
Verifying the Incorrectness of Programs and Automata⋆

Scot Anderson and Peter Revesz

Department of Computer Science and Engineering
University of Nebraska-Lincoln

Lincoln, NE 68588, USA
{scot,revesz}@cse.unl.edu

Abstract. Verification of the incorrectness of programs and automata needs to be taken as
seriously as the verification of correctness. However, there are no good general methods that
always terminate and prove incorrectness. We propose one general method based on a lower
bound approximation of the semantics of programs and automata. Based on the lower-bound
approximation, it becomes easy to check whether certain error states are reached. This is
in contrast to various abstract interpretation techniques that make an upper bound approxi-
mation of the semantics and test that the error states are not reached. The precision of our
lower bound approximation is controlled by a single parameter that can be adjusted by the
user of the MLPQ system in which the approximation method is implemented. As the value
of the parameter decreases the implementation results in a finer program semantics approx-
imation but requires a longer evaluation time. However, for all input parameter values the
program is guaranteed to terminate. We use the lower bound approximation to verify the
incorrectness of a subway train control automaton. We also use the lower bound approxima-
tion for a problem regarding computer security via trust management programs. We propose
a trust management policy language extending earlier work by Li and Mitchell. Although,
our trust management programming language is Turing-complete, programs in this language
have semantics that lend themselves naturally to a lower-bound approximation. Namely, the
lower bound approximation is such that no unwarranted authorization is given at any time,
although some legitimate access may be denied.

1 Introduction

Testing the correctness of a program or an automaton can be done by finding an upper approximation
of its semantics. If the upper approximation does not contain the error states needed to be checked,
then the automaton can be said to be correct. However, if the upper approximation contains the
error states, then the actual program or automaton may still be correct.

Similarly, if the lower bound approximation of the semantics contains an error state, then we
know that it is incorrect. If it does not, then the program may still be incorrect.

Hence an upper bound may be good to verify that a program is correct, while a lower bound
may be good to verify that it is incorrect. The verification of incorrectness is just as important
in practice as the verification of correctness, because many users are reluctant to change incorrect
and expensive programs unless those are proven incorrect. For example, if a banking system allows
invalid access to some bank accounts, then a lower bound approximation would be needed to verify
the incorrectness.

⋆ This research was supported in part by NSF grant EIA-0091530 and a NASA Space and EPSCoR grant.

2

Until recently, in the verification area the focus was in verifying correctness using abstract
interpretation [8, 16, 22] or model checking [1, 5, 9, 30, 36]. In contrast, in this paper, we focus on
verifying incorrectness.

Verifying incorrectness is needed when we suspect a program to be incorrect, and we want to
prove that it is indeed incorrect. For example, if there is an accident with a space shuttle, then we
need to find what caused it. Was it caused by an incorrect program?

There are many reasons that a program may be suspected to be incorrect. For example, a
program that fails a verification for correctness using abstract interpretation or model checking
would be suspicious.

There are some problems that naturally lend themselves to a lower-bound approximation. For
example, the semantics of a computer security system would contain the facts that describe who
gets access to which resource at what time. In this case a lower-bound approximation is meaningful,
conservative, and safe to use. That is, it never gives unwarranted authorizations, although some
legitimate access may be denied at certain time instances. For example, not being able to access
one’s own bank account at a particular time is frustrating, but it is certainly less frustrating than
if someone else, who should not, can access it.

We use the above idea in proposing a Turing-complete extension of the trust management
language RT [25–27], which is a recent approach to computer security in a distributed environment.
The latest version of the RT language uses Datalog but with simpler constraints than we allow
in this paper. We choose the RT trust management family of languages as an example of how to
use constraint database approximation techniques in other areas beyond database systems where
lower-bound approximations are meaningful. (See the survey [15] and the recent article [24] about
trust management in general.)

