
Approximating Data in Constraint Databases⋆

Rui Chen, Min Ouyang, Peter Revesz

Department of Computer Science and Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract. Approximate representation of any spatio-temporal variable,
by some interpolation function, is necessary when it is measured only
sporadically. This paper argues that the approximate representation can
be captured by a constraint database. Since constraint databases can be
queried via standard query languages – such as relational algebra, SQL
and Datalog – this provides an immediate benefit for flexible querying
of the data. We propose a concrete system that implements a version of
this approach. We also add beyond the standard queries new ones like
cartogram similarity queries and an advanced graphical user interface
with 3-D animation of GIS-based data.

1 Introduction

Many databases contain (spatio)temporal data that change continuously with
time but are measured and recorded only sporadically. For example, population
and various other census data in the United States is recorded only every ten
years. Different weather and environmental stations throughout the world may
be measuring and reporting data like air temperature, precipitation, wind di-
rection, wind speed and levels of different air or water pollutants with different
frequencies and regularities.

It is obvious that all these spatio-temporal data cannot be available for all
locations at all times. If we are interested in the value of a spatio-temporal
variable at a particular time, then we have to somehow approximate that value
based on some interpolation from the available data.

The interpolation could be done at two different levels. One approach is to
represent the measured data in a standard relational database. Then the rela-
tional database can be embedded in a high-level computer program that retrieves
the measurements, interpolates them and does other calculations. This approach
may be a workable one for some scientists who are advanced programmer or who
have such help readily available. It is not feasible for average users.

An alternative approach, that we advocate in this paper, is to perform the
interpolation at the time of the data entry, that is, the data should be stored as a
constraint database [7, 11, 16], where the constraints are parametric functions of
time that interpolate the data. This approach is advantageous because it is pos-
sible to build powerful database systems (for example, CCUBE [1], DEDALE [6]

⋆ This work was supported in part by NSF grants IRI-9625055 and IRI-9632871 and
by a Gallup Research Professorship.

and MLPQ [15]) that can be queried by standard relational database query
languages, such as relational algebra, SQL and Datalog. Also, the enhanced
MLPQ [14] has the ability to display the results with color bands according to
the associated attribute values. This enables a potentially much wider range of
users to use the database.

Applications of constraint database systems were until now severely limited
to a few well-understood areas of constraint representation, for example, GIS
where convex polygonal areas were represented as conjunctions of linear inequal-
ity, i.e., half-plane intersection, constraints. Our work on interpolation functions
as a natural source of constraint data opens up a range of uses of constraint
databases beside these narrow focus applications.

It is very important to present the data to a user in a form that is easily
understandable. Many current constraint database systems have a poor graphical
user interface. Probably MLPQ/GIS [8] has the most advanced user interface
that allows a number of iconic queries, including the option to ask the system
to show an animation of a 2-D object (a moving polygon).

In this paper, we describe an advanced GIS-oriented user interface that can
animate in 3-D various spatio-temporal variables (distributed over spatial cells,
for example, the U.S. states). Such an animation has a potential to reveal many
interesting features to a user that would be hard or impossible to notice oth-
erwise. The user interface also allows a number of new queries. For example,
we define similarity queries over cartograms. A similarity query could be for in-
stance the following: given a precipitation map of the United States for March
2000, find among all the other monthly precipitation maps in the past 40 years
those where the precipitation was most similar to the given map.

The rest of the paper is structured as follows. Section 2 describes the al-
gorithms for data input and transformation. Section 3 presents the algorithms
for the update on piecewise linear functions. Section 4 introduces several kinds
of algebraic operators and queries. Section 5 discusses 3-D animation. Finally,
Section 6 concludes with some possible directions for future works.

2 Data Input and Transformation

In this section we describe how the input data of measurements can be trans-
formed into a constraint database representation by using various interpolation
functions. In particular, we present a transformation method in Section 2.1 based
on a linear interpolation function.

We also analyse the correlation between the interpolation function obtained
by this method and the original data using as a test case the data obtained from
the National Climatic Data Center. The correlation depends on the values of
two parameters: the average error threshold and the maximum error threshold,
denoted by Φ and Ψ , respectively. In general, the lower Φ and Ψ are the better
the correlation is with the original data but the piecewise linear interpolation
function will need more pieces. Hence these parameters allow the user to control

the trade-off between the accuracy of the approximation and the required storage
space.

