
CDB-PV: A Constraint Database-Based Program
Verifier?

Scot Anderson1 and Peter Revesz2

1 Southern Adventist University, Collegedale, TN 37315, USA
scot@southern.edu

2 University of Nebraska-Lincoln, NE 68588, USA
revesz@cse.unl.edu

Abstract. In this paper we present a new system called CDB-PV that uses con-
straint databases (CDBs) for program verification (PV). The CDB-PV system
was implemented in C++ and tested on several sample programs that are difficult
to verify using other methods. The CDB-PV system also runs efficiently for the
sample programs. The CDB-PV approach is similar to abstract interpretation but
it allows non-convex approximations.

1 Introduction

Programs increasingly control many aspects of our daily lives such as air traffic control
(ATC) systems. Failures such as the computer controlled Airbus A320 crash on June
26, 1988 [1] show that programs need thorough debugging and verification before risk-
ing lives. We propose a new constraint database approach to program debugging and
verification.

Verifying the correctness of programs is undecidable in general. That is easy to
see by looking at the well-known halting problem, which is the problem of deciding
whether a given program with a given input will terminate. Since the halting problem
is undecidable in general and termination of programs is usually considered one of the
conditions of correctness, it is clear that program verification is also undecidable in
general.

However, let us take a deeper look at program verification and identify what can be
done. We start with the following definitions.

Definition 1 (Program State). A program state is a pair consisting of the values as-
signed to the program variables and the specific location of the program code where
such an assignment occurs during an execution of the program.

We call the meaning of the program the semantics of the program. In this paper we
are concerned with the following semantics, called the collecting semantics3.

? This research was supported in part by a NSF grant and a NASA Space and EPSCoR grant.
3 see Cousot lecture notes: http://www.cs.wisc.edu/∼cs704-1/LectureNotes/
9.AbstractInterpretation.txt

http://www.cs.wisc.edu/~cs704-1/LectureNotes/9.AbstractInterpretation.txt
http://www.cs.wisc.edu/~cs704-1/LectureNotes/9.AbstractInterpretation.txt

Definition 2. Define the collecting semantics as a set of all possible program states
that may occur for some execution and some input.

A key idea in program verification is that the collecting semantics can be approxi-
mated using a terminating program that takes as input the program and some approxi-
mation parameters and gives either an under-approximation or an over-approximation,
which we define as follows.

Definition 3 (Over-Approximation). Let S be the semantics of a program. We say that
any P l where S ⊆ P l is an over-approximation.

Definition 4 (Under-Approximation). Let S be the semantics of a program. We say
that any Pl where Pl ⊆ S is an under-approximation.

The approximation is often useful to check certain concerns about the program.
These concerns are expressed as some conditions called error states that need to be
avoided by the program to be considered correct.

If the over-approximation does not contain the error states, then the program is
considered correct. However, error states contained in an over-approximation may be
spurious. Hence they do not prove the program incorrect.

The spurious error states may be avoided by tightening the over-approximation.
If repeated tightening fails to eliminate the error states, then we may suspect that the
program is incorrect. By using an under-approximation, we can often prove that the
program is incorrect, i.e., falsify it. If an under-approximation of the semantics contains
some error state, then the program is incorrect. Falsification identifies some of the errors
in the program, hence it is a useful aid in debugging the program.

Our program verification approach falls into the category of Abstract Interpreta-
tion. The abstract interpretation technique provides the framework for extracting ab-
stract collecting-semantics of a program [2,3,4,5,6,7,8]. The abstraction usually over-
approximates the values of the program variables in a convex state space that models all
possible program states and makes verification of correctness possible. Many different
abstractions and combinations of abstractions evolved over the years and hence no suc-
cinct definition of abstract interpretation exists4. Rather, abstract interpretation gathers
information about programs in order to provide sound answers to questions about their
run-time behaviors. These semantics can then be used to design automatic program an-
alyzers [5]. Abstract interpretation is often understood in terms of abstract-evaluation
using an abstract interpreter on an abstraction of the program.

