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ABSTRACT
In this paper we give a review of constraint databases, a field
that was started by Paris Kanellakis, Gabriel Kuper and the
author. The review includes basic concepts of data repre-
sentation, constraint query languages, and query evaluation.
We also illustrate applications of constraint databases in the
areas of model checking, data mining, trust management,
Diophantine polynomial equations, and moving objects.

Categories and Subject Descriptors
H.2 [Database Management]: Languages, Logical Design

General Terms
Languages, Management, Security

Keywords
constraint databases, variable elimination, data mining, Dio-
phantine equations, model checking, moving points, trust
management

1. INTRODUCTION

In this paper we review some of the basic concepts of
constraint databases that were introduced in 1990 in [20, 21]
by Paris Kanellakis, Gabriel Kuper and the author, who
was a student of Paris Kanellakis between 1985 and 1991
and obtained his Ph.D. degree in 1991 at Brown University
with a doctoral dissertation on this topic [29].

Since its introduction, constraint databases developed into
an interesting and active subfield of database systems. There
are several recent books on the subject, including the edited
comprehensive volume [24] and the introductory textbook [32].

∗This work was supported in part by USA National Science
Foundation grant EIA-0091530 and a Gallup Research Pro-
fessorship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCK50, June 8, 2003, San Diego, California, USA
Copyright 2003 ACM 1-58113-604-8/03/0006 ...$5.00.

The organization of this paper is the following. Section 2
describes the basic concepts of constraint databases giving
several examples. Section 3 describes Datalog queries of con-
straint databases. Section 4 describes the main techniques
for the evaluation of Datalog queries of constraint databases.
Section 5 discusses model checking, Section 6 discusses data
mining, Section 7 discusses trust management, Section 8 dis-
cusses Diophantine polynomial equations, and Section 9 dis-
cusses moving objects as sample applications of constraint
databases. Section 10 discusses menu-based application de-
velopment on top of a constraint database system. Finally,
Section 11 gives some conclusions and directions for further
research in this area.

2. CONSTRAINT DATABASES

Consider a shallow river with some stones in it as shown
in Figure 1. We can represent the stones in a relational
database as follows:

Stone

X Y

0 19
6 8

15 12
25 5

The above relational database is equivalent to the follow-
ing constraint database, where comma means “and”:

Stone

X Y

x y x = 0, y = 19
x y x = 6, y = 8
x y x = 15, y = 12
x y x = 25, y = 5

In the above we used only equality constraints of the form
u = c where u is a variable and c is a constant. We call each
row of the table a constraint tuple. The intended meaning of
a constraint tuple is that any instantiation of the variables
that satisfies the constraint belongs to the relation. For
example, if we instantiate x by 6 and y by 8 in the second
row, then we get the constraint 6 = 6 and 8 = 8, which is
obviously true. Hence (6, 8) satisfies the constraint in the
second row and belongs to the Stone relation as expected.

Any relational database can be translated similarly into
a constraint database. However, constraint databases can
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Figure 1: A shallow river with some stones.

represent much more. In particular, we can express the set
of points that belong to the two river banks as follows:

Bank

Name X Y

n x y n = “A”, −x − y ≥ 0
n x y n = “B”, +x + y ≥ 41

The above constraint database uses equality constraints
over strings, and addition constraints of the form ±u ± v ≥
b where u and v are integer variables and b is an integer
constant.

In the case of the Stone relation only a finite number of
solutions exist. However, in the case of the Bank relation,
even if we restrict the variables to range over the integer
numbers, there is an infinite number of solutions. Hence the
Bank relation is infinite, although it is finitely represented
using constraints.

3. DATALOG WITH CONSTRAINTS

Datalog is a rule-based language that is related to Prolog,
which is a popular language for implementing expert sys-
tems. Each rule is a statement saying that if some points
belong to some relations, then other points must also be-
long to a defined relation. Each Datalog query contains a
Datalog program and an input database.

We divide the set of relation names R into defined relation
names D and input relation names I. Each Datalog query

consists of a finite set of rules of the form:

R0(x1, . . . , xk) :— R1(x1,1, . . . , x1,k1),

...

Rn(xn,1, . . . , xn,kn). (1)

where each Ri is either an input relation name or a defined
relation name, and the xs are either variables or constants.

The relation names R0, . . . , Rn are not necessarily dis-
tinct. They could also be constraint relation names, such
as the equality constraint relation = and the addition con-
straint relation defined above. We write the constraint re-
lations using the usual notation. For example, we will write
u = v instead of Equal(u, v) and write u + v ≥ b instead of
Addition(u, v, b). When we have u ≥ v and v ≥ u, for any
u and v, then we also abbreviate it as u = v.

The preceding rule is read “R0 is true if R1 and . . . and
Rn are all true.” R0 is called the head and R1, . . . , Rn is
called the body of the rule.

We can represent as a set of Datalog rules any constraint
database. For example, the input relation Stone can be
represented by:

Stone(x, y) :— x = 0, y = 19.
Stone(x, y) :— x = 6, y = 8.
Stone(x, y) :— x = 15, y = 12.
Stone(x, y) :— x = 25, y = 5.

Similarly, the two banks of the river can be represented by:

Bank(n, x, y) :— n = “A′′, −x − y ≥ 0.

Bank(n, x, y) :— n = “B′′, +x + y ≥ 41.
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3.1 The Stepping Stone Problem

Imagine that we arrive at a big but shallow river and
we would like to get to the other shore. The river has in
it several large stones and we would like to cross the river
without getting wet. The question is whether there is a way
to do that assuming that the maximum size step we can take
is a fixed length, say 10 units.

An instance of the stepping stone problem is shown in
Figure 1. In that instance, we can cross the river starting
from point (0, 0) of bank A, then stepping on the stone at lo-
cation (6, 8), then stepping on the stone at location (15, 12),
and from there stepping on point (22, 19) of bank B. It can
be calculated that the distance between any pair of adjacent
points on this path is at most 10 units.

In this problem we clearly need the Euclidean distance
function, which depends on multiplication and difference.
Since we do not have these operators, we will define them
using Datalog with addition constraints. First we define the
difference relation D as:

D(x, y, z) :— x = y,
z = 0.

D(x, y, z) :— D(x′, y, z′),
x = x′ + 1,
z = z′ + 1.

Then we define the multiplication relation M as:

M(x, y, z) :— x = 0, y = 0, z = 0.

M(x, y, z) :— M(x′, y, z′), D(z, z′, y),
x = x′ + 1.

M(x, y, z) :— M(x, y′, z′), D(z, z′, x),
y = y′ + 1.

We also define the absolute difference relation AD as follows:

AD(x, y, z) :— D(x, y, z), x ≥ y.

AD(x, y, z) :— D(y, x, z), y ≥ x.

