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Abstract: Kat suno and Mendelzon divide the-

ory change, the problem of adding new information

to a logical theory, into two types: revision and

update. We propose a third type of theory change:

arbitration. The key idea is the following: the new

information is considered neither better nor worse

than the old information represented by the logical

theory. The new information is simply one voice

against a set of others already incorporated into

the logical theory. From this follows that arbitra-

tion should be commutative. First we define arbi-

tration by a set of postulates and then describe a

model-theoretic characterization of arbitration for

the case of propositional logical theories. We also

study weight ed arbitration where different models

of a theory can have different weights.

1 Introduction

The problem of updating logical theories is

a common fundamental concern to databases,

to Artificial Intelligence [McC68, Rei92], and

to belief revision [Mak85, Gar88]. It is well-
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known that giving semantics to updates is dif-

ficult once the logical theory is complex enough

to express views or integrity constraints [BS81,

FUV83].

For a simple example from [GMR92] con-

sider the propositional database represented

by the theory {A, B,A A 1? -+ C}. If we

want to add the information that proposition

C is false, then the resulting theory could be

{A, AAB + C,lC}, {B, AAB + C,TC},

or {A, B, --rC} or several others that leave the

theory consistent.

In general we may treat each database as

some logical theory 1’. Then the database

update problem translates into the following:

What should be the result of changing theory

2’ with some sentence ~?

We may try to answer this question directly

by proposing a concrete operator for theory

change. Or we may answer indirectly by giv-

ing a set of axioms or postulates that ev-

ery adequate theory change operator should

be expected to satisfy. Taking the first dl-

rection concrete operators were proposed by

Borgida [Bor85], Dalal [Da188], Fagin, Unm-

an and Vardi [FUV83], Grahne, Mendel-

zon and Revesz [GMR92], Satoh [Sat88], We-

ber [Web86], and Winslett [Win88]. Tak-

ing the second direction, sets of postulates

were proposed by Alchourr6n, Gardenfors and

Makinson [AGM85] and by Katsuno and Mendel-

zon [KM91].
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Katsuno and Mendelzon point out that

there are no universally desirable set of postu-

lates. In particular they argue that the AGM

postulates describe one type of theory change

–revision- while the KM postulates describe

another -update. An informal distinction be-

tween these two types was also made before by

Abiteboul and Grahne [AG85] and by Keller

and Winslett [KW85]. This paper introduces

a third type of theory change –arbitration– and

shows it to be distinct from both revision and

update.

The three types of theory change assume

quite different relations between the present

theory and the new information. As a simple

illustration of these relations consider a jury

during a trial. As each witness tells his/her

story, the jury has to change its theory of the

crime.

Revision assumes that the new information

is always more important and reliable than

the present theory. This may happen if a

prosecutor organizes a set of witnesses from

the least reliable to the most reliable. For

example, the first witness may be a distant

relative, while the second a close relative of

the defendant. The distant relative may say

that the defendant was a social drinker. The

close relative may say that the defendant was

an alcoholic. Then the jury needs revision.

Update assumes that the new information

is always more recent than the present theory.

This may happen if the prosecutor organizes

the witnesses chronologically. For example,

the first witness may claim that the defendant

bought a gun in January. The second witness

may say that the defendant sold the gun in

February. Then the jury needs update.

Arbitration assumes no asymmetry between

the present theory and the new information.

The witnesses may be all contemporary and

equally import ant. For example, members

of a crowd of witnesses of a brawl may

be all equally important and contemporary.

However, their version of the events may

conflict in some details. For example, nine

witnesses may claim that A started the fight,

but two witnesses may claim that it was

B. In this case the jury needs arbitration.

Arbitration alone is interested in the question:

how can the jury reach a consensus?

The intuitive idea for any theory change is to

modify the present theory as little as possible

to accommodate the new information. Due to

the different assumptions described above, the

three types of theory change operators define

least change in fundamentally different ways.