Definition 5 (Semantic operator). Let P be a program written in a language L. Define
the semantic operator S as a mapping from L to the semantic domain of L denoted D.

S : L→ D (1)

We usually write the semantics of P as S[P] ∈ D.

Definition 2 gives an example representation for the semantic domain.

4 see www.di.ens.fr/∼cousot/AI/ for Cousot’s overview of Abstract Interpretation

www.di.ens.fr/~cousot/AI/

Definition 6 (Abstraction operator). The abstraction of a program P written in a
language L maps the semantics of P in D to an abstract domain D]

α : D → D] (2)

The purpose of the abstract domain it to provide a decidable domain of that can be
used to evaluate the program.

Definition 7 (Abstract Evaluation). Given a program P and an abstraction operator
α, α[S[P]] is an abstract evaluation if it halts with an over-approximation of P .

In the constraint database approach we perform abstract evaluation by creating a
Datalog query for a constraint database and execute the query using constraint database
approximation techniques.

The constraint database approach to program verification is a widely applicable
method similar to abstract interpretation. However, while abstract interpretation meth-
ods usually rely on widening operators that yield convex approximations, the constraint
database approach can yield non-convex approximations. This extra precision still al-
lows an efficient calculation of approximate program semantics, which are crucial to
the problem of program verification.

The remainder of the paper is organized as follows: Section 2 gives a review of con-
straint database approximation techniques. Section 3 describes the constraint database
approach to verifying programs. Section 4 gives experimental results for three sample
programs and uses them as a comparison to other techniques. Section 5 discusses the
running time of the method and gives the running time for verifying each of the sample
programs. Finally, Section 6 gives conclusions and future work.

2 Review of Constraint Database Approximation

The constraint logic programming languages proposed by Jaffar and Lassez [9], whose
work led to CLP(R) [10], by Colmerauer [11] within Prolog III, and by Dincbas et
al. [12] within CHIP, were Turing-complete. Kanellakis, Kuper, and Revesz [13] con-
sidered those to be impractical for use in database systems and proposed less expressive
constraint query languages that have nice properties in terms of guaranteed and efficient
evaluations. Many researchers advocated extensions of those languages while trying to
keep termination guaranteed. For example, the least fixed point semantics of Datalog
(Prolog without function symbols and negation) with integer gap-order constraint pro-
grams can always be evaluated in a finite constraint database representation [14].5

Definition 8 (Addition Constraints). Addition constraints [15] have the form:

± x± y θ b or ± x θ b (3)

where x and y are integer variables and b is an integer constant called a bound, and θ
is either ≥ or >.

5 A gap-order is a constraint of the form x− y ≥ c or ±x ≥ c where x and y are variables and
c is a non-negative integer constant.

By allowing addition constraints, it is easy to express a Datalog program that will
not terminate using a standard bottom-up evaluation [15]. Consider the following Dat-
alog program:

D(x, y, z) :— x− y ≤ 0, − x + y ≤ 0, z ≤ 0, − z ≤ 0.
D(x, y, z) :— D(x′, y, z′), x− x′ ≤ 1, − x + x′ ≤ −1,

z − z′ ≤ 1, − z + z′ ≤ −1.
(4)

This expresses that the Difference of x and y is z. Further, based on Equation (4) we
can also express a Multiplication relation as follows:

M(x, y, z) :— x ≤ 0, − x ≤ 0, y ≤ 0, − y ≤ 0, z ≤ 0.
M(x, y, z) :— M(x′, y, z′), D(z, z′, y), x− x′ ≤ 1, − x + x′ ≤ −1
M(x, y, z) :— M(x, y′, z′), D(z, z′, x), y − y′ ≤ 1, − y + y′ ≤ −1

(5)

Using Equations (4) and (5) we can express Diophantine equations which by [16] is
Turing complete. Hence, in the limit as l → −∞, this method is Turing complete and
can express any program. In this paper we limit ourselves to verifying programs with
integer variables.

The D and M recursive programs must be evaluated until no new facts are discov-
ered. This leads to the well known least fixed point definition.