The rest of this paper is organized as follows. Section 2 gives a brief review of constraint database
approximation theory and its implementation in the MLPQ constraint database system [38]. Sec-
tion 3 applies the approximation method to verify the incorrectness of an automaton. Section 4
applies the approximation method to find a safe evaluation of a trust management program. Sec-
tion 5 discusses some related work. Finally, Section 6 gives some conclusions and future work.

2 Review of Constraint Database Approximation Theory

The constraint logic programming languages proposed by Jaffar and Lassez [17], whose work led to
CLP(R) [19], by Colmerauer [7] within Prolog III, and by Dincbas et al. [10] within CHIP, were
Turing-complete. Kanellakis, Kuper, and Revesz [20, 21] considered those to be impractical for use
in database systems and proposed less expressive constraint query languages that have nice proper-
ties in terms of guaranteed and efficient evaluations. Many researchers advocated extensions of those
languages while trying to keep termination guaranteed. For example, the least fixed point seman-
tics of Datalog (Prolog without function symbols and negation) with integer gap-order constraint
programs can be always evaluated in a finite constraint database representation [33].1

With gap-order constraints many NP-complete problems can be expressed that cannot be ex-
pressed in Datalog without constraints. However, even Datalog with addition constraints, which
seems only a slight extension, is already Turing-complete. Hence Revesz [35] introduced an approx-
imate evaluation for Datalog with addition constraints.

1 A gap-order is a constraint of the form x − y ≥ c or ±x ≥ c where x and y are variables and c is a
non-negative integer constant.

3

This approximation is different from abstract interpretation methods (for a recent review see [8]).
The main difference is that, at least in theory, in [35] both a lower and an upper bound approxima-
tion of the least fixed point can be arbitrarily close to the actual least fixed point with the decrease
of a single parameter towards −∞. The decrease indirectly increases the running time.

Below we focus on the definitions that are relevant to approximations. The reader can find more
details in the surveys [18, 34] and the books [23, 28, 37] about constraint logic programming and
constraint databases.

Definition 1. Addition constraints [37] have the form

±x± y θ b or ± x θ b

where x and y are integer variables and b is an integer constant, called a bound, and θ is either ≥
or >.

In the following we will also use x = b as an abbreviation for the conjunction of x ≥ b and
−x ≥ −b. Similarly, we use x + y = b as an abbreviation for the conjunction of x + y ≥ b and
−x− y ≥ −b.

Each constraint database is a finite set of constraint tuples of the form:

R(x1, . . . , xk) : − C1, . . . , Cm.

where R is a k-ary relation symbol, each xi for 1 ≤ i ≤ k is an integer variable or constant, and
each Cj for 1 ≤ j ≤ m is an addition constraint over the variables. The meaning of a constraint
tuple is that each substitution of the variables by integer constants that makes each Cj on the right
hand side of : − true is a k-tuple that is in relation R.

A Datalog program consists of a finite set of constraint tuples and rules of the form:

R0(x1, . . . , xk) : − R1(x1,1, . . . , x1,k1
), . . . , Rn(xn,1, . . . , xn,kn

), C1, . . . , Cm.

where each Ri is a relation name, and the xs are either integer variables or constants, and each Cj

is an addition constraint over the xs. The meaning of the rule is that if for some substitution of the
variables by integer constants each Ri and Cj on the right hand side of : − is true, then the left
hand side is also true.

A model of a Datalog program is an assignment to each k-arity relation symbol R within the
program a subset of Z

k where Z is the set of integers such that each rule holds for each possible
substitution. The least fixed point semantics of a Datalog program contains the intersection of all
the models of the program.

It is easy to express in Datalog [37] with addition constraints a program that will not terminate
using a standard bottom-up evaluation [37]. Consider the following Datalog with addition constraint
program:

D(x, y, z) :— x− y = 0, z = 0.
D(x′, y, z′) :— D(x, y, z), x′ − x = 1, z′ − z = 1.