Katsuno and Mendelzon found an elegant

model-theoretic characterization of revision

and update when the knowledge base is a

propositional theory 2’. They found that revi-

sion operators that satisfy the AGM postulates

are exactly those that select from the models

of the new information the closest models to

any model of T. Update operators select for

each model I of T the models of the new infor-

mation that are closest to I. The new theory

is the union of all such models.

We will define arbitration in terms of an aux-

iliary operation called model-jitting. Model-

fitting operators can be characterized as those

operators that select from the models of the

new information the overall closest models to

the whole set of models of 1’.

We are also going to consider a generaliza-

tion of arbitration when the models of the

logical theory describing the database can

have different weights. These weights are

distinct from the priority values of Fagin et

al. [FUV83], which are assigned to formulas,

not to models. They are also different from t he

weights of DalaJ [Da188] which are assigned to

propositions. They also have only vague con-

nection with probabilities and possibility val-

ues [Zad78] which both have a constant one as

an upper bound, unlike weights.
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The research described here has much prac-

tical relevance to databases. We believe that

the three types of theory change operations

complement each other. Not all database up-

dates are alike. Some are true updates (in

the sense of [KM91] ) some are not. Especially

promising as an application area for arbitra-

tion are large heterogeneous databases, which

often require merging of large equally impor-

tant sets of information to answer queries. It

cert airily seems beneficial if dat abase users are

provided with more options to choose from to

suit their needs.

The outline of the paper is the following.

Section 2 lists some basic definitions. Section 3

defines by postulates the operations of arbitra-

tion and model-fitting. This section also shows

a model-theoretic characterization of these op-

erators for the case when the database is a

propositional theory. Section 4 considers the

case when the models of the database can have

different weights. Section 5 concludes with

some open problems.

2 Preliminaries

Let 7 be a finite set of propositiomd terms.

We build propositional formulas from terms

using the unary connective = denoting boolean

negation, and the binary connective A and V

denoting boolean and and boolean or. We call

the formula describing our present information

about some problem the knowledge base. If our

information is composed of a set of formulas,

then we take their conjunction as the knowl-

edge base.

We call each I c 7 an interpretation. Let

M be the set of interpretations {I : I C 7}.

The set of models of a formula # denoted by

Mod(#) is defined as follows:

Mod(+ V ~) = Mod(@) u Mod(#)

Mod(@ A +) = Mod(#) n Md(g$)

A pre-order < over M is a reflexive and

transitive relation on M. A pre-order is total if

for every pair I, J G M, either I < J or J < I

holds. We define the relation < as 1< J if

andonly ifls Jand J~l.

The set of minimal models of a subset S of

M with respect to a pre-order ~+ is defined

as:

Min(S, <+) = {I 6 S :jI’ c S where I’ <4 I}

Katsuno and Mendelzon gave the following

model-theoretic characterization of revision

and update when the knowledge base is a

propositional theory. Let the symbol o denote

revision and the symbol o denote update

operators.

Suppose we have for each knowledge base

+ a total pre-ordering ~+ of interpretations

for closeness to ~, where the pre-order Q

satisfies cert ah conditions [KM91]. Revision

operators that satisfy the AGM postulates are

exactly those that select horn the models of

the new information + the closest models to

the propositional knowledge base ~. That is,

Mod(+ 0 c#) = Mirz(Mod(#), <+)

For updates assume for each I some partial

pre-ordering S1 of interpretations for closeness

to I. Update operators select for each model I

in Mod(+) the set of models horn Mod(#) that

are closest I. The new theory is the union of

tdl such models. That is,

Mod(+ o ~) = U Min(Mod(+), %)

Katsuno and

is often useful

I& W;d(@)

Mendelzon’s characterization

to give simple proofs that



particular theory change operators are revision

or update operators. As an example of this

from [KM91] consider Dalal’s operator.

Dalal uses the number of terms on which two

interpretations I and J differ as a measure of

distance between them. That is, dist(l, J) is

the cardinality of the set (1\ J) U (J \ 1). For

example, if I = {A,B, C} and J = {C, D, B},

then dist(l, J) =4.

Dalal then defines the distance between a

knowledge base # and an interpretation I as

the minimum distance between any model in

Mod(+) and I. Now take the pre-order s+

defined by I <+ J if and only if d.ist(~, Z_) S

dist(+, J).