Theorem 1 (Tarski’s fixed point Theorem [17]). Let (L,⊆) be any complete lattice.
Suppose F : L → L is monotone increasing. Then the set of all fixed points of f is a
complete lattice with respect to ⊆.

Let F be the set of facts discovered after evaluation of the Datalog rule given in
Equation (4). Repeated application of Dn(F) will not reach a point where it has dis-
covered all the facts. If Dn(F) = Dn+1(F), D will have reached a least fixed point.

Definition 9 (Least Fixed Point). The least fixed point of a function f is a fixpoint v
such that v is smaller than or equal to every other fixpoint of f .

However the programs from (4) and (5) will never reach a fixed point. For example
applying the recursive rule D gives the following facts where the bound on the right
continues to increase to infinity.

D(x, y, z) :— x− y = 0, z = 0.

D(x, y, z) :— x− y = 1, z = 1.

D(x, y, z) :— x− y = 2, z = 2.

...

For Datalog, we always have a least fixed point [18], but when we add addition
constraints there must be an approximation method that terminates the evaluation to
find an approximation.

For constraint databases, Revesz [19,15] introduced two methods for approximating
the least fixpoint evaluation of addition constraints by modifying the standard bottom-
up evaluation.

Definition 10 (Lower-Bound Modification). Let l < 0 be any fixed integer constant.
We change in the constraint tuples the value of any bound b to be max(b, l). Given a
Datalog program P the result of a bottom-up evaluation of P using this modification is
denoted Pl.

Definition 11 (Upper-Bound Modification). Let l < 0 be any fixed integer constant.
We delete from each constraint tuple any constraint with a bound that is less than l.
Given a Datalog program P the result of a bottom-up evaluation of P using this modi-
fication is denoted P l.

Example 1 (Lower/Upper-Bound Modification). Consider the difference relation D and
suppose that we set an approximation bound at b = −2. The lower bound approximation
changes in the constraint tuple the value of any bound b to be max(b, u). This value will
not cause the evaluation given in Equation (6) to change until the bound a bound is equal
to 3. Perform the evaluation as follows:

D(x, y, z) :— x′ − y ≤ 2, − x′ + y ≤ −2, − z′ ≤ 2, − z′ ≤ −2 (6)
x− x′ ≤ 1, − x + x′ ≤ −1, z − z′ ≤ 1, − z + z′ ≤ −1.

Simplifying results in bounds that cause a problem.

D(x, y, z) :— x− y ≤ 3, − x + y ≤ −3, z ≤ 3, − z ≤ −3 (7)

Applying the lower bound rule, change the any bound greater than 3 to be 2. This results
in the following:

D(x, y, z) : − x− y ≤ 2,−x + y ≤ −3, z ≤ 2,−z ≤ −3 (8)

The last step in the requires checking the satisfiability of the modified clause. Combin-
ing the first two and last two constraints results in:

D(x, y, z) :— 0 ≤ −1 (9)

Since Equation (9) is not satisfiable, the evaluation does not add a clause to the relation,
and the evaluation of the recursive clause halts.

Applying the upper bound rule, to Equation (7), requires that we delete the second
and fourth constraints which gives:

D(x, y, z) :— x− y ≤ 3, z ≤ 3 (10)

This fact is added to the relation and we use it in the recursive call:

D(x, y, z) :— x′ − y ≤ 3, z′ ≤ 3
x− x′ ≤ 1,−x + x′ ≤ −1, z − z′ ≤ 1, − z + z′ ≤ −1.

The result of this is
D(x, y, z) :— x− y ≤ 4, z ≤ 4 (11)

This constraint is not added to the relation because it is subsumed by (10). Trying all
the other facts in the recursive clause also results in a subsumed fact and hence the
evaluation halts.

These modifications lead to the following approximation theorem.

Theorem 2 (Revesz [15]). For any Datalog program P and constant l < 0 the follow-
ing is true:

Pl ⊆ lfp(P) ⊆ P l (12)

where lfp(P) is the least fixed point of P . Further, Pl and P l can be computed in finite
time.