Suppose that our maximum step size from stone to stone is
10 units. Then we can define using the above three relations,
the Close relation, which contains pairs of points within 10
units of each other, as follows:

Close(x′, y′, x, y) :— AD(x, x′, dx),
AD(y, y′, dy),
M(dx, dx, dx2),
M(dy, dy, dy2),
dx2 + dy2 ≤ 100.

The last line is equivalent to −dx2 − dy2 ≥ −100, which
is an addition constraint. We can find whether we can get
from a point on shore A to a point on shore B via a sequence
of steps over the stones in the river as follows:

Step(x, y) :— Bank(n, x, y), n = “A′′.

Step(x, y) :— Step(x′, y′), Stone(x, y),
Close(x′, y′, x, y).

Reach(x, y) :— Bank(n, x, y), n = “B′′,
Step(x′, y′), Close(x′, y′, x, y).

4. EVALUATION TECHNIQUES

4.1 Proof Tree

Consider a Datalog rule of the form (1). We can define a
Datalog rule instantiation as a substitution of each variable
by constants in a rule. We say that an instantiated relation
Ri in the rule body is true if an only if the instantiation is
a solution of a constraint tuple in Ri. We also define rule
application as the addition of the instantiated tuple in the
rule head to the relation R0, if all the instantiated tuples in
the rule body are true. For example,

Step(0, 0) :— Bank(“A′′, 0, 0), “A′′ = “A′′.

is an instantiation of the first rule for the Step relation. We
instantiated x and y by 0 and n by the string “A”. Since the
tuple (“A′′, 0, 0) is a solution of the first constraint tuple of
the Bank relation, and “A′′ = “A′′ is obviously true, we
can add to the Step relation the tuple (0, 0). As another
example,

Step(6, 8) :— Step(0, 0), Stone(6, 8),
Close(0, 0, 6, 8).

is an instantiation of the second rule for Step. In this case,
Step(0, 0) is true because we just added above the tuple
(0, 0) to the Step relation. Stone(6, 8) is true because (6, 8)
satisfies the second constraint tuple of the Stone relation.
Similarly, it can be shown that (0, 0, 6, 8) satisfies the con-
straint relation Close.

By a sequence of rule applications, we can prove any par-
ticular constant tuple that is in an output relation to be in
it. It is easy to draw any proof as a tree in which each inter-
nal node is the head of an instantiated rule, and its children
are the instantiated relations in the body of the rule. For
example, the picture in Figure 2 and the proof tree in Fig-
ure 3 show how we can get from one side of the river to the
other side. We call proof-based semantics of a Datalog query
Q and input database I the set of constant tuples that have
a proof, denoted �Q,I .

4.2 Bottom-Up Constraint Evaluation

The constraint proof-based semantics of Datalog queries
defines the set of constraint tuples that can be derived in
the following way.

We call a constraint instantiation of a rule the substitu-
tion of each relation Ri in the body by a constraint tuple ti

that is in Ri. The substitution renames the variables in ti

to those variables with which Ri occurs in the rule.

Let Q be a query, I an input constraint database, and
R0(x1, . . . , xk) a constraint relation scheme and let t be a
constraint over the variables x1, . . . , xk. We say that t ∈ R0

has a constraint proof using Q and I , written as �c
Q,I t ∈ R0,

if and only if:
R0 ∈ I and t ∈ R0 or
R0 ∈ D and for some rule of form (1) in Q there is a con-
straint instantiation

R(x1, . . . , xk) :— t1(x1,1, . . . , x1,k1), . . . , tn(xn,1, . . . , xn,kn).

where �c
Q,I ti ∈ Ri for each 1 ≤ i ≤ n and

t = ∃ ∗ t1(x1,1, . . . , x1,k1), . . . , tn(xn,1, . . . , xn,kn).
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Figure 2: A solution for the stepping stone problem.

Step(15, 12)

Stone(15, 12)

Stone(6, 8) Close(0, 0, 6, 8)

Bank(A, 0, 0)

Bank(B,22,19)

Reach(22, 19)

Step(0, 0)

Step(6, 8)

Close(15,12, 22,19)

Close(6, 8, 15, 12)

Figure 3: A proof tree for the Step relation.
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where ∗ is the list of the variables in the body of the rule
that do not occur in the head of the rule.

We call constraint rule application the constraint instan-
tiation of a rule, elimination of the unneeded variables, and
the addition of t to R0, if t is not already subsumed by the
other constraint tuples already in R0. A constraint tuple is
subsumed by other constraint tuples, if its solution space is
included in the solution space of the other tuples.

The constraint proof-based semantics of Datalog queries
is the following. Each Datalog query Q is a function that
on any input constraint database I returns for each relation
name R the relation {t : �c

Q,I t ∈ R}.
The following theorem shows that the proof-based seman-

tics and the constraint proof-based semantics are equivalent.

Theorem 4.1. The following equality is true:

{(a1, . . . , ak) : �Q,I R(a1, . . . , ak)} = {Mod(t) : �c
Q,I t ∈ R}

The bottom-up constraint evaluation of Datalog queries
starts from an input constraint database and query and re-
peatedly applies some rule of the query until no new con-
straint tuples can be derived and added to the constraint
database. We consider a constraint tuple of a relation new
if there is some instantiation that makes it true but does not
make any other constraint tuple of that relation true.

It is also possible to extend the least fixed point semantics
similarly. Then it can be shown that the constraint least
fixed point and the constraint proof-based semantics are
equivalent. Hence in the following, we keep using lfp(Q(D))
to describe the semantics of a Datalog query Q on input con-
straint database D.

Sometimes we cannot evaluate lfp(Q(D)) precisely, but
we can approximate it. The main idea behind the approx-
imation is that in an addition constraint the value of the
bound may be so small that we do not care too much about
it. This leads to the idea of placing a limit l on the allowed
smallest bound. To avoid smaller bounds than l, we may do
two different modifications to a constraint tuple:
Modification 1: We change in the constraint tuple the
value of any bound b to be max(b, l).
Modification 2: We delete from each constraint tuple any
constraint with a bound that is less than l.

We can apply either of these modifications to each tuple in
an input constraint database. During the constraint bottom-
up evaluation we can also apply either of the modifications
to the result of each rule application. In this way, we obtain
modified bottom-up evaluations.

Given a query Q, input database D, and a fixed constant
l, let Q(D)l and Q(D)l denote the output of the first and
second modified evaluation algorithms, respectively. We can
show the following.

Theorem 4.2. For any Datalog with integer addition con-
straint query Q, input database D, and constant l < 0, the
following is true:

Q(D)l ⊆ lfp(Q(D)) ⊆ Q(D)l

Further, Q(D)l and Q(D)l can be evaluated in finite time.
We can also get better and better approximations using

smaller and smaller values as bounds. In particular, we have
the following theorem.