For the revision + o p, DalaI’s operator

always returns the set of S+ mimimal models

of p. Hence by Katsuno and Mendelzon’s

characterization above, Dalal’s operator is a

true revision operator.

a Arbitration and Model-Fitting

This section gives first a formal definition

of the set of model-fitting operations and

a model-theoretic characterization of it. A

definition of arbitration is given in terms of

model-fitting. It is then shown that the three

types of theory change operators are disjoint.

We say that a theory change operator ~ is a

model-fitting operator if and only if D satisfies

the following axioms:

(Al) # bp implies p.

(A2) If@ is unsatisfiable then+ D p is unsat-

isfiable.

(A3) If both+ and p are satisfiable then # E p

is also satisfiable.

(A4) If @l * ~z and pl * pz then @l Dpl *

!J2~P2.

(A5) (~ bp) A @ impfies ?#D (p A ~).

(A6) If ($ Dp)Aq$ is satisfiable then @ D (pA#)

implies (~ D p) Ad.

(A7) (#1 D p) A (@2 D p) implies (@l V #2) D p.
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(A8) If (01 D p) A (#2 D p) is satisfiable then

(+1 V 42) D P imPlieS (~, D P) A (@2 D/J).

Here axioms (Al) and (A3-A5) are the

same as the axioms (Ul) and (U3-U5). (See

Appendix A for the list of revision and update

postulates.) Axiom (A6) is the same as axiom

(R6). Axioms (A2), (A7) and (A8) are new.

Axiom (A2) says that no model can be fitted

to an unsatisfiable knowledge base. Axioms

(A7) and (A8) guarantee that the models in

the knowledge-base are considered together for

overall closeness. They express the following

property: the overall closest models to @l V 42

in p are exactly the intersection of the overall

closest models to $1 in p and the overall

closest models to @z in p if the intersection

is nonempty.

The next theorem presents a model-theoretic

characterization of model-fitting operators that

satisfy axioms (A1-A8). The main idea is to

define for each knowledge-base # a relation

that orders interpretations in M with respect

to their closeness to +. This can be done as

follows.

A loyal assignment is a function that assigns

for each knowledge-base @ a pre-order S+ such

that the following three conditions hold. For

each I, J G M and knowledge bases +1,9$2:

(1) If #l + @2 then <+,=~+,.

(2) If I <d, J and I S@, J then I <.,.+2 J.

(3) If 1 <+, J and I & J then I <+IV+, J.—

Using these definitions, the characterization

theorem can now be stated as follows.

Theorem 3.1 A theory change operator sat-

isfies conditions (A1-A8) if and only if there

exists a loyal assignment that maps

knowledge-base @ to a total pre-order S+

each

such



Theorem 3.1 is useful to prove in a simple

way that particular theory change operators

are model-fit ting operators. As an example,

consider the following operator.

Using Dalal’s distance measure between

interpretations (see Section 2), we define the

overall distance odist between a knowledge

base @ and an interpretation I as follows:

odist(#, q = #&lxx, dist(I, J)

Then we assign to each knowledge base #

the total pre-order ~+ defined by I <+ J if and

only if odist(+, 1) < odist(#, J). Clearly this

is a loyal assignment. Hence by Theorem 3.1

this operator satisfies axioms (A1-A8) and is a

proper model-fitting operator.

Example 3.1 As an application of model-

fitting consider a database class with three

students. The instructor considers teaching

either DataJog only or both SQL and Datalog.

This can be represented as p = (=S A D) V (S A

D). The three students in order would like

to learn SQL only, would like Datalog only,

and would like SQL, Datalog and Query-by-

Example. That is the students suggest to the

instructor to teach # = (S A lD A 7Q) V (-IS A

DA IQ)v(SADAQ).