Hence l can be considered a parameter that controls how tight the over/under-
approximation will be.

We implemented these two constraint modifications in CDB-PV to allow the over-
approximation and under-approximation of the semantics of Datalog with addition con-
straints for program verification.

3 The Constraint Database Approach to Verification

CDB-PV is built on the MLPQ [20] constraint database system which provides a high
degree of precision by allowing non-convex and disjoint regions to represent collecting
semantics. We control the level of approximation by a single parameter l which corre-
sponds to the parameters used in Definitions 10 and 11. Figure 1 provides an overview
of the constraint database approach to the verification of programs [21].

The first two steps form the framework that translates a program into Datalog. The
next step calculates an over-approximation given the bounding parameter l. The results
from the over-approximation (or under-approximation) often contain a large set of data
due to the disjoint representation of variable values. The constraint database approach
simplifies interpretation of results by providing native facilities to query the results for
error states using Datalog or SQL. Not finding the error state in the over-approximation
verifies program correctness. If we suspect that the error state is present, we perform
the under-approximation. Finding the error state in the under-approximation falsifies
the program.

In theory the constraint database approach can reach arbitrary precision by calcu-
lating the under-approximation and over-approximation repeatedly as l→ −∞. Hence
this method approaches a precise evaluation. While this may not be possible for every
constraint in an invariant, it may be reasonable to lower l to a point where the constraint
in the over-approximation and under-approximation that identifies an error state con-
verges. This method provides a way to find constraints in invariants that converge in
parallel with constraints that do not even though a precise evaluation is not possible in
general.

The framework for translating a program to Datalog adapts the standard pre-condition
transition system used in static analysis and compiler optimization techniques.

Definition 12 (Transition System). A transition system is a tuple (S,∧,→) where S
is a set of states, ∧ is a set of labels and→⊆ S×∧×S is a ternary relation of labeled
transitions. If p, q ∈ S and β ∈ ∧, then (p, β, q) ∈→ is written as:

p
β→ q

Error States: E
No

Yes: Decrease l

Approximation
Try Over−

Again?

No

Yes

No

Yes: Decrease l

Not known

Find an under−approximation

semantics of D

Program considered incorrect

Try Under−
Approximation

Again?

Translate T into a Datalog
program D that uses
Addition Constraints.

Input Program P

System T.

Yes

Program considered correct

Translate P into a transition

 semantics of D
P l of the least fixpoint

E ∩ P l = ∅

E ∩ Pl = ∅

Find an over-approximation

Pl of the least fixpoint

Fig. 1. Constraint Database Approach.

where β is a set of conditions and operations to the source state variables that must be
made to enter the target state.

The abstract domain we use consists of addition constraints. The framework trans-
lates a program into Datalog in the first two steps shown in Figure 1.

Given a program P with n lines of code and m variables, step (1) gives the transition
system where a program statement (or state) pi ∈ S denotes the program statement on

line i about to be executed. A transition from some state pj to pi denoted pj
β→ pi

represents the rule to enter state pi where β contains the “execution” of the program
statement on line j. The values changed by β affect the values available for execution in
pi. How the new values affect the values of variables in state pi will determine the type
of approximation. In Datalog these values will be added to the set of existing values. In
abstract interpretation the new values cause widening of the existing invariants.

For example, Miné [22] defines an abstract interpretation widening technique as
follows:

Definition 13 (Widening Operator of [22]). Let M and N be two ABMs. Then the
widening of M by N , written as M∇N is defined as:

[M ∨N][i, j] =
{

M [i, j] if M [i, j] ≤ N [i, j]
−∞ if N [i, j] ≤M [i, j]

}
Example 2. The simple program shown in Table 1 is translated into Datalog where
transition system is given in Figure 2. The constraint relations L2 - L7 shown at the
right represent the variable values prior to the execution of the corresponding lines at
the left. L1 remains undefined because no variables have been assigned prior to the
execution of Line 1.

1. a ← 0
2. a ← a + 1
3. if a > 2 then goto 6
4. if a = 2 then goto 7
5. goto 2
6. ...
7. ...