Theorem 4.3. For any Datalog with addition constraints
query Q, input database D, and constants l1 and l2 such that
l1 ≤ l2 < 0, the following hold:

Q(D)l2 ⊆ Q(D)l1 and Q(D)l1 ⊆ Q(D)l2

4.3 Evaluation of the stepping stones query

4.3.1 Difference and Absolute Difference

Let us rewrite the rules for the difference relation into the
following logically equivalent form:

D(x, y, z) :— x − y ≥ 0, y − x ≥ 0,
z ≥ 0, −z ≥ 0.

D(x, y, z) :— D(x′, y, z′),
x − x′ ≥ 1, x′ − x ≥ −1,
z − z′ ≥ 1, z′ − z ≥ −1.

Taking the first rule and renaming x by x′ and z by z′, we
get the following:

D(x′, y, z′) :— x′ − y ≥ 0, y − x′ ≥ 0,
z′ ≥ 0, −z′ ≥ 0.

Now substitute the right hand side of the above into the
second rule for D and get:

D(x, y, z) :— x′ − y ≥ 0, y − x′ ≥ 0,
z′ ≥ 0, −z′ ≥ 0,

x − x′ ≥ 1, x′ − x ≥ −1,
z − z′ ≥ 1, z′ − z ≥ −1.

We can eliminate the variables x′ and z′ by adding the first
and third rows and also adding the second and fourth rows.
We get:

D(x, y, z) :— x − y ≥ 1, y − x ≥ −1,
z ≥ 1, −z ≥ −1.

This is the same as the first constraint tuple for D except
that the right hand side has the bounds 1 and −1 instead
of 0. We can continue similarly the constraint rule applica-
tions. For the ith application, we get:

D(x, y, z) :— x − y ≥ i, y − x ≥ −i,

z ≥ i, −z ≥ −i. (2)

The rule applications can continue similarly l times. Hence
we get one copy of Equation (2) for each 0 ≤ i ≤ l. In the
(l + 1)st rule application we get:

D(x, y, z) :— x − y ≥ −l + 1, y − x ≥ l − 1,
z ≥ −l + 1, −z ≥ l − 1.

However, by Modification 1 we would get:

D(x, y, z) :— x − y ≥ −l + 1, y − x ≥ l,
z ≥ −l + 1, −z ≥ l.

because the bound l−1 is replaced with l as max(l−1, l) = l.
This conjunction of constraints is unsatisfiable. Hence we do
not add anything to the D relation.

By Modification 2 we would get:

D(x, y, z) :— x − y ≥ −l + 1,

z ≥ −l + 1. (3)
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because the bound l − 1 is less than l and is deleted. The
conjunction of the constraints on the right hand side is sat-
isfiable. But can we use this new constraint tuple in another
rule application? If we substitute in it x by x′ and z by z′,
then we get the following:

D(x′, y, z′) :— x′ − y ≥ −l + 1,
z′ ≥ −l + 1.

Now substitute the right hand side of the above into the
second rule for D and get:

D(x, y, z) :— x′ − y ≥ −l + 1,
z′ ≥ −l + 1,

x − x′ ≥ 1, x′ − x ≥ −1,
z − z′ ≥ 1, z′ − z ≥ −1.

Eliminating variables x′ and z′, we get:

D(x, y, z) :— x − y ≥ −l + 2,
z ≥ −l + 2.

Since we got a set of constraints that is subsumed by the
previously derived constraint tuple, we do not add this to
the relation D. For any l, the lower bound of D(x, y, z)
will be the union of Equation (2) for 0 ≤ i ≤ −l and the
upper bound will be the union of the lower bound and Equa-
tion (3). Given, D, it is easy to find the closed form of AD.

4.3.2 Multiplication

We claim that the lower bound of M(x, y, z) is:

M(x, y, z) :— x ≥ j, −x ≥ −j,

y ≥ i, −y ≥ −i,

z ≥ ij, −z ≥ −ij. (4)

for each 0 ≤ i, j ≤ −l such that l ≤ −ij.
We prove by induction on i and j that Equation (4) holds.

The first rule of multiplication clearly implies the case for
i = j = 0. Let us assume for any 0 ≤ i ≤ −l and 0 ≤ j < −l
and prove for i, and j + 1. We use the second rule for
multiplication. After the necessary substitutions we get:

M(x, y, z) :— x′ ≥ j, −x′ ≥ −j,
y ≥ i, −y ≥ −i,
z′ ≥ ij, −z′ ≥ −ij,

z − z′ ≥ i, z′ − z ≥ −i,
x − x′ ≥ 1, x′ − x ≥ −1.

The first three lines of constraints come from Equation (4)
with the renaming of x by x′ and z by z′. The fourth and
the second line come from Equation (2) with the renaming
of x by z, y by z′, and z by y. The last line is a rewrite of
x = x′+1 in terms of addition constraints. After eliminating
x′ and z′ we get:

M(x, y, z) :— x ≥ j + 1, −x ≥ −(j + 1),

y ≥ i, −y ≥ −i,

z ≥ i(j + 1), −z ≥ −i(j + 1). (5)

If l ≤ −i(j + 1), then the above is the same as Equation (4)
with j + 1 instead of j. Otherwise, if l > −i(j + 1), then
Modification 1 changes the above to the unsatisfiable:

M(x, y, z) :— x ≥ j + 1, −x ≥ −(j + 1),
y ≥ i, −y ≥ −i,
z ≥ i(j + 1), −z ≥ l.

hence nothing more is derived. The third rule can be used
similarly to prove the condition for i + 1 and j for any 0 ≤
i < −l and 0 ≤ j ≤ −l.

In each rule application either i or j is increased by one.
If either of these increase to greater than −l, then again we
get an unsatisfiable condition by Modification 1. Hence the
lower bound in Equation (4) is exact.

Now let us find the upper bound of M . Clearly the upper
bound contains all the tuples of the lower bound. However,
if l > −i(j + 1) in Equation (5), and we use Modification 1
instead of Modification 2, then we get:

M(x, y, z) :— x ≥ j + 1, −x ≥ −(j + 1),
y ≥ i, −y ≥ −i,
z ≥ i(j + 1).

Since this is satisfiable, we have to see what other constraint
tuples we can derive using it. It is easy to see that after
applying the second rule and eliminating x and x′ again, we
get if −(j + 2) ≤ l:

M(x, y, z) :— x ≥ j + 2, −x ≥ −(j + 2),
y ≥ i, −y ≥ −i,
z ≥ i(j + 2).

We can continue applying the second rule similarly until the
upper bound of x will be −l + 1. Then by Modification 2
we get for any 0 ≤ i ≤ l:

M(x, y, z) :— x ≥ −l + 1,

y ≥ i, −y ≥ −i,

z ≥ i(−l + 1). (6)

By symmetry, by applying repeatedly the third rule until
the lower bound of y will be −l + 1 and using Modification
2 we get for any 0 ≤ j ≤ l:

M(x, y, z) :— x ≥ j, −x ≥ −j,

y ≥ −l + 1,

z ≥ (−l + 1)j. (7)

If the lower bound of both x and y reach l + 1, then we get:

M(x, y, z) :— x ≥ −l + 1,

y ≥ −l + 1,

z ≥ (−l + 1)2. (8)

The upper bound of M will be the union of the lower bound
in Equation (4) and the constraint tuples in Equations (6-8).