Considering only the propositional terms S,

D, and Q, Mod(p) contains only {D} and

{S, D}, while Mod(+) contains only {S}, {D},

and {S, D, Q}. We calculate that odist($, {D})

= 2 and odist(+, {S, D}) = 1. Hence we find

that ikfod(@ D p) = {S, D}. This indicates that

the instructor could best satisfy the class by

teaching both SQL and Datzdog. ❑

Example 3.1 is a situation which calls for

arbitration instead of revision. Note that

if the instructor decides to teach Dat slog

only –which would be suggested by a revision

operator like DaJal’s– then one student will be

very satisfied, but the other two may well drop

the class. Clearly thh is not what we want.

The choice of {S, D} is the model that best

fits the whole class, and will keep all students

reasonably satisfied.

Arbitration can be defined as a special case

of model-fitting:

+A~=($v~)Dh4

where M is the set of all interpretations.

Therefore arbitration means finding the best

fit interpretations to both the information

+ and the information ~. For example, if

the instructor in Example 3.1 were willing

to teach any combination of SQL, Datalog,

and Query-by-Example, then he/she would be

doing arbitration.

Corollary 3.1 A theory change operator is

an arbitration operator if and only if there

exists a loyal assignment that maps each

knowledge-base @ to a total pre-order s+ such

that Mod(+ A ~) = &fin(M, <4”4). ❑

An interesting question is whether the three

types of theory change operators are disjoint.

As Katsuno and Mendebon [KM92] point out

all update operators are monotone. That is,

for any update operator if @ implies +, then

# o p implies + op. However, Gardenfors’

impossibility theorem shows that no non-

trivial revision operator can be monotone

(see [Gar88] for the result and the logical

definition of non-trivial). From these it follows

that the set of non-trivial revision and the set

of update operators are disjoint. This result

can be strengthened by dropping the provision

of non-triviality. In general, we have that:

Theorem 3.2 The set of revision, update,

and model-fitting operators are pairwise dis-

joint. In particular, there is no theory change

operator that satisfies both (R2) and (A8), or

all of (U2), (U8) and (A8), or all of (Rl), (R2),

(R3) and (U8). ❑
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Theorem 3.2 has several implications. As

Katsuno and Mendelzon [KM91, KM92] showed,

the operators of Borgida [Bor85], Dalal [Da188],

Fagin et aL [FUV83], Satoh [Sat88], and We-

ber [Web86] each satisfy axiom (R2), and

Winslett’s operator [Win88], simplified for the

propositional case, satisfies (U2) and (U8).

Hence none of these operators can be model-

fitting operators.

4 Weighted Arbitration

In this section we generalize the results of

the previous section by considering weighted

knowledge bases. A weighted knowledge

base is a function ~ from interpretations to

nonnegative real numbers. The real numbers

are intended to describe the relative degree

of import ante of interpretations within the

weighted knowledge base. Clearly this is a

genendization of the knowledge bases of the

previous section, because we can translate

a regular knowledge base # into a weighted

knowledge base ~ having for all interpretations

I ~(1) = O if I @ Mod(+) and ~(~) = 1 if

I G l’kfOd(@).

The model of a weighted knowledge base ~

is a function that can be defined as follows.

Mod(?j) = J
Mod($ v J) = MO@) @Mod(d)

~od($ A ~) = Mod(f) f? MxwJ)

where U takes for each interpretation I the

sum, and ~ takes the minimum of the weights

of I in Mod($) and Mod($) and assigns it as

the weight of I in Mod($ V ~) and AZod(~ A j)

respectively.

This generalizes the model for knowledge

bases and leaves a clear distinction between

syntax and semantics. We could have @ # t$

and Mod (~) = Mod(d). Similarly, we now can

have ~ # ~ and Mod(i) = Mod(d).

We say that a weighted knowledge base

$ is unsatisfiable if and only if for all I

Mod(d)(l) = O. A weighted knowledge base is

satisfiable if and only if it is not unsatisfiable.

We say that a weighted knowledge base ~

implies another weighted knowledge base &

written as ~ + ~, if and only if for all I

Mod(j)(I) < Mod(J)(I).