2.1 The Piecewise Linear Function Transformation Method

Given a set of spatiotemporal data, where the third dimension (called z later)
could stand for any property associated with that point, this section will show
how to transform a sequence of z values into a piecewise linear function for each
spatial point.

Example 1. Suppose there are four weather stations 1 to 4 located in (10, 20),
(20, 40), (50, 25) and (30, 10) respectively as shown in Table 1, where SN stands
for station number and X,Y the coordinates of the location. Each station has
a group of temperature data at five corresponding different moments as shown
in Table 2, where t1 to t5 columns are the temperatures at the time t1 to t5
respectively.

SN X Y

1 10 20
2 20 40
3 50 25
4 30 10

Table 1. The locations of four weather stations

SN t1 t2 t3 t4 t5
1 75 77 86 87 90
2 70 72 75 80 85
3 80 86 81 80 78
4 85 83 81 78 76

Table 2. The temperatures of the four weather stations

Table 1 stores the spatial information while Table 2 stores the z values related
to time. In Example 1 z represents the temperature. For simplicity, we name the
data in Table 1 spatial data set and in Table 2 temporal data set.

A piecewise linear function is a set of linear functions with only one param-
eter, the time t. For each linear function, the domain of t is constrained within
a definite extent, which is non-overlapping with the extents of other linear func-
tions. The following description expresses the idea of the transformation: try to
include as many points as possible into one piecewise linear function without
exceeding the prescribed approximation error thresholds.

Suppose there are n > 1 time-value pairs for a given point:

(t1, z1), (t2, z2), ..., (tn, zn),

where t1, t2, ..., tn stand for the points of time, z1, z2, ..., zn the corresponding z
values, and t1, t2, ..., tn are all distinct and in an increasing order.

For any two pairs (tb, zb) and (te, ze) the linear function can be expressed as
Formula (1).

Definition 1. A piece linear function zb,e is the function:

zb,e(t) =
ze − zb

te − tb
(t− tb) + zb (1)

where tb and te are the lower and the upper bounds of the time interval adapted
to this function, i.e. tb ≤ t ≤ te.

We use two parameters to restrict the two kinds of interpolation errors re-
sulted from Formula (1).

1. Average Error Threshold Φ for Each Piece: We use the average error
threshold (denoted by Φ) to control the average approximation error for each
piece of the piecewise linear function.
The average error for each piece (denoted by φ) is defined in Formula (2).

φb,e =
(

Σe−1

i=b+1
|zb,e(ti) − zi|

)

/(te − tb) (2)

2. Maximum Error Threshold Ψ for Each Time Point: We use the max-
imum error threshold (denoted by Ψ) to control the approximation error for
each time point.
The error for each time point (denoted by ψ) is defined in Formula (3).

ψb,e(ti) = |zb,e(ti) − zi| (3)

This leads to the following simple transformation algorithm with the use of
the two interpolation error thresholds Φ and Ψ .

———————————————————————————————————

PIECEWISE LINEAR INTERPOLATION ALGORITHM:

Input: A temporal data set with n time-value pairs (t1, z1), . . . , (tn, zn).
Φ the average error threshold, and
Ψ the maximum error threshold in the approximation.

Output: A piecewise linear function.
Local Vars: The b and e are integer variables that denote if the piecewise linear

interpolation function should interpolate by one piece the sequence
of temporal data (tb, zb), . . . , (te, ze).
The one error, total error, and max error correspond to the

approximation error for a time point, the total approximation error
for one piece and the maximum approximation error in one piece,
respectively.

Initialize b := 1, e := 2
while e ≤ n do

Initialize one error := 0, total error := 0, and max error := 0
repeat

for i := b+ 1 to e− 1 do
one error := ψb,e(ti)
total error := total error + one error
max error := max(max error, one error)

end-for
e := e+ 1

until total error
te−tb

> Φ or max error > Ψ or e > n

Add to the piecewise linear function the piece zb,e−1 defined by Formula (1)
with the current values of b and e− 1 with the time interval from tb to te−1.
If b = 1, set the left boundary of the time interval −∞; if e− 1 = n, set the
right boundary of the time interval +∞.

b := e− 1
end-while

———————————————————————————————————

Lemma 1 The piecewise linear interpolation algorithm transforms the given
data into a piecewise linear function within the specified average approximation
error threshold Φ for each piece.