→

begin%RECURSIVE%

L2(a) :- a=0.
L2(a) :- L5(a).
L3(a) :- L2(a1), a-a1=1.
L4(a) :- L3(a), a≤2.
L5(a) :- L4(a), a<2.
L5(a) :- L4(a), a>2.
L6(a) :- L3(a), a>2.
L7(a) :- L4(a), a=2.

end%RECURSIVE%

Table 1. Simple Goto Program.

4 Experiments and Results

We tested the constraint database approach on three different examples. The first exam-
ple compares our constraint database approach the widening technique of Miné using
the simple code example from Example 2. The second experiment gives a tight bound
for the automaton from [6]. The final example demonstrates the verification of a search
algorithm involving Euclidean distance calculations. We give an examination of running
time for the method and each individual sample program in Section 5.

The left side of Table 2 shows invariants found by two abstract evaluation passes
using the Miné widening technique given in Example 2. In the second entry, an invariant
of a ≥ 1 entering line (3) indicates that line (6) is executed.

We recursively evaluate the Datalog program in MLPQ with l = −2 and either
over-approximation or under-approximation to obtain the result on the right in Table 2.
The resulting invariants for line 3 never indicate that a > 2 and hence we find that the

Initial L2

L3

a← 1

a← a + 1

L4L5
a 6= 2

a ≤ 2

a > 2
L6

L7
a = 2

ε

Fig. 2. Transition System for the Simple Program.

Miné Widening Results
Line 1st Entry 2nd Entry

2 0 ≤ a ≤ 0 0 ≤ a

1 ≤ a
3 1 ≤ a ≤ 1 if condition a > 2 true

goto 6

4 1 ≤ a ≤ 1

5 1 ≤ a ≤ 1

MLPQ output
L2(a) :— a=0.
L2(a) :— a=1.
L3(a) :— a=1.
L3(a) :— a=2.
L4(a) :— a=1.
L4(a) :— a=2.
L5(a) :— a=1.
L7(a) :— a=2.

Table 2. Invariants Obtained by Miné Widening.

L6(a) relation is missing. Suppose that line (6) identifies an error, then our program
technique identifies the unentered error state correctly where the abstract interpretation
method of Miné does not.

Consider the subway train speed regulation system in Figure 3 described by [6].
Each train detects “beacons” that are marks placed along the track and receives a “sec-
ond” signal from a central clock.

Let b and s be counter variables for the number of beacons and second signals
received. Further, let d be a counter variable that describes how long the train is de-
celerating by applying its brake. The goal of the speed regulation system is to keep
| b− s |≤ 20 while the train is running.

b := s := d := 0

STOPPEDINITIAL

LATE ON TIME BRAKE

b−s < −1?, b++

b−s = −1?, b++

b−s = −9?, s++

b−s < 9?, b++ b−s > −9?, s++

b−s = 9?, b++, d:=0

b−s = 1?, s++

b−s> 1 ?, s++ d < 9?, b++, d++

b−s = 1?, s++ d <= 9?, b++

b−s > 1?, s++

Fig. 3. Subway Automaton.

The speed of the train is adjusted as follows. When s+10 ≤ b, then the train notices
it is early and applies the brake as long as b > s. Continuously braking causes the train
to stop before encountering 10 beacons.

When b + 10 ≤ s the train is late and will be considered late as long as b < s. As
long as any train is late, the central clock will not emit the second signal.

The counter automaton enforces the conditions described above using guard con-
straints followed by question marks, and x + + and x − − as abbreviations for the
assignments x := x + 1 and x := x− 1, respectively.

The subway counter automaton from Figure 3 can be translated into the Datalog
program shown in Table 3. It expresses the semantics (combinations of states and state
variable values) of the automaton using difference constraints.

Error Condition: Suppose that this automaton is correct if |b− s| < 20 in all states at
all times. Then this automaton is incorrect if |b − s| ≥ 20 at least in one state at one
time. The table below shows the result of the under-approximation using the MLPQ
constraint database system.