A weighted loyal assignment is a function

that assigns for each weighted knowledge base

~ a total pre-order S4 such that the following

conditions hold. For each interpretation I and

J and weighted knowledge base ~ and &

Let & be a weighted knowledge base and let

S = {I : ji(I) > O}. The set of minimal models

of ~ with respect to a pre-order SJ is defined

as:

Min(mi(ji), <J) =

else ?(1) = O}

We rewrite axioms (A1-A8) into axioms (Fl-

F8) by simply replacing regular knowledge

bases by weighted knowledge bases. We say

that a theory change operator is a weighted

model-fitting operator if and only if it satisfies

axioms (F1-F8). The following theorem is a

model-theoretic characterization of weighted

model-fitting.

Theorem 4.1 A theory change operator sat-

isfies conditions (F1-F8) if and only if there

exists a weighted loyal assignment that maps

each weighted knowledge-base ~ to a to-

tal pre-order <_~ such that Mod(~ D ji) =

Min(Mod(jz), Q. ❑
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Next we see an example of a weighted model-

fitting operator. We define the weighted

distance wdist between a satisfiable weighted

knowledge base ~ and an interpretation I as:

Next we define for each weighted knowledge

base ~ the total pre-order <$ such that I <4

J if and only if wdist(~, 1) ~ wdist(~, J).

Clearly this is a weighted loyal assignment.

Hence by Theorem 4.1 the operator is a

weighted model-fitting operator.

Example 4.1 As an example of weighted

model-fitting consider a database class with

the same instructor as in Example 3.1 but with

35 students. The instructor’s offering can be

represented by the weighted knowledge base P

with ji({D}) = ~({S, D}) = 1 and ~(l) = O

for any other interpretation I.

Suppose that 10 students would like to

learn SQL only, 20 would like Datalog only,

and 5 would like SQL, Datalog, and Query-

by-Example. The students’ requests can be

repre~ented as ~({S}) = 10, ~({D}) = 20,

and @(~S, D, Q}) = 5. Now we calculate that

wdist(@({D}) =- 30 and wdist(~({S, D}) =

35. Hence iVod(@ D ~) will be a knowledge base

~ with ~({11}) = 1 and J(1) = O for any other

interpret ation I. This indicates that in this

case the instructor could best satisfy the class

by teaching Datalog only. ❑

Note that in the case of weighted arbitration

the instructor tries to satisfy the majority of

the class, instead of trying to satisfy each

member to the best degree possible. The

out come changes from Example 3.1 due to the

large number of students who want to learn

Datalog only.

Weighted arbitration can be defined as a

special case of weighted model-fitting:

where M is the weighted knowledge base

that has fi(l) = 1 for all I ~ M. Weighted

arbitration can be characterized by the follow-

ing.

Corollary 4.1 A theory change operator is

a weighted arbitration operator if and only if

there exists a weighted loyal assignment that

maps each weighted knowledge base ~ to a

total pre-order S$ such that Mod(~ A ~) =

Min(fi, S&J). ❑

5 Open Problems

An open problem is to extend arbitration from

propositional to first-order, similarly perhaps

to the first order update language in [GMR92].

Another open problem is to further analyze

and compare the computational complexity

of various cases of revision, update, and

arbitration with each other [ASV90, EG92,

GMR92].
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A Revision and Update Axioms

A set of axioms, called the AGM-postulates,

for the class of revision operators was pre-

sented by Alchourr6n, Giirdenfors and Makln-

son [AGM85]. These are axioms that every

revision operator has to satisfy. As Kat suno

and Mendelzon [KM91] showed, the AGM

postulates can be rewritten into the follow-

ing equivalent set of axioms on propositional

knowledge-bases.

(RI) @ o p implies p.

(R2) If@ AN is satisfiable then # op * @ Ap.

(R3) If p is satisfiable then # o p is also

satisfiable.

(R4) If +1 ++ +2 and PI ++ PZ then @lo P1 *

42.0 pq.

(R5) (~ o p) A g$ implies # o (p A ~).

(R6) If (~op)Ag!J is satisfiable then ~o(pA@)

implies (~ o p) A ~.