Proof: When total error
te−tb

> Φ, i.e., the average approximation error is greater
than the average error threshold, the repeat-until loop exits, and one piece zb,e−1

is generated. Therefore, there is no piece whose average approximation error will
be greater than Φ.

Lemma 2 The piecewise linear interpolation algorithm transforms the given
data into a piecewise linear function within the specified maximum approxima-
tion error threshold Ψ for each data point.

Proof: When max error > Ψ , i.e., the maximum approximation error for all
points in one piece is greater than the maximum error threshold, the repeat-until

loop exits, and one piece zb,e−1 is generated. Therefore, there is no point in one
piece whose approximation error will be greater than Ψ .

We can call the transformation algorithm for each location separately to
obtain a piecewise linear approximation of the input data. The output of our

transformation algorithm is such that the average approximation error for each
piece is less than Φ, and the approximation error for each time point is less than
Ψ .

Example 2. Given the temporal data set in Table 2 and the average error thresh-
old Φ = 2 and the maximum error threshold Ψ = 3, and assuming that t1 =
0, t2 = 1, t3 = 2, t4 = 3, t5 = 4, the transformation algorithm will be executed as
follows for the weather station 1.

First initialize b to 1, and e to 2. Then do while loop. After initializing
the local variables one error, total error and max error, enter into repeat-unitl

loop. This time for loop is skipped because b + 1 > e − 1. Then e increases by
1, i.e., e = 3. Since the until condition is not satisfied, it continues to execute
repeat-until loop again. After executing for loop from 2 to 2, the one error = 3.5,
total error = 3.5, and max error = 3.5. So, total error

te−tb

= 3.5
2−0

= 1.75 < Φ, and
max error = 3.5 > Ψ . So, the until condition is satisfied and hence exit the
repeat-unitl loop. Then generate one piece z1,2, i.e., 75 + 2.00t with the time
interval from −∞ to 1.

Next, b = 2, e = 3, do the while loop again and again, create the piece z2,3

and z3,5, unitl e > n exit the while loop. At last, a piecewise linear function
is generated. The output of the transformation algorithm will be the relation
Temperature composed of piecewise linear functions as shown in Table 3.

SN Temp(t) t

1 75 + 2.00t −∞ < t ≤ 1
1 68 + 9.00t 1 < t ≤ 2
1 82 + 2.00t 2 < t < +∞

2 70 + 3.75t −∞ < t < +∞

3 80 + 6.00t −∞ < t ≤ 1
3 88.67 − 2.67t 1 < t < +∞

4 85 − 2.25t −∞ < t < +∞

Table 3. The Temperature Relation

We obtain a piecewise linear function over that is applicable at any time
for each of the four locations. The resulting piecewise linear function for each
location approximates the temperatures by one or several linear pieces.

2.2 Transformation Accuracy Analysis

Note that the interpolation will not be uniformly good on the entire time in-
terval. It will be more accurate in general when the time t we are interested in
is close to one of the original data points. The interpolations allow us to look
a little backward and forward in time with steadily decreasing reliability as we
approach −∞ and +∞. However, for many applications which use reasonable

t values the interpolations seem good enough. They can be improved by us-
ing more sophisticated interpolation techniques that use high-degree polynomial
functions.

We used the temporal data containing 96×6, 726 temporal data points, that
is 96 monthly precipitation data between the year 1990 and 1997 from 6, 726
weather stations throughout the continental United States [9]. The precipita-
tion values ranged between 0 and 4, 957 with an average value of 295.91 and a
standard deviation of 269.95.

We tested the transformation accuracy of our algorithm with different values
of Φ between 10 and 640, and different values of Ψ between 10 and 640. After
the piecewise linear interpolation function was found, we checked the differences
between the value of the interpolation function and the original values. We ran
separately for each weather station the transformation algorithm and made the
correlation tests.