(1)

This expresses that the Difference of x and y is z. Further, based on (1) we can also express a
Multiplication relation as follows:

M(x, y, z) :— x = 0, y = 0, z = 0.
M(x′, y, z′) :— M(x, y, z), D(z′, z, y), x′ − x = 1.
M(x, y′, z′) :— M(x, y, z), D(z′, z, x), y′ − y = 1.

(2)

4

Intuitively, a standard bottom-up evaluation derives additional constraint tuples until a certain
saturation is reached, and the saturation state represents in a constraint database form the least
fixed point. We omit the precise definition of bottom-up evaluation of Datalog with constraint
programs, because it is not needed for the rest of this paper. It is enough to note that the simple
Datalog program that consists of the above two sets of rules never terminates in a standard bottom-
up evaluation.

In fact, with these two relations we can express any integer polynomial equation (see Example 3).
Since integer polynomial equations are unsolvable in general [29], no algorithm would be able to
evaluate precisely the least fixed point semantics of the Datalog program. Hence the situation we
face is not just a particular problem with the standard bottom-up evaluation, but a problem that
is inherent to the least fixed point semantics of Datalog with addition constraints.

Revesz [35] introduced two methods for approximating the least fixed point evaluation by mod-
ifying the standard bottom-up evaluation.

Definition 2. Let l < 0 be any fixed integer constant. We change in the constraint tuples the value
of any bound b to be max(b, l). Given a Datalog program P the result of a bottom-up evaluation of
P using this modification is denoted Pl.

Definition 3. Let l < 0 be any fixed integer constant. We delete from each constraint tuple any
constraint with a bound that is less than l. Given a Datalog program P the result of a bottom-up
evaluation of P using this modification is denoted P l.

These modifications lead to the following approximation theorem.

Theorem 1. [35] For any Datalog program P and constant l < 0 the following is true.

Pl ⊆ lfp(P) ⊆ P l

where lfp(P) is the least fixed point of P . Further, Pl and P l can be computed in finite time.

We can also get better and better approximations using smaller and smaller values of l. In
particular, we have the following theorem.

Theorem 2. [35] For any Datalog with addition constraints program P and constants l1 and l2
such that l1 ≤ l2 < 0, the following hold:

Pl2 ⊆ Pl1 and P l1 ⊆ P l2

Because we are interested in evaluations that are lower bounds of the least fixed point lfp(P),
we implemented Pl as defined in Definition 2. The implementation was done within the MLPQ
constraint database system [38], which is available from the website: cse.unl.edu/~revesz. The
implementation is a new result that is not described in any other publication.

3 Verifying the Incorrectness of a Subway Automaton

We consider counter automata A which are tuples (S, X, τ, s0, x0) where S is a finite set of states, X

is a finite set of state counters x1, . . . , xk which are integer variables, τ is a finite set of transitions
from S to S, s0 is an initial state, and x0 is an initial assignment of the state variables. Each

5

transition has two parts, a guard constraint over the variables that needs to be satisfied before
the transition takes place and a set of assignments to the variables that update their values as
the automaton enters the new state. In this paper we allow only addition constraints in the guard
constraints and assignments that can be expressed by addition constraints.

Counter machines are an example of such automata which allow only guard constraints that
are comparisons between variables and constants and assignments that increment and decrement
a variable by one or set a variable to a constant. They were studied by Minsky [31, 32], who
showed that they have the same expressive power as Turing machines. Floyd and Beigel [11] is an
introduction to automata theory that covers counter machines.

More complex guard constraints have been allowed in later extensions of counter machines
and applied to the design of control systems in Boigelot and Wolper [4], Fribourg and Olson [12],
Fribourg and Richardson [13], Halbwachs [16], and Kerbrat [22]. Boigelot et al. [3], Cobham [6],
and Wolper and Boigelot [39] study automata and Presburger definability. For additional discussion
and examples of various types of counter (constraint) automata see [37].

Let us consider the following subway train speed regulation system described by Halbwachs [16].
Each train detects beacons that are placed along the track and receives a “second” signal from a
central clock.