As l decreases the lower and upper approximations for
both D and M get ever closer to our usual definitions of the
difference and multiplication relations.

4.3.3 The Other Relations

If we choose l < −100, both the upper and the lower
bound of Close will be:

Close(x′, y′, x, y) :— x − x′ = 0, y − y′ = 0.

Close(x′, y′, x, y) :— x − x′ = 0, y − y′ = 1.

Close(x′, y′, x, y) :— x − x′ = 0, y − y′ = 2.

Close(x′, y′, x, y) :— x − x′ = 0, y − y′ = 3.

...
...

...

Close(x′, y′, x, y) :— x − x′ = 6, y − y′ = 8.

Close(x′, y′, x, y) :— x − x′ = 8, y − y′ = 6. (9)
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Now let us use the input relations Stone and Bank to find
Step and Reach. Applying the first rule will yield:

Step(x, y) :— −x − y ≥ 0.

This simply means that we can be at any point of bank
A of the river. Now any application of the second rule for
Step is going to derive only (x, y) values that are already in
the Stone relation. For example, let’s consider the following
application of the second rule using the above constraint
tuple for Step, the second constraint tuple for Stone, and the
second to the last constraint tuple for Close in (9) above. We
again expand each equality into a conjunction of inequalities.

Step(x, y) :— −x′ − y′ ≥ 0,
x ≥ 6, −x ≥ −6,
y ≥ 8, −y ≥ −8,

x − x′ ≥ 6 x′ − x ≥ −6,
y − y′ ≥ 6 y′ − y ≥ −6.

Eliminating x′ and y′ we get:

Step(x, y) :— x ≥ 6, −x ≥ −6,
y ≥ 8, −y ≥ −8,

−x − y ≥ −12.

The last constraint is implied by the first two rows. Hence
simplifying we get:

Step(x, y) :— x ≥ 6, −x ≥ −6,
y ≥ 8, −y ≥ −8.

which is equivalent to the second constraint tuple for Stone.
This means that we can step on the second stone. Similarly,
we can prove that we can also step on the stone at (15, 12)
and on location (22, 19) of bank B of the river.

Although we used an approximation for the difference,
multiplication, and absolute difference relations, the output
of the other relations were exactly calculated with matching
lower and upper bounds. This is because for any particular
instance of this problem where the absolute value of any
stone coordinate is at most some number n, we only need
to find the difference and product of numbers that are at
most 2n. Hence we only need to use a finite subset of the
difference and products relations on the integer numbers.
The above approximation with l = −2n returns the needed
parts of the D and M relations.

5. MODEL CHECKING

Constraint databases also influenced automata theory. In
this section we first describe timed, constraint, and refine-
ment automata. Then we consider the problem of symbolic
model checking of such automata [28, 7, 1] and explain how
it may be solved using constraint databases.

Timed automata, which was introduced by Alur and Dill [2],
are automata where each state has a finite number of state
variables, whose values change on each transition from a
state to another state. Each transition is composed of a set
of guard constraints that need to be satisfied and a set of
assignment statements that change the values of the state
variables.

Timed automata can be generalized into constraint au-
tomata, which allow guard constraints that are input rela-
tions. Of course, for any input database instance, in the
guard constraints input database relations can be replaced
by disjunctions of conjunctions of constraints that represent

the relation. The connection between Datalog queries and
constraint automata is very close, because any constraint au-
tomata can be expressed as a Datalog query. Translations of
constraint automata into constraint logic programming [18]
or constraint Datalog queries are presented by Fribourg and
Richardson [9], Delzanno and Podelski [8], and Revesz [30,
31].

Example 5.1. Consider a tree described by the input re-
lation Parent(x, y) which is true if x is a child of y in the
tree. Let us find those pairs of nodes that are independent,
that is, neither is an ancestor of the other. It can be done
using the following Datalog query.

Indep(x′, y′) :— Parent(x′, z), Parent(y′, z),
x′ �= y′.

Indep(x′, y′) :— Indep(x, y), Parent(x′, x),
y′ = y.

Indep(x′, y′) :— Indep(x, y), Parent(y′, y),
x′ = x.

In the above, the first rule says that if x′ and y′ are different
children of the same parent z, then they are independent.
The second rule says that if x and y are independent and x
is the parent of x′, then x′ and y′ = y are also independent.
Similarly, the third rule says that if x and y are indepen-
dent, and y is the parent of y′, then x′ = x and y′ are also
independent.

The left side of Figure 4 shows the constraint automaton
that is equivalent to the above Datalog query. The stare
variables are x and y, the initial state is Initial, and the
final state is Indep. The convention for constraint automata
is that the new values of the state variables are the primed
variables. The state transitions may use other variables, but
all except the primed variables are eliminated. This is is why
we need the y′ = y and the x′ = x constraints in the above
Datalog query.

Another type of automata is called refinement automata.
On each transition a refinement automaton adds some con-
straints to a central constraint store.

Example 5.2. Instruction scheduling for single-issue pro-
cessors with arbitrary latencies [36] and many other prob-
lems can be modeled as the problem of assigning a unique
value for each node of a labeled tree, where the labels are
positive integers, and the difference between the values of
each parent and its child must be greater than or equal to
the label between them.

Let the input relation Edge(x, y, l) be true if x is a child
of y in the tree and l is the label on the edge between them.
At first we create a central constraint store which contains
a variable x.v for each node x of the tree. Then the follow-
ing refinement rule adds to the constraint store the needed
constraints between the values of children and parents.

y.v − x.v ≥ l :— Edge(x, y, l).

The above ensures that each node and its descendants will
get a distinct value. We also need to assure that independent
nodes are also given different values. Clearly, the Parent
relation of Example 5.1 can be found by projecting the first
two attributes of the Edge relation. Then we can find the
Indep relation as in Example 5.1. The following refinement
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rule takes care of independent nodes:

x.v �= y.v :— Indep(x, y).

Clearly, any assignment that satisfies the central constraint
store gives a unique value for each node. The right side of
Figure 4 shows the refinement automaton that is equivalent
to the above refinement rules.

In the above two examples, the constraint and the re-
finement automata were separate entities. It is possible to
combine them as is shown by the following example.

Example 5.3. Consider again the stepping stone query.
We can assume that Close is an input constraint relation,
because it can be represented as shown in Equation (9) for
any value of l < −100. Since the convention for constraint
automata is that the new values of the state variables are
the primed variables, to avoid any confusion, we rewrite the
stepping stone query as follows:

Step(x′, y′) :— Bank(“A′′, x′, y′).

Step(x′, y′) :— Step(x, y), Stone(x′, y′),
Close(x′, y′, x, y).

Reach(x′, y′) :— Step(x, y), Bank(“B′′, x′, y′),
Close(x′, y′, x, y).