Table 4, Table 5, and Table 6 show the average number of generated pieces
of the piecewise linear function and the transformation accuracy for different
values of Φ (assume that Ψ = +∞), different values of Ψ (assume that Φ = +∞)
and different values of Φ and Ψ (Φ = Ψ), respectively.

Average Error Threshold 10 20 40 80 160 320 640

Average number of linear pieces 84.18 75.79 62.56 44.51 23.48 6.00 1.57

Correlation coefficient 0.9999 0.9993 0.9955 0.9747 0.8800 0.6459 0.4798
Table 4. The statistics for different average error thresholds

Maximum Error Threshold 10 20 40 80 160 320 640

Average number of linear pieces 89.03 84.29 76.09 63.22 45.72 25.30 7.84

Correlation coefficient 0.9999 0.9999 0.9993 0.9956 0.9748 0.8775 0.6424
Table 5. The statistics for different maximum error thresholds

Avg. & Max. Thresholds 10 20 40 80 160 320 640

Average number of linear pieces 89.03 84.29 76.09 63.22 45.72 25.30 7.84

Correlation coefficient 0.9999 0.9999 0.9993 0.9956 0.9748 0.8775 0.6424
Table 6. The statistics for different average and maximum approximation thresholds

The results of the correlation coefficients show that the transformation is
highly accurate when the Φ or Ψ are lower than the average value of the data. The
number of pieces in the piecewise linear functions decreases as Φ or Ψ increase.
We also combine the two approximation thresholds to test the transformation
accuracy.

The maximum number of generated linear pieces for n data points is n− 1.
The relationships between the percent of the number of linear pieces over n− 1
and the correlation coefficient are shown in Figure 1 and Figure 2 when Φ varies
from 10 to 640 and Ψ = +∞, and Ψ varies from 10 to 640 and Φ = +∞,
respectively.

From the Table 6, we can see that the maximum error threshold dominates
the transformation accuracy when both of the two thresholds have the same
value. This result shows that the maximum error threshold is more restrict to
control the transformation than the average error threshold.

Also, we can see that the piecewise linear function transformation has very
high correlation with few number of linear pieces. We believe that this holds for
any reasonable data set. Form the point view of the storage space, this property
shows that the linear function transformation provides a certain ability of data
compression.

Fig. 1. Φ varies, Ψ = +∞

2.3 Other Interpolation Methods

Given a set of spatiotemporal points, we can apply several numerical analysis
algorithms [4, ?] to construct curves which pass through the given temporal data
points. In general, for any n temporal data points, there is always a polynomial

Fig. 2. Ψ varies, Φ = +∞

function with n − 1 degree that passes through all of the n points by using
interpolation algorithms of Lagrange, Gauss, Bessel, etc [13].

3 The Update on Piecewise Linear Functions

There are two kinds of update operations: insert a new time-value pair into or
delete a time-value pair from a piecewise linear function. This section presents
insertion and deletion algorithms of updating the piecewise linear functions.

Insert Operation: From the original data set, we transform the time-value pair
for each location into a piecewise linear function. The following algorithm shows
how to insert a new time-value pair (tα, zα).

———————————————————————————————————

INSERTION ALGORITHM:

Input: A piecewise linear function for the data set (t1, z1), . . . , (tn, zn).
Ψ the maximum error threshold in the approximation.

Output: A new piecewise linear function.

if tα < t1 then
Add one piece zα,1 into the piecewise linear function

else if tα > tn then
Add one piece zn,α into the piecewise linear function

else
Using binary search to find the time interval [tb, te] such that tb ≤ tα ≤ te

if ψb,e(tα) is between 1

2
Ψ and 3

2
Ψ then

tβ = tα
if zα < zb,e(tα) then
zβ = zb,e(tβ) − 1

2
Ψ

else
zβ = zb,e(tβ) + 1

2
Ψ

end-if
end-if
Split the piece zb,e into two pieces, zb,β and zβ,e

end-if

———————————————————————————————————

Theorem 1 The insertion algorithm satisfies the condition, such that the ap-
proximation errors of the inserted point and all of original points are within the
extent Ψ in the new piecewise linear function after inserting the point which
is within the extent 3

2
Ψ from the approximated values in the original piecewise

linear function.

