, 78-85, 1995.

E.F. Codd. A Relational Model for Large Shared Data Banks. CACM,
13:6:377-387, 1970.

J. Cohen. Constraint Logic Programming Languages. CACM, 33:7:52—68,

1990.

. A. Colmerauer. An Introduction to Prolog III. CACM, 33:7:69-90, 1990.

44

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

A. Colmerauer, H. Kanoui, and M. Van Caneghem. Prolog, Bases
Th’eoriques et D’evelopements Actuels. Techniques et Sciences Informa-
tiques, 2:4:271-311, 1983.

G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition. Proc. 2nd GI conference on Automata Theory and
Languages, LNCS 33, pp. 512-532, Springer-Verlag, 1975.

D. Comer. The Ubiquitous B-Tree. Computing Surveys, 11:2:121-137, 1979.
J. Cox, K. McAloon. Decision Procedures for Constraint Based Extensions
of Datalog. In: Constraint Logic Programming, MIT Press, 1993.

J. Cox, K. McAloon, C. Tretkoff. Computational Complexity and Constraint
Logic Programming. Annals of Math. and AI, 5:163-190, 1992.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F.
Berthier. The Constraint Logic Programming Language CHIP. Proc. Fifth
Generation Computer Systems, Tokyo Japan, 1988.

K. Doets, From Logic to Logic Programming. MIT PRess, 1994.

A. Ehrenfeucht. An application of games to the completeness problem for-
malized theories. Fund. Math, 49, 1961.

M.H. van Emden, R.A. Kowalski. The Semantics of Predicate Logic as a
Programming Language. J. ACM, Vol. 23 (4), 733-742, 1976.

H.B. Enderton. A Mathematical Introduction to Logic. Academic Press,
1972.

J. Ferrante, J.R. Geiser. An Efficient Decision Procedure for the Theory of
Rational Order. Theoretical Computer Science, 4:227-233, 1977.

J. Ferrante, C. Rackoff. A Decision Procedure for the First Order Theory
of Real Addition with Order. SIAM J. Comp, 4:1:69-76, 1975.

J. Ferrante, C.W. Rackoff. The Computational Complezity of Logical Theo-
ries, Springer-Verlag (No. 718), 1979.

M.J. Fischer, M.O. Rabin. Super-Exponential Complexity of Presburger
Arithmetic. STAM-AMS Proc. volume VII, American Mathematical Society,
1974,

J-B.J. Fourier. Reported in: Analyse des travaux de ’Acadamie Royale
des Sciences, pendant Pannee 1824, Partie mathematique, Histoire de
I’Academie Royale des Sciences de 'Institut de France, Vol. 7, xlvii-lv, 1827.
(Partial English translation in: D.A. Kohler. Translation of a Report by
Fourier on his work on Linear Inequalities. Opsearch, Vol. 10, 38-42, 1973.)
R. Fraissé. Sur les classifications des systémes de relations. Publ. Sci. Univ
Alger, T:1, 1954.

E. Freuder. Synthesizing Constraint Expressions. CACM, 21:11, 1978.

V. Gaede, A. Brodsky, O. Giinther, D. Srivastava, V. Vianu, M. Wallace,
(Eds.), Constraint Databases and Applications, Proc. Second Int. Work-
shop on Constraint Database Systems, Delphi, Greece, January 1997, and
Workshop on Constraints and Databases, Cambridge, MA August 1996,
Springer-Verlag LNCS 1191.

K. Godel. Uber formal unentscheidbare Sétze der Principia Mathematica
und verwandter Systeme I. Monatshefte fir Mathematik und Physik. vol.
38, 173-198, 1931.

R. Gross, R Marti. Compile-time Constraint Solving in a Constraint
Database System. Proc. Post-ILPS’9} Workshop on Constraints and
Databases, 13-25, 1994.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

Y. Gurevich, S. Shelah. Fixed-Point Extensions of First-Order Logic. Annals
of Pure and Applied Logic, 32, 265280, 1986.

S. Grumbach, J Su. Finitely Representable Databases. Proc. 18th ACM
Symp. on Principles of Database Systems, 289-300, 1994.

S. Grumbach, J Su. Dense-Order Counstraint Databases. Proc. 14th ACM
Symp. on Principles of Database Systems, 66-77, 1995.

S. Grumbach, J Su. Towards Practical Constraint Databases. Proc. 15h
ACM Symp. on Principles of Database Systems, 28-39, 1996.

S. Grumbach, J Su, C. Tollu. Linear Constraint Databases. Proc. LCC,
1994,

M.R. Hansen, B.S. Hansen, P. Lucas, P. van Emde Boas. Integrating Rela-
tional Databases and Constraint Languages. Computer Languages, 14:2:63—
82, 1989.