Axiom (Rl) assures that the new knowledge

will hold in the revised knowledge-base. Ax-

iom (R2) assures that if the new information

is consistent with the current knowledge-base,

then the new-information will be simply in-

serted into the knowledge-base. Axiom (R3)

assures that no unwarranted inconsistency will

be introduced. Axiom (R4) says that the re-

sult of a revision operation should depend only

on the set of models of the sentences in the

knowledge-base, not on the particular form of

those sentences. This rule is called Dalal’s

Principle of Irrelevance of Syntax. Axioms

(R5) and (R6) assure that the set of the mod-

els of new information that are closest to the

knowledge-base are chosen as the result of the

revision. See [KM91] for more on the mean-

ing and implications of these axioms, and for

proofs that the operators of Dalal [Da188] and

Fagin et al. [FUV83] are true revision opera-

tors, that is, they satisfy all of the above ax-

ioms.

For the class

and Mendelzon
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of update operators Kat suno

[KM92] present the following



postulates:

(Ul) + o p implies p.

(U2) If@ implies p then @ o p is equivalent

to +.

(U3) If both+ and p are satisfiable then #op

is also satisfiable.

(U4) If @l *#2 and PI # pz then #l Opl +

+~op,.

(U5) (#o p) A # implies ~ o (p A ~).

(U6) If+ o PI implies p, and @ o P2 implies

plthen+opl~+op~.

(U7) If+ is a singleton’ then (@opl)A(#opa)

implies # o (pi V pz).

(U8) (#1 V#2)op ++ (?jlop)v (@20~).

Note that axioms (Ul) and (U4-U5) are the

same as axioms (Rl) and (R4-R5). Axiom

(U2) is a weakening of axiom (R2) in the case

when @ is satisfiable. Axiom (U3) is a weak-

ening of axiom (R3) that is needed to avoid

defining the update of an empty knowledge-

base. Axioms (U6-U7) replace axiom (R6).

They generalize (R6) slightly by admitting or-

derings where some pair of models of the new

information are not comparable as to closeness

to the knowledge-base. Axiom (U8) guaran-

tees that each model in the knowledge-base is

updated independently. Katsuno and Mendel-

zon [KM92] prove that a simplified version

of Winslett’s operator satisfies all the KM-

postulates, and Grahne et al. [GMR92] do the

same for their update operator.

B Proofs

proof of Theorem 3.1: (Only-if) In this

proof let ~orrn(ll,. . . , 1~) denote the formula

that has exactly the models 11,..., lk. We

define a loyal assignment as follows. For each

knowledge-base # we define a total pre-order

<~ in terms of the ~ operator as follows.

1A propositional sentence $ is singleton if there is

exactly one interpretation in Mod(#).

For each (not necessary distinct) pair I, J

of models, let I ~~ J if and only if I G

Mod(# DfO?V7Z(~, J)).

We have to show three things: (1) that for

each knowledge-base @ the assignment <~ is

a total pre-order, (2) that the function from

knowledge-bases to assignments is loyal, and

(3) that Mod(# b p) = ~in(~od(p), ~~).

(1) We need to show that <4 is total, reflex-—

ive, and transitive when # is satisfiable.

total When # is satisfiable, by axioms

(Al) and (A3) the Mod(# bf.?’m(~, J))

is a nonempt y subset of {I, J}. Hence

any pair of models are comparable, mak-

ing s+ a total relation.

reflexive When # is satisfiable, by axioms

(Al) and (A3) the Mod(@ DfOT?7Z(~)) is

a nonempt y subset of {1}. Hence S@ is

also reflexive.

transitive Assume that @ is satisfiable

and that the relation <o is not transitive,

that is, for some I, J, and K models

I@ J, J~$K, and I&K.

Then by the definition of ~+, I @

Mod(@ Dform(I, K)). By axiom (A5),

I # Mod(@ Dfor?n(~, J, K)) A~orm(l, K).

Hence I @ Mod(@ ~form(I, J, K)). There

are two possible cases. Either (i) J 6

Mod(# Dfo7’nz(~, J, K)) or (ii) J is not in

Mod(# DfO?’?7Z(~, J, K)).