Proof: Let us consider the two cases shown in Figure 3.

1. If the approximation error for the point (tα, zα) is not greater than half of
the maximum approximation error threshold, i.e. 1

2
Ψ , the original piece is

not changed. Therefore, in this case the insertion satisfies the condition for
the inserted point and all of the original points. This corresponds to the
situation of inserting the point u in Figure 3.

2. If the approximation error for the point (tα, zα) is greater than 1

2
Ψ and

less than or equal to 3

2
Ψ in the original piecewise linear function, two new

linear pieces are generated after insertion operation. The possible largest
approximation error of the inserted point in the new piecewise linear function
is equal to the original approximation error minus 1

2
Ψ , hence less than Ψ .

This corresponds to the situation of the point v in Figure 3. For all of original
points, the maximum approximation error happens at the point v′, which is
Ψ .

Therefore, this insertion algorithm satisfies the above specified condition.

Delete Operation: We use the following algorithm to delete a time-value pair
(tα, zα). We assume that the time points are distributed uniformly between t1
and tn. If the point to be deleted is a boundary point for two pieces, say zb−1,b

and zb,b+1, we approximate the last second point (tβ , zβ) in the piece zb−1,b

and the second point (tγ , zγ) in the piece zb,b+1. Then shrink those two pieces
to zb−1,β and zγ,b+1, and insert one new piece zβ,γ into the piecewise linear
function. For other cases, the piecewise linear function need not be changed.
The deletion diagram is shown in Figure 4.

β
Ψ/2

original pieces new pieces
v

v’

u

Fig. 3. The insertion operation

———————————————————————————————————

DELETION ALGORITHM:

Input: A piecewise linear function for the data set (t1, z1), . . . , (tn, zn).
Output: A new piecewise linear function.

Using binary search to find the time interval where the point (tα, zα) locates
if (tα, zα) is a boundary point for two pieces, say zb−1,b and zb,b+1 then
tβ := tb −

tn−t1
n

zβ := zb−1,b(tβ)
tγ := tb + tn−t1

n

zγ := zb,b+1(tγ)
change the piece zb−1,b to zb−1,β

change the piece zb,b+1 to zγ,b+1

insert one new piece zβ,γ

end-if

———————————————————————————————————

Remark on Modify Operation: For modify operation, we can do it by ex-
ecuting delete-then-insert operations. First delete the specified data point from
the piecewise linear function, then insert the data point with the new value. By
doing so, the value of the data point to be modified is changed to its new value.

The Comparisons of the Interpolation Methods: The linear parametric
constraint transformation method outperforms other interpolation methods in
some important aspects.

First, other interpolation methods needs much more computational time com-
pared with the piecewise linear interpolation transformation since they use higher
polynomial functions in their interpolation algorithms.

Ψ/2

new pieces

β

b-1

γ

α

b

b+1

original pieces

Fig. 4. The deletion operation

Second, the cost of the update operation on other methods is much more
than that on the piecewise linear interpolation transformation. Actually, other
interpolation methods need reconstruct the whole polynomial function. But us-
ing the method we propose before, the update operation only needs log(n) time
to insert one time point.

4 Algebraic Operators and Queries

We implemented the algorithm for transforming a set of temporal data into
a piecewise linear constraint database. We also implemented a prototype con-
straint database system called TAQS, (pronounced: tax), which is short for
Three-dimensional Animation and Query System. This section describes the ca-
pabilities of this system.

We define algebraic operators on the data model introduced in Section 2. Our
TAQS system provides users the standard relational algebra operations, such as
Project and Join, as well as some standard aggregate operators, such as Min and
Max. The following will describe these operations briefly.

Generally, the constraint tuples has the form of R(a1, . . . , am, z1, . . . , zn),
where a1, . . . , am are m general attributes, and z1, . . . , zn are n geographically
distributed attributes represented by piecewise linear functions of t (called func-

tional attributes later).

Select: The select operator will return the tuples which satisfy the select con-
dition.