 L A T E

 I N I T I A L S T O P P E D

 B R A K E
b−s = −9?, s++

b := s := d := 0

b−s<−1?, b++

b−s = 1 ?, s++ d <= 9 ?, b++

b−s= −1?, b++

b−s> −9?, s++b−s < 9?, b++

b−s= 1?, s++

b−s = 9?, b++, d := 0

b−s > 1?, s++

b−s > 1?, s++

O N T I M E

d < 9?, b++, d++

Fig. 1. The subway train control system.

6

Let b and s be counter variables for the number of beacons and second signals received. Further,
let d be a counter variable that describes how long the train is applying its brake. The goal of the
speed regulation system is to keep | b− s | small while the train is running.

The speed of the train is adjusted as follows. When s + 10 ≤ b, then the train notices it is
early and applies the brake as long as b > s. Continuously braking causes the train to stop before
encountering 10 beacons.

When b + 10 ≤ s the train is late and will be considered late as long as b < s. As long as any
train is late, the central clock will not emit the second signal.

The subway speed regulation system can be drawn as a constraint automaton shown in Figure 3,
where the guard constraints are followed by question marks, and x++ and x−− are abbreviations
for the assignments x := x + 1 and x := x− 1, respectively, for any variable x.

The set of reachable configurations (combinations of states and state variable values) of the
automaton shown in Figure 3 can be expressed in Datalog with addition constraints by creating
a new ternary relation for each state with the order of variables (b, d, s) and writing the following
Datalog with addition constraints rules:

Brake(b, s′, d) :— Brake(b, s, d), b− s > 1, s′ − s = 1.
Brake(b′, s, d′) :— Brake(b, s, d), − d > −9, b′ − b = 1, d′ − d = 1.
Brake(b′, s, d′) :— Ontime(b, s, d), b− s = 9, b′ − b = 1, d′ = 0.

Initial(b, s, d) :— b = 0, s = 0, d = 0.

Late(b′, s, d) :— Late(b, s, d), − b + s > 1, b′ − b = 1.
Late(b, s′, d) :— Ontime(b, s, d), b− s = −9, s′ − s = 1.

Ontime(b, s′, d) :— Brake(b, s, d), b− s = 1, s′ − s = 1.
Ontime(b, s, d) :— Initial(b, s, d).
Ontime(b′, s, d) :— Late(b, s, d), b− s = −1, b′ − b = 1.
Ontime(b′, s, d) :— Ontime(b, s, d), − b + s > −9, b′ − b = 1.
Ontime(b, s′, d) :— Ontime(b, s, d), b− s > −9, s′ − s = 1.
Ontime(b, s′, d) :— Stopped(b.s.d), b− s = 1, s′ − s = 1.

Stopped(b′ , s, d) :— Brake(b, d, s), − d ≥ −9, b′ − b = 1.
Stopped(b, s′ , d) :— Stopped(b, s, d), b− s > 1, s′ − s = 1.

Error Condition: Suppose that this automaton is correct if |b− s| < 20 in all states at all times.
Then this automaton is incorrect if |b− s| ≥ 20 at least in one state at one time. The table below
shows the result of the lower bound approximation using the MLPQ constraint database system.

MLPQ Lower-Bound

Brake Late Ontime Stopped
1 ≤ b− s ≤ 19 −10 ≤ b− s ≤ −1 −9 ≤ b− s ≤ 9 1 ≤ b− s ≤ 20
10 ≤ b ≤ 19 10 ≤ s ≤ 19 0 ≤ b ≤ 9 11 ≤ b ≤ 20
0 ≤ s ≤ 18 0 ≤ d ≤ 9 0 ≤ s ≤ 18 0 ≤ s ≤ 9
0 ≤ d ≤ 9 0 ≤ d ≤ 9 0 ≤ d ≤ 9

7

The above was obtained by using l = −30 as in Definition 2. If l is decreased, then the upper
bounds of b and s increase in the above table. Therefore, in the limit those upper bounds can be
dropped.