In case (i), we know that I is not in

‘Jkfod(+ Dform(I, J, K)) A form(I, J) and

that i140cZ(# pform(I, J, K)) Afomn(~, J)

is satisfiable. Then by (A6) also I @

Mod(@ Dform(I, J)). This contradicts

the assumption that I ~+ J.

In case (ii), by (Al) and (A3) we know

that K = Mod(# D fomn(I, J, K)). Hence

Mod(@ D~or?n(~, J, K))A form(J, K) is

satisfiable but does not cent ain J. Hence
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by (A6) alSO J $! lkfod(~ DfOWL(J, K)).

This contradicts the assumption that

J <+ K.

(2) The first condition of loyalness follows

from axiom (A4). To show the second

condition, assume that I <+1 J and

I Q, J. Then I is and J is not

in Mod(@l Dfo?’m(~, J)), and 1 is also in

Mod(@z DfOTm(~, J)). Hence I =

Mod((+l Dfo?’m(~, J)) A (~, DfOt’m(~, J))).

Then by (A7) and (A8) also I = Mod((@l V

42) D foTm(I, J)). Then by the definition of

assignments I <+1 V+Z J. The third condi-

tion of loyalness can be shown similarly to

the second condition.

(3) We need to show both the C and the> di-— —

rections. If either ~ or p are unsatisfiable,

then kfod(~ D p) = 0 = ~in(kfod(p), <+).

Hence assume that both are satisfiable.

(~) Assume that I c jklod(+ D p) and

I @ kfin(ikfOd(~), s+). By (Al) I G

Mod(p). Since I is not a minimal

model, according to the definition of

minimal there must be another model J

in Mod(p) such that J <+ I (i.e., such

that J <+ I and I ~+ J). By the defini-

tion of<+ then J G Mod(+ Dforrn(I, J))

and I @ Mod(+ Dforrn(I, J)).

Since both I and J are in Mod(p), p A

forrn(I, J) = form(l, J). Hence I is

also not in Jlod(@ D(pAfo?’m(~, J))). By

(A5) and using # = ~orrn(l, J) we know

that Mod((# D p) A forrn(~, J)) implies

Mod(@ D(pAfor?n(~, J))). Hence also I $Z

Mod((@ D p) A forrn(I, J)). Therefore,

I cannot be in Mod(# D p), which is a

cent radiction.

(~) Assume now that I @ Mod(@ D p) and

I G Min(Mod(p), SO). By the defini-

tion of minimal, 1 e Mod(p). Since

both # and p are satisfiable, by (A3)

there is some model J in Mod(+ D p),

and by (Al) also J G Mod(p). Since

both I and J are in Mod(p), p A

@m(I, J) = form(I, J). Hence by (A5)

and (A6) and letting 1$ be ~orrn(l, J)

we get that Mod((@ Dp) Aform(I, J)) =

Mod(+ D p) f7{I, J} = Mod(# Dform(I, J)).

Since both @ and ~ are satisfiable, by

(Al) and (A3), Mod(@ DfOt’m(~, J)) is

a nonempt y subset of {1, J}. But the

identity above and I @ Mod(@ D p) im-

plies that also I @ Mod(@ Dform(l, J)).

Hence J = Mod(@ D form(I, J)). There-

fore J <+ I. Hence I cannot be a min-

imal model according to ~+, i.e., 1 @

Min(Mod(p), S+). This is again a con-

tradiction.

(If) Assume that for a theory change op-

erator D there is a loyal function that as-

signs to each satisfiable knowledge-base # a

total pre-order <@ such that Mod(# D p) =

Min(Mod(p), s+). We need to show that D

satisfies axioms (AI-A8).

(Al) Axiom (Al) follows because the mini-

mal model of p with respect to any totsl

pre-order is always by definition some sub-

set of Mod(p).

(A2) Axiom (A2) follows because if @ is

unsatisfiable, then the minimal model with

respect to @ is the emptyset. Hence @ D p

is also unsatisfiable.

(A3) Axiom (A3) follows because as long as+

and p are satisfiable there is some minimal

model in Mod(p) with respect to #.

(A4) Axiom (A4) follows from the first con-

dition of loyalness.