MLPQ Under Approximation

BRAKE LATE ONTIME STOPPED

1 ≤ b− s ≤ 19 −10 ≤ b− s ≤ −1 −9 ≤ b− s ≤ 9 1 ≤ b− s ≤ 20
10 ≤ b ≤ 19 10 ≤ s ≤ 19 0 ≤ b ≤ 9 11 ≤ b ≤ 20
0 ≤ s ≤ 18 0 ≤ d ≤ 9 0 ≤ s ≤ 18 0 ≤ s ≤ 9
0 ≤ d ≤ 9 0 ≤ d ≤ 9 0 ≤ d ≤ 9

//Subway Automaton
begin%RECURSIVE%

ONTIME(b,s,d) :- b=0, s=0, d=0.
ONTIME(b,s,d) :- STOPPED(b,s1,d), b-s1=1, s-s1=1.
ONTIME(b,s,d) :- ONTIME(b1,s,d), b1-s<9, b-b1=1.
ONTIME(b,s,d) :- ONTIME(b,s1,d), b-s1>-9, s-s1=1.
ONTIME(b,s,d) :- ONBRAKE(b,s1,d), b-s1=1, s-s1=1.
ONTIME(b,s,d) :- LATE(b1,s,d), b1-s=-1, b-b1=1.
ONBRAKE(b,s,d) :- ONTIME(b1,s,d1), b1-s=9, b-b1=1, d=0.
ONBRAKE(b,s,d) :- ONBRAKE(b1,s,d1), d1<9, b-b1=1, d-d1=1.
ONBRAKE(b,s,d) :- ONBRAKE(b,s1,d), b-s1>1, s-s1=1.
STOPPED(b,s,d) :- ONBRAKE(b1,s,d), d≤9, b-b1=1.
STOPPED(b,s,d) :- STOPPED(b,s1,d), b-s1>1, s-s1=1.
LATE(b,s,d) :- ONTIME(b,s1,d), b-s1=-9, s-s1=1.
LATE(b,s,d) :- LATE(b1,s,d), b1-s<-1, b-b1=1.

end%RECURSIVE%

Table 3. Subway Datalog Program.

The above was obtained by using an approximation bound of l = −30. If l is
decreased, then the upper bounds of b and s increase. Therefore, in the limit those
upper bounds can be dropped.

Further, since the above is a under approximation, any possible integer solution
of the constraints below the state names must occur at some time. For example, the
STOPPED relation must contain the case b − s = 20 at some time. Therefore, this
automaton is incorrect by our earlier assumption.

The Verimag laboratory has software for testing program correctness using abstract
interpretation. [6] gave the following over approximation derived using Verimag’s soft-
ware for the subway automaton.

Verimag Over Approximation

BRAKE LATE ONTIME STOPPED

1 ≤ b− s ≤ d + 10 −10 ≤ b− s ≤ −1 −9 ≤ b− s ≤ 9 1 ≤ b− s ≤ 19
d + 10 ≤ b s ≥ 10 b ≥ 0 19 ≤ 9s + b
0 ≤ d ≤ 9 s ≥ 0 b ≥ 10

We showed in [23] that the Verimag system produced incorrect results. However a
over-approximation still needs to be found to verify the automaton. We made several
runs with different l values ranging from −10 to −30 for both over and under approxi-
mations. By increasing the l value to−20 alone and performing the evaluation with both
approximations, we derive a tight bound −10 ≤ b − s ≤ 20 across the four constraint
relations.

Suppose a yacht is traveling through the ocean between two ports. The yacht does
not have enough supplies to make the trip, hence it must resupply at several possible
locations. The program shown in Table 4 determines if a point (22, 19) can be reached
from a starting position of (0, 0). It includes the Depot relation containing possible
resupply locations. The Leg and Reach rules calculate Euclidian distance using the
D (difference) and M (multiplication) relations. The approximation value l limits the
evaluation of D and M which may be pre-computed to save time. The reach relation
determines if the destination can be reached. This example can be extended by adding
a relation for multiple destinations. In that case knowing error destinations would allow
us to query the reach relation for incorrect values.