Further, for any value of u, since the above is a lower bound, any possible integer solution of
the constraints below the state names must occur at some time. For example, the Stopped state
must contain the case b− s = 20 at some time. Therefore, this automaton is incorrect by our earlier
assumption.

3.1 Comparison with Verimag

The Verimag laboratory has software for testing program correctness using abstract interpretation.
Halbwachs [16] gave the following upper bound derived using Verimag’s software for the subway
automaton.

Verimag Upper-Bound

Brake Late Ontime Stopped
1 ≤ b− s ≤ d + 10 −10 ≤ b− s ≤ −1 −9 ≤ b− s ≤ 9 1 ≤ b− s ≤ 19

d + 10 ≤ b s ≥ 10 b ≥ 0 19 ≤ 9s + b

0 ≤ d ≤ 9 s ≥ 0 b ≥ 10

Surprisingly, this result does not match our result. In particular, the upper bound for the
Stopped state contains the constraint b − s ≤ 19, which says that the value of b − s cannot be
20, but our lower bound says that 20 must be one of the cases. To resolve this apparent con-
tradiction, we need to look more closely at the automaton. We can see that the following is a
valid sequence of transitions, where S(b, s, d) represents the values of b, s, and d is each state
S ∈ {Brake, Initial, Late, Ontime, Stopped}.

Initial(0, 0, 0) −→ Ontime(0, 0, 0) −→ Ontime(1, 0, 0). −→ Ontime(2, 0, 0) −→ Ontime(3, 0, 0) −→
Ontime(4, 0, 0) −→ Ontime(5, 0, 0) −→ Ontime(6, 0, 0) −→ Ontime(7, 0, 0) −→ Ontime(8, 0, 0) −→
Ontime(9, 0, 0) −→ Brake(10, 0, 0) −→ Brake(11, 0, 1) −→ Brake(12, 0, 2) −→ Brake(13, 0, 3) −→
Brake(14, 0, 4) −→ Brake(15, 0, 5) −→ Brake(16, 0, 6) −→ Brake(17, 0, 7) −→ Brake(18, 0, 8) −→
Brake(19, 0, 9) −→ Stopped(20, 0, 9)

Note that Stopped(20, 0, 9) contradicts the first constraint in the Verimag upper bound for the
Stopped state. Hence we suspect that the Verimag software contains some bug or there was some
problem in data entry. We suggest that its incorrectness be tested using other examples and our
lower-bound method.

4 Approximating Trust Management Program Semantics

Trust management languages allow the expression of high-level rules about which principal can get
access to which resource at what time in a distributed environment. The Keynote trust management
system [2, 25] allowed integer polynomial constraints. However, later trust management systems do
not allow such constraints, because allowing them leads to undecidability [29].

8

We argue that this restriction unnecessarily limits the expressibility of trust management lan-
guages. Our lower bound method can be used in most cases to verify the correctness of an access
even when the rules contain integer polynomial constraints.

Note that an upper bound approximation may allow some access which is not specified by the
trust management rules. Hence it is not appropriate for trust management, while a lower bound
technique can be safely used. In a computer security system it leads to much less harm if a legitimate
access request is denied (which can happen with a lower bound approximation) than if an illegitimate
access is allowed (which can happen with an upper bound approximation).

Integer polynomial constraints arise naturally in security applications, as shown by the following
example.

Example 1. Suppose an e-mail sender or server organization C needs to assign a level of trust to an
individual based on the trust levels assigned by organizations A and B. Suppose C considers B’s
information much more valuable. Then C may use the following integer polynomial constraint to
assign a trust level of its own:

3LevelC ≥ 4(LevelA)2 + 2LevelB (3)

4.1 Extended RT Syntax

RT is a trust management policy language introduced by Li et al. [27]. The parameters in each of
the different kinds of policy statements in RT define the relationships between principal owners,
the roles they own and the members of the roles.

