
J. Symbolic Computation (1989) 7, 427-444

On the Relat ionship of Congruence Closure
and Unification*

PAPdS C. K A N E L L A K I S PETER Z. I~EVESZ

Department of Computer Science, Brown University,
P.O. Box 1910, Providence, Rhode Island 0fl912, U.S.A.

(Received 18 February i988)

Congruence closure is a fundamental operation for symbolic computation. Unification closure
is defined as i ts directional dual, i.e., on the same inputs but top-down as opposed to bot tom-up,
Unifying terms is another fundamental operation for symbolic computat ion and is commonly
c o m p u t e d using unification closure. We clarify the directional duality by reducing unification
closure to a special form of congruence closure. This reduction reveals a correspondence between
r epea ted variables in terms to be unified and equalities of monadic ground terms. We then
show tha t : (1) single equality congruence closure on a directed acyclic graph, and (2) acyclic
congruence closure of a fixed number of equalities, are in the parallel complexity class NG. The
d i rec t ional dual unification closures in these two ca~es are known to be log-space complete for
PTIME. As a consequence of our reductions we show that if the number of repeated variables in
the inpu t terms is fixed, then term unification can be performed in NQ this ex~ends the known
para l le l izable cases of term unification. Using parallel complexity we also clarify the relationship
of unif icat ion closure and the testing of deterministic finite automata for equivalence.

1 I n t r o d u c t i o n

Congruence closure and unificat~ion are fundamental notions in symbolic computation.
The unification of terms is the basic operation for most logic programming languages
(Lloyd 1984) and the congruence closure of equalities among terms is a central pattern
matching task in all systems which compute with equations (Huet & Oppen 1980; Nelson
& Oppen 1980; Oppen 1980). In this paper we clarify the relationship between these two
notions.

All problems we examine here have polynomial time sequential algorithms, (i.e., they
are in the complexity class PTIME). Our analysis and comparisons are based on the
theory of parallel algorithms and complexity. Let us briefly mention the few but central
concepts that we use from this theory. The complexity class NC (Pippenger 1979) contains
those problems solvable on a PRAM (Fortune 1978) in polylogarithmic parallel time
using a polynomial number of processors. Intuitively, NC consists of those problems
whose solution can be significantly sped-up using a multiprocessor. It has been shown
that NC C PTIME and it is strongly conjectured that this containment is proper. A

*This research was supported partly by NSF grant IRI-8617344 and partly by ONR-DARPA grant
N00014=83=K-0146, At~PA Order No. 4786. ~l'he work of the first author was also supported by an Alfred
P. Stoan Foundation Fellowship.

427
0747-7] 71/89/030427 + 18 $0320/0 �9 1989 Academic Press Limited

428 P .C . KanelIakis and P. Z. Kev~sz

problem is log-space complete for PTIME if it is in PTIME and every problem in PTIME
is reducible to it using only logarithmic auxiliary space. Any log-space reduction can be
computed in NC and hence (unless the unlikely fact P T I M E C_ NC is true) problems
log-space complete for PTIME do not have NCalgori thms. Intuitively, problems that are
log-space complete for PTIME are inherently sequential. A prototyplcal such problem is
the circuit value problem (Ladner 1975). The class N C ~ is the subclass of NCrestricted
to log-squared parallel time.

In formalizing the notions of "congruence" and "unification" we follow Downey et
at. (1980). The two definitions we use exhibit a certain directionaI duality on the same
inputs, namely, congruence closure is defined bot tom-up and unification closure top-down.

Let G = (V, A) be a directed graph such that for each vertex v in G, the successors of
v are ordered. Let C be ally equivalence relation on V. The congruence closure CC and
the unification closure 1 UCof C are the finest equivalence relations on V that contain C
and satisfy the following properties for all vertices v and w in G:

Let v and w have successors vx, v2, . . . , vk and wl, w~ , wt, respectively. If
k - - I :> 1 and (v~,w~) E CC for 1 < i < k, then (v,w) e CC.

Let v and w have successors vl, v2~.. . , vk and w l , w 2 , . . . , wl, respectively. If
k = l > 1 and (v,w) e UC, then (vi,wi) E U C for 1 < i < k.

Congruence closure is common in decision procedures for formal theories, where it
is necessary to determine equivalent expressions. An impor tant use is in solving the
following expression equivalence problem, which is called the uniform word problem for
finitely presented algebras: "determine whether an equality Q = ~z logically follows from
a set of equalities S = { t l l = ~12, t=l = f ~ , " �9 f~l = t~2}, where the ~'s are ground terms
constructed from constant and function symbols". For this application the directed graph
G is a representation of the t 's and therefore an acyclie graph.

If the set of equalities S above is empty, we have the well-known common subezpression
eliminafion problem, which occurs often in compiling. If the set of equalities S above
contains only a single equality we have a problem that is relevant to our exposition and
that arises in verifying a class of array assignment programs in Downey ~; Sethi (1978).
If the set of equalities S above is fixed and therefore not part of the input we have the
(nonuniform) word problem for finitely presented algebra S. As shown in Kozen (1977),
the uniform word problem for finitely presented algebrms is log-space complete for PTIM]g,
even when there is only a unique constant and a unique binary function symbol in the
input terms.