Example 3. For the relation Temperature(SN, Temp(t)) in Table 3, the follow-
ing algebraic query will find the temperature at time t = 1.5:

σt=1.5Temperature

The result of this query will be the temperatures at time t = 1.5 shown in
Table 7. The result is also a relation (called Temperature 1.5 relation) which can
be used by other queries.

SN Temp(1.5)

1 81.500
2 75.625
3 84.667
4 81.625

Table 7. The select result

Project: This operator is used to reorder the columns of a relation or to elim-
inate some columns of a relation. It creates a new relation which contains the
specified columns of the original relation.

Example 4. For the relation Temperature 1.5 in Example 3, the following query
will only return the temperature values.

ΠTempTemperature 1.5

The result is shown in Table 8.

Temp(1.5)

81.500
75.625
84.667
81.625

Table 8. The project result

Add/Subtract: The add or substract operation is adapted to functional at-
tributes of relations. The result of add/substract two relations R1 and R2 will
create a new relation R, where the values of those corresponding functional at-
tributes in R are the piecewise linear functions such that the values at any time
instance are the same as the addition/substraction of the values at that time of
R1 and R2.

Example 5. Suppose there are another relation Temperature2(SN, Temp(t))
which has the same number of weather stations as shown in Table 9.

Executing the following query:

Temperature+ Temperature2

will create a new relation Temperature addition shown in Table 10.

Intersection: This operation returns the intersection points of two relations to
the user. The two relations should have the same attribute names and types.

SN Temp(t) t

1 70 + 3.00t −∞ < t ≤ 1
1 65 + 8.00t 1 < t + ∞

2 75 + 3.75t −∞ < t < +∞

3 80 + 5.00t −∞ < t ≤ 3
3 104 − 3.00t 3 < t < +∞

4 80 − 2.25t −∞ < t < +∞

Table 9. The Temperature2 relation

SN Temp(t) t

1 145 + 5.00t −∞ < t ≤ 1
1 133 + 17.00t 1 < t ≤ 2
1 147 + 10.00t 2 < t + ∞

2 145 + 7.50t −∞ < t < +∞

3 160 + 11.00t −∞ < t ≤ 1
3 168.67 + 2.33t 1 < t ≤ 3
3 192.67 − 5.67t 3 < t < +∞

4 165 − 4.50t −∞ < t < +∞

Table 10. The add result

Example 6. Given the relations Temperature and Temperature2, the following
query:

Temperature ∩ Temperature2

will return the tuples whose temperatures are the same. The result is shown in
Table 11.

SN Temp(t) t

1 87.66 t = 2.83
3 80.00 t = 0.00
3 85.65 t = 1.13
3 −35.36 t = 46.45

Table 11. The intersection result

Join: This operator executes the natural join operation for two relations A and
B which have some attributes in common. It will match these same attributes,
then returns the tuples whose projection onto the attributes of A belong to A
and whose projection onto the attributes of B belong to B.

Example 7. Suppose there are two relations Temperature(SN, Temp(t)) and
Precipitation(SN,Prep(t)) defined in Table 12. The natural join of these two
relations:

Temperature ⊲⊳ Precipitation

will create a new relation, which includes three attributes SN , Temp, and Prep.
The result is shown in Table 13.

SN Prep(t) t

1 1050 + 50.00t −∞ < t < +∞

2 980 + 35.00t −∞ < t ≤ 5
2 1230 − 15.00t 5 < t + ∞

3 1040 − 20.00t −∞ < t < +∞

Table 12. The Precipitation relation

SN Temp(t) Prep(t) t

1 75 + 2.00t 1050 + 50.00t −∞ < t ≤ 1
1 68 + 9.00t 1050 + 50.00t 1 < t ≤ 2
1 82 + 2.00t 1050 + 50.00t 2 < t < +∞

2 70 + 3.75t 980 + 35.00t −∞ < t ≤ 5
2 70 + 3.75t 1230 − 15.00t 5 < t < +∞

3 80 + 6.00t 1040 − 20.00t −∞ < t ≤ 1
3 88.67 − 2.67t 1040 − 20.00t 1 < t < +∞

Table 13. The join result

Min/Max: The Min/Max operator will return the minimum/maximum value
within a specified time interval.