N. Heintze, J. Jaffar. Set Constraints and Set-Based Analysis. Proc. 2nd
Workshop on Principles and Practice of Constraint Programming, 1-17,
1994.

R. Helm, K. Marriott, M. Odersky. Constraint-based Query Optimization
for Spatial Databases. Proc. 10th ACM Symp. on Principles of Database
Systems, 181-191, 1991.

R. Hull, J. Su. Domain Independence and the Relational Calculus. Acta
Informatica, 31, 513-524, 1994.

N. Immerman. Relational Queries Computable in Polynomial Time. Infor-
mation and Control, 68:86-104, 1986.

J. Jaffar, J.L. Lassez. Constraint Logic Programming. Proc. 14th ACM
POPL, 111-119, 1987.

J. Jaffar, M.J. Maher. Constraint Logic Programming: A Survey. J.Logic
Programming, 19 & 20, 503-581, 1994.

J. Jaffar, S. Michaylov, P.J. Stuckey, R.H. Yap. The CLP(R) Language and
System. ACM Transactions on Programming Languages and Systems, 14:3,
339-395, 1992.

D.S. Johnson. A Catalogue of Complexity Classes. Handbook of Theoreti-
cal Computer Science, Vol. A, chapter 2, (J. van Leeuwen editor), North-
Holland, 1990.

F. Kabanza, J-M. Stevenne, P. Wolper. Handling Infinite Temporal Data.
Proc. 9th ACM Symp. on Principles of Database Systems, 392-403, 1990.
Final version to appear in Journal of Computer and System Sciences.

P.C. Kanellakis. Elements of Relational Database Theory. Handbook of The-
oretical Computer Science, Vol. B, chapter 17, (J. van Leeuwen editor),
North-Holland, 1990.

P.C. Kanellakis. Tutorial: Constraint Programming and Database Lan-
guages. Proc. 14th ACM Symp. on Principles of Database Systems, 46-53,
1995.

P.C. Kanellakis, D.Q. Goldin. Constraint Programming and Database
Query Languages. Proc. 2nd TACS, 1994.

P.C. Kanellakis, G.M. Kuper, P. Z. Revesz. Constraint Query Languages.
Journal of Computer and System Sciences, vol. 51, no. 1, pp. 26-52, Au-
gust 1995. (Preliminary version in Proc. 9th ACM Symp. on Principles of
Database Systems, 299-313, 1990.)

P.C. Kanellakis, J.L. Lassez, V.J. Saraswat, eds., Proc. Workshop on the
Principles and Practice of Constraint Programming, 1993.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, J. S. Vitter. Indexing
for Data Models with Constraints and Classes. Proc. 12th ACM Symp. on
Principles of Database Systems, 233-243, 1993.

L.G. Khachian. A Polynomial Algorithm in Linear Programming. Soviet
Math. Dokl., 20(1), 191-194, 1979.

M. Kifer. On Safety, Domain Independence, and Capturability of Database
Queries. Proc. International Conference on Databases and Knowledge
Bases, Jerusalem Israel, 1988.

A. Klug. Equivalence of Relational Algebra and Relational Calculus Query
Languages having Aggregate Functions. JACM, 29:3:699-717, 1982.

A. Klug. On Conjunctive Queries Containing Inequalities. JACM, 35:1:146—
160, 1988.

P. Kolaitis, C.H. Papadimitriou. Why not Negation by Fixpoint? Proc. 7th
ACM Symp. on Principles of Database Systems, 231-239, 1988.

M. Koubarakis. Representing and Querying in Temporal Databases: the
Power of Temporal Constraints. Proc. Ninth International Conference on
Data Engineering, 1993.

M. Koubarakis. Complexity Results for First-Order Theories of Temporal
Constraints. Int. Conf. on Knowledge Representation and Reasoning, 1994.
D. Kozen, C. Yap. Algebraic Cell Decomposition in NC. Proc. 26th IEEE
FOCS, 515-521, 1985.

B. Kuipers, J. Paredaens, Jan Van den Bussche. On Topological Elementary
Equivalence of Spatial Databases. Proc. 6th Int. Conf. on Database Theory,
432-446, Springer-Verlag LNCS 1186, 1997.

G.M. Kuper. On the Expressive Power of the Relational Calculus with
Arithmetic Constraints. Proc. 3rd Int. Conf. on Database Theory, 202-211,
1990.

G.M. Kuper. Aggregation in Constraint Databases. Proc. Workshop on the
Principles and Practice of Constraint Programming, 176-183, 1993.

W. Leler. Constraint Programming Languages. Addison Wesley, 1987.

A. Levy, L.S. Mumick, Y. Sagiv, O. Shmueli. Equivalence, Query Reacha-
bility and Satisfiability in Datalog Extensions. Proc. 12h ACM Symp. on
Principles of Database Systems, 109-122, 1993.