This query can be represented by the constraint automata
shown in Figure 5. The initial state is Initial and the final
state is Reach.

Now suppose that there are fish in the river everywhere
initially. We can represent this by:

Fish(x, y) :— x + y > 0, −x − y > 41.

Let us assume that if one steps on a stone, then the fish swim
either upstream or downstream at least five units away from
it. That is, if we step on any stone (a, b), then each fish will
move above the line y − x = b − a + 5 or below the line
y − x = b − a − 5. Further, let us assume that the fish are
too frightened to swim back even when we step on the next
stone. How does the fish area change? It may only shrink
as we step on more stones. Let the central constraint store
represent the fish area, i.e., be the Fish relation. We only
add constraints to the central store. Therefore, we modify
the above automaton as shown in Figure 6. The same can
be expressed by modifying the head of the second rule of the
stepping stone query. The new head of that rule will be:

Step(x′, y′), ((y − x > y′ − x′ + 5) ∨ (y − x < y′ − x′ − 5))

Whenever we add a constraint tuple to the step relation, we
also take the conjunction of that constraint tuple and the
constraint (y−x > y′−x′+5)∨(y−x < y′−x′−5), eliminate
the variables x′ and y′ from it, and then obtain a constraint
over x and y, which we conjoin to the Fish relation.

In Example 5.3 the constraint and the refinement au-
tomata cannot be separated. That is, we cannot at first
find all the stones that we may step on and then eliminate
all the areas five units above or below them. By doing con-
currently the additions of constraints (conjoinings) to the
Fish relation, which is the central constraint store, and the
additions of constraint tuples (disjoinings) to the Step re-
lation, we can be assured that at any given time the Fish
relation reflects correctly the situation that would result if

we stepped on the stones that are at that time in the Step
relation.

We call the combined automaton a constraint-refinement
automaton. Many questions may be asked about constraint-
refinement automata. For example, the final fish area de-
pends on what path is taken to cross the river, i.e., how we
got from the initial state to the final state. We may wish to
find a path that disturbs the fish the least.

Given a particular constraint or refinement automaton,
model checking is the task of checking what properties may
hold in certain states in the automaton [28, 7, 1]. Model
checking is easy to do, if we can get a closed-form evalu-
ation for the constraint queries that are equivalent to the
constraint or refinement automaton. Therefore, the closed-
form evaluation techniques for constraint queries are useful
also for model checking.

If S is any state in a constraint automaton, then the set
of possible values of the state variables in it are equivalent
to the set of constant tuples in the Datalog output relation
S′ that corresponds to S. If S is a state in a constraint-
refinement automaton, then we need all pairs of (S′, Store)
where Store is the value of the central constraint store at
the time when S′ is the value of the Datalog output relation
during any time in the operation of the automaton. If the
Datalog output relations without any additions to the con-
straint store can be found, then all possible pairs also can
be found.

For the fish query, the Step relation is finite, because there
are only a finite number of stones and Step is a subset of
Stone. The Fish relation is also finite, because for each
Step relation we can add only one disjunctive constraint to
it. If there are N tuples in Stone, then there are only 2N

possible values of Step, and the same number of possible
values in Fish.

6. DATA MINING

Constraint databases are also applied in data mining. An
essential problem in data mining is the representation of
categories of objects. This representation is often done using
decision trees. Recently, Johnson et al. [19], Geist [10], and
Geist and Sattler [11] suggested that constraint databases
be used instead of decision trees to represent categories of
objects. The advantage is that the categories can be queried
similarly to the original data elements. In this section we
explain this idea and also discuss some additional ideas of
applying Boolean constraint databases to data mining.

Suppose that we are interested in some high-level features
or categories A,B, C, . . . based on the values of some lower-
level real-valued attributes x1, . . . , xn. That is, A,B, C, . . .
are in dom(x1) × . . . × dom(xn).

Suppose also that a data mining company accumulates a
huge database of such categorizations. A major task of the
company is to provide for customers these categorizations or
new categorizations that could be derived from the already
known ones.

For example, suppose that the data mining company has
available the results of two studies. The first study identified
“artistic” people Sartistic based on the attributes a1, . . . , an.
The second study identified “reliable” people Sreliable based
on the attributes b1, . . . , bm, where the as and the bs are not
necessarily distinct.

Now suppose that an art foundation is looking for a new
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Figure 4: A constraint (left) and a refinement automaton (right) for Tree assignment.

Close(x,y,x’,y’) ? 

Stone(x’,y’),

Step 
Bank(A, x’, y’) ? 

Initial
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Figure 5: A constraint automaton for the Step query.
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Figure 6: A constraint-refinement automaton for the Fish area.
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director who must be both “artistic” and “reliable”. The
art foundation is interested to know what type of people
would qualify for the job. Obviously, Sartistic � Sreliable is
the best guess, and that is what the data mining company
could sell to the art foundation.

The above process is closely tied with constraint databases.
There are several classification methods, such as percep-
trons, that yield convex subregion descriptions of categories.
Hence if one of these classification methods is used, then we
can assume that each category is describable as a convex
subregion of Rn where R is the set of real numbers. This
convex subregion is also describable using a linear constraint
database relation.

The join of the two linear constraint relations is a typi-
cal constraint database query. Using Datalog it can be ex-
pressed by:

Sdirector(c1, . . . , ck) :— Sartictic(a1, . . . , an),
Sreliable(b1, . . . , bm).

where c1, . . . , ck is an alphabetical order of the distinct at-
tributes names in a1, . . . , an and b1, . . . , bm.

The art foundation presumably can test the potential can-
didates as to their aptitude for being a director by testing
whether what is known about the candidates falls within
the Sdirector relation. This can be done by creating a con-
straint relation Candidate(id, c1, . . . , ck). Each constraint
tuple describes one art director candidate using a unique id,
and the values of any of the known attributes. For example,

Candidate(id, c1, . . . , ck) :— id = 23, c1 = 25, c7 = 15.

describes the 23rd candidate using the known values for the
first and the seventh attributes. The other attributes are not
assigned any values, meaning that they could be anything.
Then it is easy to find the fit candidates using the following
constraint database query:

Fit(id) :— Sdirector(c1, . . . , ck),
Candidate(id, c1, . . . , ck).

Constraint database techniques can be also helpful in other
cases of data mining. For example, suppose that the rela-
tions Sartistic and Sreliable are huge relations, and before
taking their join, we would like to be assured that it is not
empty, that is:

Sartistic ∩ Sreliable �= ∅ (10)

Fortunately, we have some meta-information available about
the categories. This meta-information forms only a small
database that can be mined separately and efficiently. In
particular, suppose that we already know the following by
previous data mining:

Smusical ⊆ Sartistic

Sresponsible ⊆ Sreliable

Smusical ∩ Sreliable �= ∅ (11)

The conjunction of the above three facts forms a constraint
formula with four Boolean algebra variables. (The elements
of this Boolean algebra are those subsets of Rn which are
expressible using linear constraints.) Eliminating the vari-
ables Smusical and Sresponsible, yields exactly the constraint
in Equation (10). Therefore, the join of the two constraint
relations Sartistic and Sreliable is nonempty. Therefore it can
be returned to the art foundation.