The following simple member rule defines the principal KD to be a member of role R owned by
KA:

KA.R(p1, ..., pn) ← KD (4)

where the role takes the form R(p1, ..., pn), and R is a role name and each pj is a variable in an
order constraint.

Extended RT: We extend the RT language by allowing each pj to be an integer variable within
an integer polynomial constraint. The extended simple member rules have the syntax:

KA.R(p(x1, ..., xl)) ← KD (5)

where KA defines a role R to contain member KD, if the integer polynomial constraint p(x1, ..., xl)
holds.

Example 2. The extended RT statement

Email.Permit(3LevelC − 4(LevelA)2 − 2LevelB ≥ 0)← ”Charlie” (6)

allows Charlie access to e-mail, if the ratings obtained satisfy constraint (3).

4.2 Extended RT Semantics

The semantics of an extended RT program can be found by translating the extended RT rules into
logically equivalent Datalog with addition constraints rules and then taking the least fixed point
semantics of the resulting Datalog program.

9

Extended simple member rules of form (4) are translated into the following Datalog rule:

R(KA, KD, x1, ..., xm) : − p1, ..., pn. (7)

where x1, ..., xm are the integer constants and variables that may be used within the polynomial
constraints p1, ..., pn.

We can translate integer polynomial constraints with k number of + and × operations into a
conjunction of at most 2k difference D and multiplication M relations defined in Section 2.

Example 3. The extended RT statement (6) can be translated into the following Datalog with
addition constraints rule:

Permit(Email, Charlie, LevelA , LevelB , LevelC) : −M(t1, 3, LevelC),
M(t2, LevelA, LevelA),
M(t3, 4, t2),
M(t4, 2, LevelB),
D(e1, t1, t3),
D(e2, e1, t4),
e2 ≥ 0

where LevelA, LevelB and LevelC are either integer variables or constants and are the important
parameters in this problem, while each ti and e1 and e2 are additional integer variables that are
introduced only for the sake of expressing the polynomial equation. Finally, Email and Charlie

are integer constants that represent the strings “Email” and “Charlie” in the RT statement (6).

Since the difference D and multiplication M relations have already been defined in Section 2
using Datalog with addition constraints, the entire Datalog program can be evaluated using the
lower-bound approximation of its least fixed point by a modified bottom-up evaluation. By The-
orem 1 this evaluation terminates, giving a lower bound of the semantics of the extended RT
program.

5 Related Work

There are few papers on lower bounds for automata and programs. Godefroid et al. [14] gives a
lower-bound approximation of the automaton by simplifying its states according to some predicates
that hold in each state. The state transitions considered in the simplification are must-transitions,
that is, if the condition in the previous state holds, then only one subsequent state can be reached.
Unfortunately, this is very limited, because in fact most transitions among states are not must-
transitions. In general, predicate abstraction methods, such as [14], can yield more precise approxi-
mations with the introduction of additional predicates, making the automata structures increasingly
more complex.

In contrast, our approximation is radically different and does not change at all the automata
structure, rather it indirectly changes the algebra in which (polynomial) constraints are interpreted
and solved. Essentially, the simplified algebra relies on modified addition and multiplication rela-
tions. These relations are smoothly and naturally extended as l decreases. Hence our method may
yield more precise approximations without increasing the size of the automaton.

10

6 Conclusions and Future Work

We have seen that in general decreasing the bound l toward −∞ leads to tighter lower and upper
bound approximations, Pl and P l, respectively. If the lower and upper bound approximations agree
(i.e, Pl = P l), then we know that we have found the precise least fixed point. However, even if
they do not agree, but seem to converge to the same value –and that may be apparent from only
a few examples of l values, then we still can give the limit of convergence as the precise least fixed
point. The subtle point is that the series of lower (upper) bound approximations themselves show a
convergence and hence their limits can be approximated. It is an approximation of approximations,
but it may work beautifully in many cases.

Open Problem: Determine the precise conditions under which the least fixed point can be pre-
dicted as described above.