A. Levy, Y. Sagiv. Constraints and Redundancy in Datalog. Proc. 11h ACM
Symp. on Principles of Database Systems, 67-80, 1992.

C. Langford. Some Theorems on Deducibility. Annals of Mathematics. vol.
28, 16-40, 459471, 1927.

L. Libkin, L. Wong. New Techniques for Studying Set Languages, Bag Lan-
guages and Aggregate Functions. Proc. 13h ACM Symp. on Principles of
Database Systems, 155-166, 1994.

J.W. Lloyd. Foundations of Logic Programming. Spring, Berlin, 2nd ed.,
1987

A K. Mackworth. Consistency in Networks of Relations. A, 8:1, 1977.

M. J. Maher and D. Srivastava. Chasing Constraint-Tuple Generating De-
pendencies. Proc. 15h ACM Symp. on Principles of Database Systems, 128—
138, 1996.

Y. Matiyasevich. Enumerable Sets are Diophantine. Doklady Akademii Nauk
SSR. vol. 191, 279-282, 1970.

U. Montanari. Networks of Constraints: Fundamental Properties and Ap-
plication to Picture Processing. Information Science, 7, 1974.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

I. S. Mumick, S. J. Finkelstein, H. Pirahesh, R. Ramakrishnan. Magic Con-
ditions. Proc. 9th ACM Symp. on Principles of Database Systems, 314-330,
1990.

1.S. Mumick, O. Shmueli. Universal Finiteness and Satisfiability. Proc. 13h
ACM Symp. on Principles of Database Systems, 190-200, 1994.

C.H. Papadimitriou, D. Suciu, V. Vianu. Topological Queries in Spatial
Databases. Proc. 15h ACM Symp. on Principles of Database Systems, 81—
92, 1996.

J. Paredaens, J.V.D. Bussche, D.V. Gucht. Towards A Theory of Spatial
Database Queries. Proc. 18h ACM Symp. on Principles of Database Sys-
tems, 279-288, 1994.

J. Paredaens. Spatial Databases: The Final Frontier. Proc. 5th Int. Conf.
on Database Theory, Springer-Verlag LNCS 893, 1995.

J. Paredaens, J.V.D. Bussche, D.V. Gucht. First-Order Queries on Finite
Structures over the Reals. Proc. LICS, 1995.

F.P. Preparata, M.I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

M. Presburger. Uber die Vollstindigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt. Comptes Rendus, I. Congres des Math. des Pays Slaves, Warsaw,
192-201, 395, 1929.

R. Ramakrishnan. Magic Templates: A Spellbinding Approach to Logic Pro-
grams. Proc. 5th International Conference on Logic Programming, 141-159,
1988.

R. Ramakrishnan, D. Srivastava, S. Sudarshan. CORAL: Control, Relations
and Logic. Proc. VLDB, 1992.

R. Ramaswamy. Efficient Indexing for Constraint and Temporal Databases.
Proc. 6th Int. Conf. on Database Theory, 419-431, Springer-Verlag LNCS
1186, 1997.

R. Ramaswamy, S. Subramanian. Path Caching: A Technique for Optimal
External Searching Proc. 18h ACM Symp. on Principles of Database Sys-
tems, 25-35, 1994.

C.R. Reddy, D.W. Loveland. Presburger Arithmetic with Bounded Quanti-
fier Alternation. Proc. ACM Symp. on Theory of Comp., 320-325, 1978.

J. Renegar. On the Computational Complexity and Geometry of the First-
order Theory of the Reals: Parts I-1I1. Journal of Symbolic Computation,
13:255-352, 1992.

P. Z. Revesz. Constraint Query Languages. Ph.D. Thesis. Brown University,
1991.

P. Z. Revesz. A Closed Form Evaluation for Datalog Queries with Integer
(Gap)-Order Counstraints, Theoretical Computer Science, vol. 116, no. 1,
117-149, 1993. (Preliminary version in Proc. Third International Conference
on Database Theory, Springer-Verlag LNCS 470, 187-201, 1990.)

P. Z. Revesz. Datalog Queries of Set Constraint Databases. Proc. Fifth Inter-
national Conference on Database Theory, Springer-Verlag LNCS 893, 425—
438, 1995.

P. Z. Revesz. Safe Stratified Datalog with Integer Order Programs. Proc.
First International Conference on Principles and Practice of Constraint
Programming, Springer-Verlag LNCS 976, 154-169, 1995.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

P. Z. Revesz. Safe Query Languages for Constraint Databases. ACM Trans-
actions on Database Systems, March, 1998, to appear.

P. Z. Revesz. The Evaluation and the Computational Complexity of Datalog
Queries of Boolean Constraint Databases, International Journal of Algebra
and Computation, to appear.