The results of running this program in MLPQ verify that the reach relation con-
tains the values x = 22 and y = 19. This verifies the Resupply Depot program as
correct.

begin%SupplyDepotOptimized%

Depot(id,x,y) :- id=1, x=0, y=19.
Depot(id,x,y) :- id=2, x=6, y=8.
Depot(id,x,y) :- id=3, x=15, y=12.
Depot(id,x,y) :- id=4, x=25, y=5.
D(x,y,z) :- x-y=0, z=0.
D(x,y,z) :- D(x1,y,z1), x-x1=1, z-z1=1.
D(x,y,z) :- D(x1,y,z1), x-x1=-1, z0z1=-1
M(x,y,z) :- x=0, y=0, z=0.
M(x,y,z) :- M(x1,y,z1), D(z,z1,y), x-x1≥1, x1-x≥-1.
M(x,y,z) :- M(x,y1,z1), D(z,z1,x), y-y1≥1, y1-y≥-1.
Leg(x,y) :- x=0, y=0.
Leg(x,y) :- Leg(x1,y1), Depot(id,x,y), AD(x,x1,dx),

AD(y,y1,dy), M(dx,dx,dx2), M(dy,dy,dy2),
dx2+dy2≤100 ,dx≤10, dy≤10.

Reach(x,y) :- x=22, y=19, Leg(x1,y1), AD(x,x1,dx),
AD(y,y1,dy), M(dx,dx,dx2), M(dy,dy,dy2),
dx2+dy2≤100, dx≤10, dy≤10.

end%SupplyDepotOptimized%

Table 4. Yacht Resupply Example.

5 Running Time of Methods and Sample Programs

Calculating the lfp of a Datalog program is exponential in the worst case. However, the
running time depends on the amount of recursion in the Datalog program. We also note
that a program need only be verified once and longer running times may be tolerated
for program verification. The running times we report below indicate the time for the
Datalog query to complete. The CDB-PV system uses 4,368kb of memory with no
program loaded. The memory usage reported indicates the memory usage of the CDB-
PV system when running the particular example and includes the 4,368kb. All runs were
performed on an AMD Athlon 2000 with 1 GB or RAM except the Subway program
which was run on an AMD X2 64bit computer with 1 GB of RAM.

The simple program from Table 2 can be evaluated precisely or with the under/over-
approximation in the same running time. As this program has no recursion, the running
time is less than our ability to measure (e.g. < 0.001 seconds) and the memory used is
5,556kb.

The yacht example from Table 4 depends on the D and M relations given in Equa-
tions (4) and (5). The under-approximation and over-approximation converge with l =
−15. We executed the query with l = −10, ...− 15. In this more complicated example
we still have good running times and memory usage as shown in Table 6.

Bound Under-Approximation Over-Approximation
Time Memory Time Memory

-10 1.969 5680 33.593 7020
-11 2.297 5716 37.886 7176
-12 2.922 5712 20.395 6716
-13 3.375 5724 25.014 7012
-14 3.966 5752 31.869 7336
-15 5.106 5764 35.538 7704

Table 5. Yacht Program Running Times (seconds) and Memory Usage (KB).

These results show a dip on the over-approximation at l = −12. We believe that runs
with larger l values require more calculations to find the upper bound of the Reach re-
lation. With l < −12, the calculation cost of D and M dominate the time and memory.

The subway Datalog program from Table 3 has more recursion and complicated
calculations. We expect it to take the longest time. The running times and memory
usage for various runs are given in Table 6.

6 Conclusion and Future Work

We implemented an arbitrarily precise program verification and falsification method
using constraint databases and approximation. The experiments showed that the con-
straint database method can more accurately approximate collecting semantics than

Bound Under-Approximation Over-Approximation
Time Memory Time Memory

-18 0:07:01 25,900 1:14:35 237,744
-19 0:09:32 31,028 1:15:50 231,596
-20 0:12:51 32,364 1:33:16 277,648
-21 0:16:35 43,308 1:43:28 286,264
-22 0:20:48 50,164 1:55:09 312,396

Table 6. Subway Automaton Running Times (hh:mm:ss) and Memory Usage (KB).

other methods using widening techniques. Using over- and under-approximation we
showed that our previous under-approximation constraint for the subway automaton is
tight. In the ship resupply problem we showed our method is powerful enough to ex-
plore more complex mathematical expressions. While simple programs can be verified
quickly, more complex programs may take longer as seen in the subway automaton ver-
ification. However, this method does provide precision beyond other techniques. Future
work includes improving running time and memory efficiency while maintaining high
precision and accuracy.