We have to be cautious not to overclaim the potential of the above approach, for it is easy to
see that the above method may fail sometimes. For example, consider any query that requires a
polynomial integer equation that is build using the Diff and Mult relations. Clearly, the solutions
of the polynomial equation can be found using the Diff and Mult relations built using lower or
upper bound approximation. However, decreasing l does not guarantee finding tighter lower and
upper bound approximations for the polynomial equation. It may be impossible to tell when all the
solutions will be found. Since integer polynomial equations are undecidable in general, there always
will be some cases when the convergence is unpredictable.

Considering a general difference constraint, if the upper bound approximation is infinite, then it
may not be possible to predict how the two bounds approach one another. In fact the lower bound
may grow without bound as l approaches −∞.

Hence in general we conclude by the examples above that there exists a class of queries that are
not stable. We also conjecture that when |P l\Pl| =∞ and the expected solution is finite the query
is not stable.

In the future, we would like to determine which classes of queries are stable and implement
routines that predict an accurate solution to improve the approximation process when enough
evidence is collected to make a precise prediction of convergence. That would result in a kind
of approximation that is neither a simple lower nor a simple upper bound approximation but is
something much more sophisticated.

In conclusion,

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.-H., Nicollin, X., Olivero,

A., Sifakis, J., and Yovine, S. The algorithmic analysis of hybrid systems. Theoretical Computer
Science 138, 1 (1995), 3–34.

2. Blaze, M., Feigenbaum, J., and Lacy, J. Decentralized trust management. Tech. Rep. 96-17, AT
and T Research, 1996.

3. Boigelot, B., Rassart, S., and Wolper, P. On the expressiveness of real and integer arithmetic
automata. In International Colloquium on Automata, Languages and Programming (1998), vol. 1443
of Lecture Notes in Computer Science, Springer-Verlag, pp. 152–63.

4. Boigelot, B., and Wolper, P. Symbolic verification with periodic sets. In Proc. Conference on
Computer-Aided Verification (1994), pp. 55–67.

11

5. Clarke, E. M., Grumberg, O., and Peled, D. A. Model Checking. MIT Press, 1999.
6. Cobham, A. On the base-dependence of sets of numbers recognizable by finite automata. Mathematical

Systems Theory 3 (1969), 186–92.
7. Colmerauer, A. Note sur Prolog III. In Proc. Séminaire Programmation en Logique (1986), pp. 159–

174.
8. Cousot, P. Proving program invariance and termination by parametric abstraction, lagrangian relax-

ation and semidefinite programming. In Sixth International Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI’05) (Paris, France, LNCS 3385, Jan. 17–19 2005), Springer, Berlin,
pp. 1–24.

9. Delzanno, G., and Podelski, A. Model checking in CLP. In 2nd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (1999), vol. 1579 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 74–88.

10. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., and Berthier, F. The
constraint logic programming language chip. In Proc. Fifth Generation Computer Systems (Tokyo,
Japan, 1988), pp. 693–702.

11. Floyd, R. B., and Beigel, R. The Language of Machines: An Introduction to Computability and
Formal Languages. Computer Science Press, 1994.

12. Fribourg, L., and Olsén, H. A decompositional approach for computing least fixed-points of datalog
programs with Z-counters. Constraints 2, 3–4 (1997), 305–36.

13. Fribourg, L., and Richardson, J. D. C. Symbolic verification with gap-order constraints. In Proc.
Logic Program Synthesis and Transformation (1996), vol. 1207 of Lecture Notes in Computer Science,
pp. 20–37.

14. Godefroid, P., Huth, M., and Jagadeesan, R. Abstraction-based model checking using modal
transition systems. In 12th International Conference on Concurrency Theory (2001), pp. 426–440.

15. Grandison, T., and Sloman, M. A survey of trust in internet application. IEEE Communications
Surveys and Tutorials 3, Fourth Quarter (2000).