Several authors have suggested algorithms for congruence closure. Downey et al.
(1980) have the fastest known sequential algorithms for various cases of congruence clo-
sure. Their algorithm for the general case requires O(NiogN) time, where N is the input
size. They also provide O(N) and therefore optimal sequential t ime algorithms for two
cases that are of interest to us here: (1) congruence closure when G is a directed acyclic
graph and C contains a single pair of distinct vertices, (2) congruence closure when we
get an acyclic graph from G if we contract the equivalence classes of CC.

Unification closure is the directional dual of congruence closure and has a number of
impor tan t applications. It can be used in testing equivalence of finite automata (HopcroR

1 Congruence closure is the terroJrtology used in Downey et ~I. (1980). Unification closure Js slightly
different f rom unifier defined in Downey et aL (1980) a n d is ~erminology in t roduced here to emphasize
the d i rec t iona l dual] gy.

Relationship of Congruence Closure and Unification 429

Karp 1971) and in determining a most general set of substitutions (i.e., a most general
unifier) to make two terms equal (Martelli ~ Montanari 1982; Paterson ~ Wegman
1978; l~obinson 1965). The technique of Itopcroft & Karp (1971) combined with the
fast UNION-FIND method of Warjan (1975) provides an O(No~(N)) time algorithm for
unification closure, where c~(N) is a functional inverse of Ackermann's function. Hnet
(1976) and Robinson (1975) independently provided similar bounds for computing most
general unifiers. Paterson & Wegman (1978) have given an O(N) time algorithm for the
case where we get an acyclic graph G if we contract the equivalence classes of UC; the
acyclicity condition here is critical for the linear-time behavior.

Let us briefly comment on the relationship of computing unification closures and
computing most general unifiers. Given two terms constructed out of variables, constants
and function symbols, the problem of computing the mosi general unifier, mgu is: "finding
a most general substitution, if it exists, which makes the two terms equal". One way
to compute the mgu is to first compute a unification closure and then test it for two
conditions, called homogeneity and acyclieity in Paterson & Wegman (1978). If the
acyclielty test is omitted then we have a most general unifier that permits infinite terms as
substitutions (mgu~176 Both homogeneity and acyclicity are testable in NC and determine
if the mgu exists. Therefore from a parallel complexity point of view the unification
closure is the operation of greater interest.

Computing unification closure is shown to be log-space complete in PTIME in Dwork
e~ al. (1984) and Yasuura (1983). This lower bound is strengthened in Dwork et al.
(1988). Parallel algorithms for unification closure and a number of its N C ~ subcases are
examined in (Auger 1985; Dwork e~ al. 1988; Ramesh et al. 1987; Vitter & Simons 1986).

The main contribution of this paper is in clarifying the directional duality
between congruence closure and unification closure (Theorems 3.1 and 4.1).
Based on this duality we extend the class of unification problems known to be
in NG (Theorem 5.1). We also clarify the relationship of unification closure
and deterministic finite automata equivalence (Theorem 6.1).

We first log-space reduce unification closure to congruence closure. Given that both
problems were known to be log-space complete in PTIME, such a reductloa was in prin-
ciple possible. The particular reduction that we use, however, has some nice properties
that accurately capture the directional duality. In Theorem 3.1 we reduce computing the
mgu ~176 of two terms to the uniform word problem for monadic finitely presented algebras.
Multiple occurrences of variables in the terms are transformed into algebra axioms. If
k = (number of occurrences of variables in the terms) - (number of distinct variables in
the terms), then the uniform word problem has 1 + k axioms. This reduction and the
lower bounds in (Dwork et al. 1984; Dwork et al. 1988) extend the log-space complel;e-
ness results of Kozen (1977) to uniform word problems for terms constructed out of one
constant and two monadic function symbols. This is syntactically tight because we s
show that for terms constructed out of any number of constants and one monadic function
symbol the uniform word problem is in NC. This can be shown to follow from the proofs
in Auger (1985). We simplify these proofs to a large degree and extend them from the
mgu to the mgu ~ cases (Proposition 3.4). If the uniformity condition is removed we also
have word problems in NC (Proposition 3.6). This is based on the theory of finite tree
au tomata of Thatcher & Wright (1968) and also follows from the properties of context
free languages (Ruzzo I980).