Example 8. For the relation Temperature in Table 3, the following query will
find the minimum temperature during the time interval 1 ≤ t ≤ 2:

min(σ1≤t≤2Temperature)

The result of this query will be the minimum temperature during that time
interval as shown in Table 14.

5 Animation

For spatiotemporal databases, an animation can reveal more information than
could be learned by looking at tables of numbers. For the geographical dis-
tributed data, such as the population or precipitation distribution in states or

SN Temp(t) t

1 77 t = 1
2 73.75 t = 1
3 83.33 t = 2
4 80.5 t = 2

Table 14. The minimum result

counties of a state. The areas of states or counties (x, y values) can be repre-
sented by polygons. The z values (population, precipitation, temperature, etc.)
can be represented by piecewise linear functions. These data can be animated
by 3-D animation or cartogram animations.

3-D Animation: In 3-D animation, each constraint tuple in the constraint
database can be expressed by a 3-D object. In 3-D animation, at each time
instance t, the “height” of the object represents the z value of the constraint
tuple at that time t. Besides of using the “height” to represent the z value, we
can also give each height value a different color or gray scale to make the z values
more clear.

Figure 5 and Figure 6 are two examples of the 3-D animation snapshots for
daily mean temperature in the continental U.S. during winter and summer. Note
that the higher the “height” of an object is, the lighter its color. This make it
more clear, for example, that the mean temperature in Texas is higher than that
in North Dakota during summer.

Fig. 5. A Snapshot for 3-D animation of Daily Mean Temperature During Winter

Value-by-Area Cartogram Animation: Besides of 3-D animations, another
possible way to display constraint tuples is to use value-by-area cartogram ani-
mation [10]. In value-by-area cartogram [5], instead of giving a “height” to each
area, each area is enlarged or shrunk proportionally to its z value. Figure 7 is

Fig. 6. A Snapshot for 3-D animation of Daily Mean Temperature During Summer

a value-by-area cartogram for the U.S. population in 1990. Value-by-area car-
togram animation can be done by displaying the cartogram snapshots consecu-
tively [10].

Fig. 7. A Value-by-area Cartogram for the U.S. Population in 1990

Value-by-area cartogram animation is a 2-D animation for 3-D data. Hence,
it avoids a problem that could occur in the 3-D animation, namely, the problem
when a high-value but nearer object obstructs the view of some low-value and
further object. However, the price is the distortion of the objects. For some data
distribution, the distortion may be so much that it may be difficult to construct
the cartogram and may be also difficult to recognize the objects in the animation.

In contrast, the 3-D animation does not distort the object, and it seems more
natural for people to view the “value” as a “height” of an object.

By now we have only discussed the simple case such that the x, y values
do not change by time. Hence the x, y values can be represented by points or
polygons. It is not always the case. For example, sometimes we may want to
animate the population growth for cities in a state, both the city area and the
city population change by time. In this case, it may be convenient to represent
the city area of x, y by constraint tuples.

If an x, y area is represented by constraint tuples, for example, by conjunc-
tion of linear inequalities. It can not be immediately displayed on the computer
screen, but has to be converted to some explicit boundary representation (for
example, vertices of a polygon). Such a conversion is relatively time-consuming.
[2] gives a model, called Parametric Spaghetti Data Model to convert and then
efficiently animate 2-D animation for moving objects. However, the algorithms
in [2] can not be used for general 3-D spatiotemporal objects. For the case that
the change of x, y is independent to z, it is possible to apply algorithms as in [2]
to compute the boundary of x, y, while getting z value from piecewise functions
to have an efficient 3-D animation.

It is also possible to combine the 3-D animations and the value-by-area an-
imations to animate some more complex cases. It is possible to compute the
natural join for relations R1(x, y, z1) and R2(x, y, z2) in which R1 is the relation
for gross state revenue and R2 is the state per-capita revenue. We may want to
view the animation for this join result. In this animation, for each animation
snapshot, we may use a value-by-area cartogram to represent the gross revenue
and the “height” of each area to represent the per-capita revenue.

Similarity Queries: It is possible to query the similarity for the animations.
In practice, people may want to know which map in a set of maps is similar to
a given map. This can be done by using similarity queries.