P. Z. Revesz. Model-Theoretic Minimal Change Operators for Constraint
Databases. Proc. 6th Int. Conf. on Database Theory, 447-460, Springer-
Verlag LNCS 1186, 1997.

P. Z. Revesz. Refining Restriction Enzyme Genome Maps. Constraints, vol.
2, no. 3-4, pp. 361-375, December 1997. (Preliminary version in [61].)

J. Robinson. Definability and Decision Problems in Arithmetic. Journal of
Symbolic Logic, Vol. 14, pp. 98-114, 1949.

H. Samet. Applications of Spatial Data Structures: Computer Graphics, Im-
age Processing, and GIS. Addison-Wesley, Reading MA, 1990.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, Reading MA, 1990.

V.A. Saraswat. Concurrent Constraint Programming Languages. Ph.D. the-
sis, Carnegie Mellon University, 1989.

D. Srivastava. Subsumption and Indexing in Constraint Query Languages
with Linear Arithmetic Constraints. Proc. 2nd International Symposium on
Artificial Intelligence and Mathematics, 1992.

D. Srivastava, R. Ramakrishnan. Pushing Constraint Selections. Proc. 11h
ACM Symp. on Principles of Database Systems, 301-315, 1992.

D. Srivastava, R. Ramakrishnan, P.Z. Revesz. Constraint Objects. Proc. 2nd
Workshop on Principles and Practice of Constraint Programming, Springer-
Verlag LNCS 874, 274-284, 1994.

G.L. Steele. The Definition and Implementation of a Computer Program-
ming Language Based on Constraints. Ph.D. Thesis, MIT, AI-TR 595, 1980.
A. Stolboushkin and M.A. Taitslin. Finite Queries do not have Effective
Syntax. Proc. 14th ACM Symp. on Principles of Database Systems, 277—
285, 1995.

A. Stolboushkin and M.A. Taitslin. Linear vs. Order Constraint Queries
over Rational Databases. Proc. 15h ACM Symp. on Principles of Database
Systems, 17-27, 1996.

P.J. Stuckey, S. Sudarshan. Compiling Query Constraints. Proc. 18h ACM
Symp. on Principles of Database Systems, 56—67, 1994.

1.E. Sutherland. SKETCHPAD: A Man-Machine Graphical Communication
System. Spartan Books, 1963.

B.A. Trakhtenbrot. The Impossibility of an Algorithm for the Decision Prob-
lem on Finite Models. (In Russian) Doklady Akademii Nauk SSR, 70, 569—
572, 1950.

A. Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, Berkeley, California, 1951.

A. Tarski, F.B. Thompson. Some General Properties of Cylindrical Alge-
bras. Bulletin of the AMS, 58:65, 1952.

B. Thalheim. Dependencies in Relational Databases. Teubner Verlagsge-
sellschaft, Stuttgart and Leipzig, 1991.

D. Toman. Top-Down Beats Bottom-Up for Constraint Based Extensions
of Datalog. Proc. ILPS, 98-112, 1995.

145

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

D. Toman. Foundations of Temporal Query Languages., Ph.D. Thesis.
Kansas State University, 1995.

D. Toman. Point vs. Interval-Based Query Languages for Temporal
Databases. Proc. 15h ACM Symp. on Principles of Database Systems, 58—
67, 1996.

D. Toman, J. Chomicki, D.S. Rogers. Datalog with Integer Periodicity Con-
straints. Proc. ILPS, 1994.

S. Tsur and C. Zaniolo. LDL: A Logic-Based Data-Language. Proc. VLDB,
pp 33-41, 1986.

J.D. Ullman. Principles of Database and Knowledge-Base Systems. Com-
puter Science Press, vol. 1&2, 1989.

R. van den Dries. Remarks on Tarski’s problem concerning (R, +, *, exp).
In Logic Colloquium, North-Holland, 1982. Elsevier.

R. van der Meyden. The Complexity of Querying Indefinite Data about Lin-
early Ordered Domains. Proc. 11th ACM Symp. on Principles of Database
Systems, 331-346, 1992.

A. Van Gelder. Deriving Constraints among Argument Sizes in Logic Pro-
grams. Proc. 9th ACM Symp. on Principles of Database Systems, 47-60,
1990.

P. Van Hentenryck. Constraint Logic Programming, The Knowledge Engi-
neering Review, 6, 165-180,1989.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, 1989.

M.Y. Vardi. The Complexity of Relational Query Languages. Proc. 14th
ACM STOC, 137-146, 1982.

P. Voda. Types of Trilogy. Proc. 5th International Conference on Logic Pro-
gramming, 580-589, 1988.

H.P. Williams. Fourier-Motzkin Elimination Extension to Integer Program-
ming Problems. In Journal of Combinatorial Theory (A). vol. 21, 118-123,
1976.

This article was processed using the BTEX macro package with LLNCS style