(A5-A6) Let @ be any formula. We have

that Mod((@ D p) A ~)) = kfin(kfod(p), <+

) n Mod(#) and that Mod(# D(p A +)) =

Min(Mod(p A #), S+).

Note that for any total pre-order <W and

any model I, if there is nothing closer

than I within Mod(p) to @ then there is
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nothing closer than I within Mod(p A ~)

to +. Hence if I is a minimal model of

Mod(p) then I is also a minimal model

of Mod (g A ~) with respect to +. Hence

~od((@ b p) A ~)) implies ~od(~ D(p A ~))

proving axiom (A5).

Suppose that (~ D p) A # is satisfiable. We

want to show the reverse of the above, that

is, “if I is a minimal model of IIIod(p A 4)

then I is also a minimal model of Afod(p)”.

Since (#D p) A # is satisfiable, there is a

minimal model J in Mod(p) that is also in

Mod(#). Therefore every minimal model

of Mod (p A #) must be a minimal model of

Mod(p). Hence if (~ D p) A # is satisfiable

then ~od(~ D(pAq$)) impties ~od((~ D p)A

4)) proving axiom (A6).

(A7) If I is minimal in Mod(p) according to

both @l and *Z, then for any J in Mod(p)

it must be that (1 <@l J and I SA J)

or (.I sol J and I <+2 J) or (1 <+1 J

and I <b J) is true. Then by the second

and third conditions of loyalness I is also

minimal in iWod(@l V@2). This implies that

axiom (A7) also holds.

(A8) Suppose that I is both ~+1 and <A

minimal in Mod(p) and that axiom (A8)

does not hold. Then there is some model J

that is s~lvti minimal in Mod(p) but w.1.g.

not <@l minimtd in Mod(p). Then I <+1 J

and I <~ J. Then by the second condition

of loyalness I <+lV+Z J. Hence J cannot

be SOlvd, minimal in Mod(p), which is a

contradiction. Hence (A8) holds.

•1

Proof of Theorem 3.2: Assume that there

is a theory change operator * that satisfies

both (R2) and (A8). Let ml and m2 be any

two singletons. Let @l = ml V m2, +2 = m2,

andp = m1Vm2. Then ($1 V$2)Ap = m1Vm2.

Hence by (R2), (#1 V #2) * p = ml V m2.

But @l A p = ml V m2. Hence by (R2),

#l* p = ml V mz. Similarly, $2 A p = m2 and

bY (R2)! @2 * P = m2. Taking conjunctions we

have that (@l *P) A (@2 *p) = (ml Vm2) Am2 =

m2. Hence by (A8), (#1 V +2) * p implies m2.

This is a contradiction.

Assume now that there is a theory change

operator * that satisfies all of (U2), (U8), and

(A8). Let #l, @z, and p be as above. Then note

that @l implies p, and #2 implies p. Hence by

(U2), ~,* p = *, = ml Vmz, and~2 *p=

+2 = mz. Hence by (U8), (+1 v +2) * p =

(?Jl*P)V(@2*P) = (m~Vmz)Vmz =ml Vm2.

But (+l*p)V(@2*p) = (m1Vm2)Amz = m2.

Hence by (A8) (#1 V @2) * p implies m2. This

is again a contradiction. .

Assume now that there is a theory change

operator * that satisfies all of (RI), (R2), (R3),

and (U8). Let ml, m2, and m3 be any three

singletons. Let #1 = ml and p = m2 v m~.

By (RI) @l * p implies p, and by (R3) @l * p

is satisfiable. Hence without loss of generality

either (i) @l * p = mzVma, or(ii)#1*p=m3

must be true. Let @2 = m2. Since ~z A p =

m2 A (m2 V m3) = m2, by (R2) @2 * p = m2.

similarly, since (+1 V @z) A u = (ml V m2) A

(mz V ma) = m2, by (R2) (+1 V#2) * p = m2.

But, by (U8), (01 V42) */.L = (41 */J)V (9J2 *

p) = (@l *p) V mz. Hence, in both cases (i)

and (ii) above, (+1 V #2) * p = m2 V m3. This

is again a contradiction. •l

82