In the previous, we assumed that the data mining com-
pany had available Sartistic and Sreliable in its database.
However, suppose that in fact it does not have any constraint
database description of these categories. However, it still has
the meta-information described in Equation (11). Then it
can still derive Equation (10). This could still be a useful in-
formation for the art foundation, because it can strengthen
the hope of finding a qualified director. Furthermore, the
join of Smusical and Sresponsible is a constraint relation that
can be calculated and returned to the art foundation. This
would be a lower bound of Sdirector. Nevertheless, this lower
bound can be useful, because if candidates can be identified
who fall within this lower-bound, then the art foundation
can safely chose one of them.

Whenever we have a knowledgebase D like the one in
Equation (11), we may get a new assertion C that we have to
test against the knowledgebase. If we are interested in test-
ing whether C is possibly true, we need to decide whether
D∧C is satisfiable. If we are interested in whether C is nec-
essarily true, we need to decide whether D∧C is false. Both
of these can be decided if the Boolean algebra is atomless.
For more about Boolean algebras see Burris and Sankap-
panavar [3], Halmos [16], Helm et al. [17], Marriott and
Odersky [26], and Revesz [32].

7. TRUST MANAGEMENT

Trust management is a new approach for authorization
and access control in distributed systems. It is based on
signed distributed policy statements expressed in a policy
language. Li and Mitchell [25] has recently proposed Data-
log with constraints as a foundation for trust management
languages.

Their work fits very well with the Datalog with constraints
work. The only new thing is that they allow variables to
range over hierarchical domains. The elements of a hierar-
chical domain are paths that start from the root of a given
tree. For example, machine domain names form a hierarchi-
cal domain. For any hierarchical domain H and g, h ∈ H ,
the constraint h ≺ g means that the path name h is an ex-
pansion of the path name g. For example, nsf.gov ≺ gov.
An alternative notation for machine names is to reverse the
order and to put them in brackets. For example, nsf.gov
is written as 〈gov, nsf〉. The following example is modified
from [25].

Example 7.1. An entity A grants to an entity B the
permission to connect to machines in the domain “stan-
ford.edu” at port number 80, and allows B to further dele-
gate any part of the permission from time 0 to 8. In addition,
assume that B grants to another entity D the permission to
connect to the host “cs.stanford.edu” and any machine in
the domain “cs.stanford.edu” at any port number, with va-
lidity period from time 5 to 12.

Let us introduce a relation Grant(x, y, h, p, v) which is
true when entity x grants to entity B the permission to con-
nect to machines in the domain h at port number p during
the time v. Here the domains of x and y are strings, the do-
main of h is hierarchical, the domain of p is the integers,and
the domain of v is the real numbers. Then the above policies
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can be represented as follows:

Grant(“A′′, “B′′, h, p, v) :— h ≺ 〈edu, stanford〉,
p = 80, 0 ≤ v, v ≤ 8.

Grant(“A′′, x, h, p, v) :— Grant(B, x, h, p, v),
h ≺ 〈edu, stanford〉,
p = 80, 0 ≤ v, v ≤ 8.

Grant(“B′′, “D′′, h, p, v) :— h ≺ 〈edu, stanford, cs〉,
p = 80, 5 ≤ v, v ≤ 12.

From the above, we can conclude the following:

Grant(“A′′, “D′′, h, p, v) :— h ≺ 〈edu, stanford, cs〉,
p = 80, 5 ≤ v, v ≤ 8.

Hierarchical domains are easy to add to the framework of
constraint databases, because conjunctions of hierarchical
constraints admit variable elimination as shown in [25]. In
fact, we can show that Directed Acyclic Graph (DAG) do-
mains also admit variable elimination. The domain names
can for a DAG if there are several aliases for the same ma-
chine. We say that the hierarchical constraint g = h holds
if g ≺ h and h ≺ g both hold, that is, g and h are identical
names or aliases for the same entity.

With aliases it could happen that two different domain
names refer to the same entity. For example, the aliases
nsf.gov and USAnsf.gov may refer to the same entity. This
is permissible. Abbreviations are also permissible. For ex-
ample, a.b.c.d and a.d could also refer to the same entities.
However, cycles are not permissible with DAG domains. For
example, a.b.c.d and a.b should refer to different machines
otherwise there would be a cycle. This means that the hi-
erarchical constraints a.b = a.b.c.d and a.b ≺ a.b.c.d are not
allowed.

Theorem 7.1. Conjunctions of Directed Acyclic Graph
domains admit variable elimination.

Proof. Suppose we would like to eliminate the hierarchi-
cal variable x from a conjunction of hierarchical constraints
S. First we rewrite S into S′ by changing any hierarchical
constraint of the form g = h into a conjunction of g ≺ h
and h ≺ g. Now we need to eliminate x only from S′. After
elimination, we will have a new set of constraints S′′ that
will consist of all the constraints in S′ that do not contain
the variable x, plus constraints of the form y ≺ z whenever
there are constraints y ≺ x and x ≺ z in S′. If the y and z
are constants, then we have to check that no cycle is created,
that is y is not a string that is a substring of z. If it is, then
we return false, else we return S′′.

8. DIOPHANTINE EQUATIONS

Diophantus, an ancient Greek mathematician, was one
the earliest mathematicians to study integer solutions to
polynomial equations. Hence polynomial equations over the
integers are called Diophantine polynomial equations. Fin-
ing a general decision algorithm for Diophantine polynomial
equations is known as Hilbert’s 10th problem, after David
Hilbert who gave this as the 10th problem in a list of major
outstanding open problems in 1900 in a famous address to
the International Congress of Mathematicians. It was not
until 1970 that Y. Matiyasevich, based on important partial
results by M. Davis and J. Robinson, proved that there is no

general decision algorithm, that is, Hilbert’s 10th problem
is undecidable. For a complete history of this problem and
its solution see Matiyasevich’s book [27].

In spite of this undecidability result, it is often possible
to solve various specific Diophantine polynomial equations.
Solving these is often quite difficult. A well-known example
is the equation

a4 + b4 + c4 = d4

which was conjectured by Euler to have no integer solutions.
(In fact, Euler’s conjecture was more general, saying that
there is no nth power that is the sum of less than n other
nth powers.) However, in 1987 Elkies gave a solution. Us-
ing a computer search, a few years later Frye gave another
solution, which is the smallest:

4145604 + 2175194 + 958004 = 4224814

It is surprising that the smallest solution to such an equation
turns out to be so big.