16. Halbwachs, N. Delay analysis in synchronous programs. In Proc. Conference on Computer-Aided
Verification (1993), pp. 333–46.

17. Jaffar, J., and Lassez, J. L. Constraint logic programming. In Proc. 14th ACM Symposium on
Principles of Programming Languages (1987), pp. 111–9.

18. Jaffar, J., and Maher, M. Constraint logic programming: A survey. J. Logic Programming 19/20
(1994), 503–581.

19. Jaffar, J., Michaylov, S., Stuckey, P. J., and Yap, R. H. The CLP(R) language and system.
ACM Transactions on Programming Languages and Systems 14, 3 (1992), 339–95.

20. Kanellakis, P. C., Kuper, G. M., and Revesz, P. Constraint query languages. In Proc. ACM
Symposium on Principles of Database Systems (1990), pp. 299–313.

21. Kanellakis, P. C., Kuper, G. M., and Revesz, P. Constraint query languages. Journal of Computer
and System Sciences 51, 1 (1995), 26–52.

22. Kerbrat, A. Reachable state space analysis of lotos specifications. In Proc. 7th International Confer-
ence on Formal Description Techniques (1994), pp. 161–76.

23. Kuper, G. M., Libkin, L., and Paredaens, J., Eds. Constraint Databases. Springer-Verlag, 2000.
24. Li, N., and Mitchell, J. Understanding SPKI/SDSI using first-order logic. In Proc. IEEE Computer

Security Foundations Workshop (2003), pp. 89–108.
25. Li, N., and Mitchell, J. C. Datalog with constraints: A foundation for trust management languages.

In Proceedings of the Fifth International Symposium on Practical Aspects of Declarative Languages
(Jan. 2003), pp. 58–73.

26. Li, N., and Mitchell, J. C. RT: A role-based trust-management framework, April 2003.
27. Li, N., Mitchell, J. C., and Winsborough, W. H. Design of a role-based trust management

framework. In Proc. IEEE Symposium on Security and Privacy, Oakland (May 2002).
28. Marriott, K., and Stuckey, P. J. Programming with Constraints: An Introduction. MIT Press,

1998.

12

29. Matiyasevich, Y. Enumerable sets are diophantine. Doklady Akademii Nauk SSR 191 (1970), 279–82.
30. McMillan, K. Symbolic Model Checking. Kluwer, 1993.
31. Minsky, M. L. Recursive unsolvability of Post’s problem of ”tag” and other topics in the theory of

Turing machines. Annals of Mathematics 74, 3 (1961), 437–55.
32. Minsky, M. L. Computation: Finite and Infinite Machines. Prentice Hall, 1967.
33. Revesz, P. A closed-form evaluation for Datalog queries with integer (gap)-order constraints. Theo-

retical Computer Science 116, 1 (1993), 117–49.
34. Revesz, P. Constraint databases: A survey. In Semantics in Databases, L. Libkin and B. Thalheim,

Eds., vol. 1358 of Lecture Notes in Computer Science. Springer-Verlag, 1998, pp. 209–46.
35. Revesz, P. Datalog programs with difference constraints. In Proc. 12th International Conference on

Applications of Prolog (1999), pp. 69–76.
36. Revesz, P. Reformulation and approximation in model checking. In Proc. 4th International Symposium

on Abstraction, Reformulation, and Approximation (2000), B. Choueiry and T. Walsh, Eds., vol. 1864
of Lecture Notes in Computer Science, Springer-Verlag, pp. 124–43.

37. Revesz, P. Introduction to Constraint Databases. Springer-Verlag, 2002.
38. Revesz, P., Chen, R., Kanjamala, P., Li, Y., Liu, Y., and Wang, Y. The MLPQ/GIS constraint

database system. In ACM SIGMOD International Conference on Management of Data (2000).
39. Wolper, P., and Boigelot, B. An automata-theoretic approach to Presburger arithmetic constraints.

In Proc. Static Analysis Symposium (1995), vol. 983 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 21–32.