References

1. Kilroy, C.: Investigation: Air france 296. http://www.airdisaster.com/
investigations/af296/af296.shtml (1997)

2. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. Proceedings
of the Second International Symposium on Programming (1976) 106–130

3. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In: Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of Programming Languages. (1977) 238–252

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages (1978) 84–96

5. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4) (1992)
511–547

6. Halbwachs, N.: Delay analysis in synchronous programs. In: CAV ’93: Proceedings of the
5th International Conference on Computer Aided Verification, London, UK, Springer-Verlag
(1993) 333–346

7. Kerbrat, A.: Reachable state space analysis of lotos specifications. In: Proceedings of the
7th IFIP WG6.1 International Conference on Formal Description Techniques VII, London,
UK, UK, Chapman & Hall, Ltd. (1995) 181–196

8. Cousot, P.: Proving program invariance and termination by parametric abstraction, la-
grangian relaxation and semidefinite programming. In: Sixth International Conference on
Verification, Model Checking and Abstract Interpretation (VMCAI’05), Paris, France, LNCS
3385, Springer, Berlin (January 17–19 2005) 1–24

9. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: POPL ’87: Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, New York,
NY, USA, ACM Press (1987) 111–119

http://www.airdisaster.com/investigations/af296/af296.shtml
http://www.airdisaster.com/investigations/af296/af296.shtml

10. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R) language and system. ACM
Trans. Program. Lang. Syst. 14(3) (1992) 339–395

11. Colmerauer, A.: Note sur prolog iii. In: SPLT’86, Séminaire Programmation en Logique.
(1986) 159–174

12. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.: The Con-
straint Logic Programming Language CHIP. Proceedings of the International Conference on
Fifth Generation Computer Systems 2 (1988) 693–702

13. Kanellakis, P., Kuper, G., Revesz, P.: Constraint Query Languages. Journal of Computer and
System Science 51(1) (1995) 26–52

14. Revesz, P.: A Closed-Form Evaluation for Datalog Queries with Integer (Gap)-Order Con-
straints. Theoretical Computer Science 116(1&2) (1993) 117–149

15. Revesz, P.: Introduction to Constraint Databases. Springer-Verlag (2002)
16. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press (1993)
17. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math 5(2)

(1955) 285–309
18. Ullman, J.: Principles of database and knowledge-base systems. Computer Science Press

Rockville, Md (1988)
19. Revesz, P.Z.: Reformulation and approximation in model checking. In: SARA ’02: Proceed-

ings of the 4th International Symposium on Abstraction, Reformulation, and Approximation,
London, UK, Springer-Verlag (2000) 202–218

20. Revesz, P., Chen, R., Kanjamala, P., Li, Y., Liu, Y., Wang, Y.: The MLPQ/GIS constraint
database system. In: ACM SIGMOD International Conference on Management of Data.
(2000)

21. Revesz, P.: The constraint database approach to software verification. In: 8th Int. Conf. on
Verification, Model Checking, and Abstract Interpretation, LNCS 4349 (2007) 329–345

22. Miné, A.: The octagon abstract domain. In: In Proceedings Analysis, Slicing and Transfor-
mation, IEEE Press (2001) 310–319

23. Anderson, S., Revesz, P.: Verifying the incorrectness of programs and automata. In: Pro-
ceedings of the 6th International Conference on Symposium on Abstraction, Reformulation
and Approximation. Volume 3607., Springer Verlag (2005) 1–13

	CDB-PV: A Constraint Database-Based Program Verifier
	Scot Anderson, Peter Revesz