We can give a simple computer search method for any Dio-
phantine polynomial equation using the results of Section 3.
This is because we can express any Diophantine polynomial
equation using only the D and M relations of Section 3.
Then by choosing repeatedly smaller ls, we get better lower
and upper bounds on the solutions. If the lower bound ever
becomes more than the empty-set, then we know for sure
that there is a solution. Similarly, if the upper bound be-
comes the empty-set, then we know for sure that there is no
solution. Otherwise, we have to choose a smaller l to get a
better result.

Example 8.1. We can express Euler’s equation above as
follows:

Quad(x,m) :— M(x, x, n), M(n, n, m).

Euler(a, b, c, d) :— Quad(a, a′), Quad(b, b′),
Quad(c, c′), Quad(d, d′),
D(d′, c′, u), D(u, b′, a′).

For l = −15 the lower bound of Euler will be the ∅. How-
ever, as we choose smaller and smaller l, the above solution
will be eventually part of the lower bound. Since reaching
that requires too much calculation, let us just consider the
Quad relation. When l = −15, its lower bound is:

Q(Quad)l = {(1, 1), (2, 16), (3, 81)}
and its upper bound is:

Q(Quad)l = Q(Quad)l ∪ {(x, m) : x ≥ 16, m ≥ 256}
where x and m are integer variables. The upper bound fol-
lows from the fact that {(x, x, 256) : x ≥ 16} and {(256, 256, m) :
m ≥ 256} are both in the upper bound of the M relation.

Although the lower and the upper bounds do not match,
it is possible to use the partial information to show, for ex-
ample, that (4, 178) �∈ Quad. Hence the lower and the upper
bounds do not need to match to get some useful information
from the approximate evaluation.

9. MOVING POINTS

There is a growing interest in representing moving objects.
Cai and Revesz [33], Chomicki and Revesz [6, 5], Güting et
al. [15], Kollios et al. [23], Saltenis et al. [35], and Wolfson et
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al. [37] describe moving object data models and techniques
to query moving objects. Constraint databases are a natural
representation of moving objects as explained in this section.

Suppose that two cars, which both move linearly in the
plane, want to radio-communicate with each other. Suppose
also that radio communication is possible only within 3 units
distance. What is the best time to attempt the radio com-
munication? Intuitively, the best time would be when the
two cars are closest to each other, hence that time instance
needs to be found. We show that it can be found using only
linear constraints.

The two cars can be represented by two constraint database
relations P1(x, y, t) and P2(x, y, t). For example, an input
database instance could be the following (see also Figure 7):

P1(x, y, t) :— x = t, y = 2t + 4.
P2(x, y, t) :— x = 3t, y = 4t.

Suppose that we would like to find the time instance t when
the two cars are closest to each other. We can define first
the difference between the two cars at any time t as follows:

∆P (x, y, t) :— P1(x1, y1, t), P2(x2, y2, t),
x = x2 − x1, y = y2 − y1.

∆P is also a moving point in the plane as shown in Figure 8.
The difference between the two cars is exactly the difference
between ∆P and the origin at any time t. Therefore, the
two cars are closest to each other when ∆P is closest to the
origin. Now the projection of ∆P onto the plane is a line,
which is the path along which ∆P travels. We can find this
by:

∆P line(x, y) :— ∆P (x, y, t).

Let us now take the line which goes through the origin and
is perpendicular to ∆P line. If (x1, y1) and (x2, y2) are two
points on ∆P line, then the slope of ∆P line is:

y2 − y1

x2 − x1
.

The perpendicular line will have a negative reciprocal slope
and will go through the origin. Hence its line equation is:

y = −x2 − x1

y2 − y1
x (12)

Now we can chose any two distinct points on the line ∆P line
for expressing the line equation. Let us choose (x1, y1) to be
the intersection point of ∆P line and the line perpendicular
to it and going through the origin. Further, let us chose the
second point (x2, y2) such that

y2 = x1 + y1. (13)

Clearly, this is always possible to do when the line is not
vertical. Now what is the intersection point? It will satisfy
Equations (12) and (13), that is:

y1 = −x2 − x1

y2 − y1
x1

x1 = y2 − y1. (14)

The above can be simplified to:

y1 = x1 − x2

x1 = y2 − y1. (15)

Therefore, if ∆P line is not vertical, that is, x1 �= x2, then
the point of ∆P line that is closest to the origin is is exactly
the intersection point, hence:

Closest Point(x1, y1) :— ∆P line(x1, y1),
∆P line(x2, y2),
y1 = x1 − x2,
x1 = y2 − y1,
x1 �= x2.

Otherwise, if ∆P line is vertical, that is, for any two different
points x1 = x2, then the closest point is:

Closest Point(x1, 0) :— ∆P line(x1, 0),
∆P line(x2, y2),
x1 = x2,
y2 �= 0.

The time when the two cars are closest to each other is:

Closest T ime(t) :— ∆P (x, y, t), Closest Point(x, y).

Finally, the shortest distance between the cars is:

Shortest(d) :— Closest T ime(t),
P1(x1, y1, t),
P2(x2, y2, t),
d2 = (x1 − x2)

2 + (y1 − y2)
2.

The closest time can be found using only linear constraints,
but the calculation of the shortest distance requires polyno-
mial constraints.

Example 9.1. Let us look at what will happen when we
have the input database instance P1 and P2 as given above.
In that case, we obtain:

∆P (x, y, t) :— x = 2t, y = 2t − 4.

∆P line(x, y) :— x = y + 4.

For Closest Point the constraint rule application yields:

Closest Point(x1, y1) :— x1 = y1 + 4,
x2 = y2 + 4,
y1 = x1 − x2,
x1 = y2 − y1,
x1 �= x2.

Eliminating x2 and y2 we get:

Closest Point(x1, y1) :— x1 = 2,
y1 = −2.

Finally, the closest time is calculated as:

Closest T ime(t) :— x = 2t, y = 2t − 4, x = 2, y = −2.

Eliminating x and y we get:

Closest T ime(t) :— t = 1.

Therefore, the two cars are closest at time 1. It is at that
time that the two cars should attempt to radio-communicate
with each other. We can also calculate that:

Shortest(d) :— d =
√

8.

This is less than 3 units, hence radio communication should
be possible.

23



7

6

5

4

3

8

13

12

11

10

9

2

1

14

4

3

2

1

0

5

0    1    2    3     4     5    6     7    8     9     10   11  12   13  14   15   16   17  18   19  20

(3t, 4t)

(t, 2t+4)

8

7

6

0

19

18

17

16

15

20 5

4

3

2

1

0

Figure 7: Two cars moving in the plane.

4

3

2

1

5

10

9

8

7

6

11

8

0    1    2    3     4     5    6     7    8     9     10   11  12   13  14   15   16   17  18   19  20

0

(2t, 2t-4)

7

9

-4

-3

-2

-1

10

6

16

15

14

13

12

0

5

4

3

2

1

Figure 8: The ∆P moving point.