The definition of the similarity depends on the actual situation. There is no
universal formula to define the similarity. Our system allows user to change the
evaluation rule for similarity measure.

Example 9. Suppose there are the relation RPrec for precipitation. The user
wants to find in which year the average precipitation of the U.S. is the closest
to that in the year 1997.

To query this information, the user may define the similarity measure rule
on cartograms for precipitation. The similarity of two cartograms A and B with
n states and each state with area ai and precipitation values A.zi and B.zi,
respectively, for 1 ≤ i ≤ n may be defined as follows:

sim(A,B) =

n
∑

i=1

ai | A.zi −B.zi |

6 Conclusion and Future Works

In this paper, we proposed a linear constraint database system that supports the
interpolation and update of the input data, algebraic queries and 3-D animation.
Using appropriate queries, the system can support predictions by available data
in the databases. The animation provides an expressive visualization that is
capable of revealing more information than viewing numbers and tables.

For the future work, one extension for the 3-D animation is to support the ro-
tation, scaling and zooming of the objects. Such abilities will make the animation
more expressive.

For queries, an important feature is to support the similarity queries more
efficiently. We are planning to explore indexing methods that support efficient
similarity queries.

References

1. A. Brodsky, V. Segal, J. Chen and P. Exarkhopoulo. The CCUBE Con-
straint Object-Oriented Database System. In: Proc. ACM SIGMOD, pp.
577-579, 1999.

2. J. Chomicki, Y. Liu and P. Revesz. Animating Spatiotemporal Constraint
Databases. In: Proc. Workshop on Spatiotemporal Database Management,
Edinburgh, Scotland, September 1999.

3. J. Chomicki and P. Revesz. Constraint-Based Interoperability of Spa-
tiotemporal Databases. In: Proc. 5th International Symposium on Spatial
Databases, Berlin, Germany, pp. 142-161, July 1997.

4. P. J. Davis. Interpolation and Approximation, Dover Publications, 1975.
5. B. Dent. Cartography Thematic Map Design, McGraw-Hill, 1999.
6. S. Grumbach, P. Rigaux and L. Segoufin. The DEDALE System for Com-

plex Spatial Queries. In: Proc. ACM SIGMOD Conference, Estes Park, Col-
orado, pp. 49-58, August 1997.

7. P. C. Kanellakis, G. M. Kuper and P. Revesz. Constraint Query Languages.
Journal of Computer and System Sciences, vol. 51, no. 1, pp. 26-52, August
1995.

8. P. Kanjamala, P. Revesz and Y. Wang. MLPQ/GIS: A GIS using linear
constraint databases. In: Proc. the 9th COMAD International Conference
on Management of Data, Tata McGraw Hill, pp. 389-393, 1998.

9. National Climatic Data Center, (NCDC). Monthly Pre-
cipitation Data for U.S. Cooperative & NWS Sites. In:
http://www.ncdc.noaa.gov/pub/data/coop-precip/.

10. M. Ouyang, and P. Revesz. Algorithms for Cartogram Animations. In: Proc.
4th International Database Engineering and Applications Symposium 2000,
to appear.

11. J. Paredaens. Spatial Databases, The Final Frontier. In: Proc. International
Conference on Database, Springer-Verlag, pp. 14-32, 1995.

12. F. Preparate and M. Shamos. Computational Geometry, Springer-Verlag,
1985.

13. W. Press. Numerical recipes in C : the art of scientific computing, Cam-
bridge; New York : Cambridge University Press, 1988.

14. P. Revesz, R. Chen, and et al. The MLPQ/GIS Constraint Database System.
In: Proc. ACM SIGMOD, 2000.

15. P. Revesz and Y. Li. MLPQ: A Linear Constraint Database System with
Aggregate Operations. In: Proc. 1st International Database Engineering and
Applications Symposium, 1997.

16. L. Vandeurzen, M. Gyssens and D. Van Gucht. On the Desirability and Lim-
itations of Linear Spatial Database Models. In: Proc. International Sympo-
sium on Large Spatial Databases, Springer-Verlag, pp. 14-28, 1995.