24



9.1 Piecewise Linear Movements

Suppose that the two moving points move not on a single
straight line, but along a piecewise linear path. In this case
an instance could be the following:

P1(x, y, t, b, e) :— x = t, y = 2t + 2, b = 0, e = 5.
...

...
...

P2(x, y, t, b, e) :— x = 3t, y = 4t, b = 0, e = 5.
...

...
...

We added the attributes b and e to record the beginning and
the end of each time interval. We assume that we have the
same set of time intervals for the two moving points. We
can similarly add these two attributes to each of the other
relations we defined above. Then we can find what time
would the two cars be closest if they were traveling infinitely
long along their paths in each interval. The actual closest
time in each interval is that time or one of the endpoint of
the time interval.

Closest T ime I(t, b, e) :— Closest T ime(t, b, e),
b ≤ t, t ≤ e.

Closest T ime I(b, b, e) :— Closest T ime(t, b, e),
t ≤ e.

Closest T ime I(e, b, e) :— Closest T ime(t, b, e),
t ≥ e.

Now let us calculate the minimum distance between the cars
in each interval.

Shortest I(d, b, e) :— Closest T ime I(t, b, e),
P1(x1, y1, t, b, e),
P2(x2, y2, t, b, e),
d2 = (x1 − x2)

2 + (y1 − y2)
2.

Finally, to find the minimum distance in all the intervals,
we use a Datalog query with the Min aggregate function:

Shortest(Min〈d〉) :— Shortest I(d, b, e).

10. APPLICATION DEVELOPMENT

We have discussed the Datalog query language in this pa-
per. The SQL query language can also be used on constraint
databases. Both of these languages are designed for appli-
cation programmers. In typical applications, the user only
sees a list of menu options that are implemented on top of
a constraint database system.

The application program can be a high level program
that calls the constraint database using either Datalog or
SQL queries. Next we discuss a sample application using
the MLPQ (short for Management of Linear Programming
Queries) constraint database system [34, 22].

The sample application that we consider is a simple case of
production planning. Suppose that we know that a workers
in b hours produce c items of some product. We assume
that a, b, and c are fixed positive constant values. There are
three menu options that we need to implement.

1. Find the number of workers needed to produce in y
hours z items.

2. Find the number of hours needed to produce by x
workers z items.

3. Find the number of items produced by x workers in y
hours.

In each of the above menu options, the user is asked to enter
the value of the variables in a dialog box after a prompt.

Suppose that the three menu options are already imple-
mented in a slightly different form in MLPQ as follows.

Workers Needed(x) :— Items per Hours(n),
x = n(ab/c).

Hours Needed(y) :— Items per Workers(m),
y = m(ab/c).

Items Produced(z) :— Workers times Hours(l),
(ab/c)z = l.

This implementation requires three input relations with self-
explanatory names. Therefore, the only thing that the ap-
plication programmer needs to do is to find the value of these
input relations before calling the MLPQ system. This can
be done in the embedding program.

The above illustrates how we can implement in MLPQ
queries that actually require polynomial constraints. The
implementation assumes that not only the raw value of the
input variables are available but also their products or quo-
tients if needed. The application developer needs only to
transform the raw inputs of the user to the slightly more so-
phisticated inputs of the MLPQ queries. But he application
developer does not need to worry about more details.

In the above example, the hidden details are not too dif-
ficult to reproduce, although they may be more difficult in
other examples. We can make the following assumptions.
First, the production increases linearly with the number of
workers. Second, the production also increases linearly with
the number of hours. From this we can derive the formula
that must hold in all cases:

abz = xyc

From this we can see that the menu options can be also
implemented by:

Workers Needed(x) :— Given(y, z), abz = xyc.

Hours Needed(y) :— Given(x, z), abz = xyc.

Items Produced(z) :— Given(x, y), abz = xyc.

This is also possible to use if we have a polynomial constraint
database system or a linear constraint database system that
can propagate the constant values. For example, in the first
menu option, since y and z are constants in each case, and a
linear constraint database system with constant propagation
can substitute their values into the equation ny = z, and
then obtain a linear constraint problem.

11. CONCLUSIONS

The above brief review of constraint databases focused
on some basic concepts of Datalog query evaluation and a
few recent and growing application areas. Clearly, the con-
straint database area has many achievements. Paris Kanel-
lakis would have been pleased to see them. However, the
big question is whether constraint databases will ever be
adopted by industry. We can give a few thoughts on that
subject.
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In general, the database systems area is very central to
computer science, because databases are usually a part of
any serious software development today. However, relational
databases have some major limitations. Let me give a few
examples.

1. Databases use query languages, but those are limited.
Therefore, most software engineers do not have a deep
appreciation for databases, they view them as a prim-
itive tool.

2. Many relational databases provide only tables instead
of visualizations. Even when some visualizations are
provided, for example, pie charts, they are usually
more primitive than the ones used in computer graph-
ics and do not involve animation or motion, an impor-
tant milestone in visualization.

3. Databases need a good user interface because they are
supposed to be usable by naive users. In the early
1970s, the SQL language was cutting edge in its sim-
plicity for naive users. However, the field of human-
computer interaction has undergone major changes,
and databases did not always keep up with those devel-
opments. While databases can be made web-accessible,
the key component of the webpages seems to be always
some menu of queries. Menus, however, loose one of
the biggest advantages of relational databases, namely
ad-hoc queries. The flexibility of menus even if they
allow the entering of a few parameters is just not any-
where close to the expressivity of even a limited query
language like SQL.

Let us look at how constraint databases improve relational
databases with respect to the above three items.

First, even standard SQL or Datalog becomes a more pow-
erful query language when it is used to query constraint
databases instead of only relational databases. Hence (1)
above is certainly improved and without any significant ex-
tra complexity in the query languages that need to be learned
by the application developers.

Second, it was recognized early on that constraints are the
last thing that users want to see. Visualization plays an im-
portant role in constraint databases such as DEDALE [13,
14] MLPQ/PReSTO [34, 22, 4], and CQA/CDB [12]. Hope-
fully, this positive trend continues, and future constraint
database systems will be able to give computer graphics-
like quality visualizations. Hence (2) is also significantly
improved by constraint databases.

Third, the user interfaces of constraint databases need
more development. Even with menus more should be tried,
in particular, menu prompts should ask not only for specific
strings or numbers but also for relationships between two or
more different attributes. For example, which object is heav-
ier? The translation from the users’ entries into constraints
is the easy part. The harder part is to develop a user-friendly
interface that allows the entry of various constraint relation-
ships. There is a large scope of work to be done here. Hence
(3) still needs to improve. This is a nontraditional area for
most database researchers, but it is important for developing
practical constraint database systems.

In summary, constraint databases lift some of the limi-
tations of relational databases. However, to be successful
constraint database research needs more input from non-

database and non-constraint researchers, especially from re-
searchers in the areas of computer graphics and human-
computer interaction. A healthy cooperation among these
fields could yield major results in the future and make con-
straint databases really enticing to be adopted by industry.
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