430 P . C . Kanellakis and P. Z. Revesz

We nex t restrict our at tention to inputs consisting of a directed aeyclic graph G
and an equivalence relation C defined by k pairs of distinct vertices. Let us call these
restr icted problems dag-CC[k axioms] and dag- UC[~ axioms] respectively. As noted there
is a pract ical application for dag-CC[1 a~iom] Downey ~ Sethi (1978). In Theorem 4.1
we show tha t the problem dag-CC[1 aziom]is in NC ~, whereas it is known that dag- UC[I
axiom] is log-space complete for PTIME. This demonstrates that a straightforward view
of the directional duality may be misleading and tha t the transformation of multiple
occurrences of variables into axioms from Theorem 3.1 provides a better view of this
duality. In Theorem 4.1 we also show (by a simple modification of the proof in Kozen
(1977)) t ha t dag-CC[3 axioms]is log-space complete for PTIME. The status of dag-CC[~
axioms] is an interesting open question. As part of the proof of Theorem 4.1 we show that
when C is the trivial equivalence relation, that is each distinct ver tex is an equivalence
class, then congruence closure is in N C 2. The tricky issue here is the possible existence
of cycles in G in the general case. The acyclic G case was already known to be in N C 2
via common subexpression elimination for directed acyclic graphs.

Having investigated the relationship of congruence closure and unification closure we
then proceed to examine the acyclicity condition that is often added to these computa-
tions. We say tha t G is acyclic under the equivalence relation C ~ if the directed graph
we get by contracting the vertices in each equivalence class of C ~ is still acyclic. Acyclic
congruence closure returns the congruence closure for instances where G is acyclic under
CC and the message "has cycle" otherwise. In Theorem 5.1 we show that acyclic con-
gruence closure is in N C ~ if C has a fixed number of nontrivial equivalence classes, i.e.,
classes with more than a single vertex. Together with Theorem 3.1 this leads to a ne~v
class of instances where computing the mgu of two terms is in H C 2. These instances
consist of two terms with a fixed number of distinct variables that occur more than once
in the instance. The use of the acyclicity conditiofi is important for this proof and we
do no t know how to remove it. There is an analog here with the use of acyclicity made
in the linear time algorithms for acyclic congruence and unification closure in Downey ef
al. (1980) and Paterson & Wegman (1978).

Our final contribution is in clarifying the relati()nship of unification with the ~esting
of two determinlsting finite au tomata for equivalence. Let G be a graph with vertices
having outdegree 0 or 2 and let us call outdegree 0 vertices leaves and outdegree 2 vertices
internal nodes. There is no loss of generality from the point of view of parallel complexity
if we thus restrict G. In Theorem 6.1 we show that if G has a fixed number of leaves
then computing the unification closure is is N C 2. Note that for the deterministic finite
a u t o m a t a application there are no leaves. This result also extends the circuit bounds
of Yasuura (1983) on unification of terms with a fixed number of variables, because the
graph G can have cycles and is thus more general than the acyclic representation of terms.

In Section 2 we give brief but formal definitions of the problems examined in this
paper; Section 3 contains our duality theorem; Section 4 the analysis of dag-CC with a
fixed number of axioms; Section 5 the analysis of acyclicity; and Section 6 the relationship
of unificat ion closure and deterministic finite au tomata equivalence. In Section 7 we have
our conclusions (shown graphically in Figure 5) and open questions.

2 T h e P r o b l e m s

A term is a finite string that is either a variable symbol, or a constant symbol, or a
str ing f (t t ,ta), where f is a function symbol of ari~y a > 1 and 41 ta are terms.

Relationship of Congruence Closure and Unification 431

A ground term is a term that does not contain any occurrences of variables.
A set of terms is naturally represented as a simple directed acyclic graph (sdag). Sd~gs

are directed acyelie graphs, where only the leaves (ontdegree 0 vertices) can have indegree
larger than one (Dwork et al. 1984), i.e., the graph looks like a forest except at the leaves.

I f a term is a variable or a constant symbol it is denoted by a. tree of one vertex
labeled by that symbol. If a term is f (Q, . . . ,ta) it is denoted by a tree, whose root is a
vertex labeled by symbol f and such that the root has as a ordered successors the trees
denoting t l , . . . , ~a. Given a set of terms we represent them by the sdag that results from
the trees denoting the terms, if we merge all vertices labeled by the same variable or
constant symbol into one such vertex. For example, Figure la is the sdag representation
of the set of terms {f(f(a, y), z)), f(x, (f(y, b)))}.

U W O R D : The uniform word problem for finitely presented algebras is de-
fined as follows. Given ground terms Q1,. . . , tnl , t12,. . . , t ,2 ,Q,t2 de-
cide whether the implication S ~ {tl = ~2} is true, where S = {tl~ =
$12, . . . , tn l = tn3}.

I f S is a fixed set of equalities we have the problem S-WORD (the word problem
for finitely presented algebra S). If S has k equalities we use the notation UWORD[k
azioms]. If the function symbols in all the input ground terms are monadic then we have
the problem mon-UWOl~D. We use mon-UWORD[k functions] if the input has only k
dist inct function symbols.

M G U : The problem of computing the most general unifier, (mgu) is defined
as follows. Given terms t l , t2 find the most general substitution of terms for
variables in t l and t~ that makes them equal or report that there is no such
substitution.

Note that if there is such a substitution there is a most general one (Robinson 1965).
For example, the mgu for the terms f(m, x) and f(g(y), g(g(z))) consists of substituting
g(z) for y and g(g(z)) for m. The terms f(m, x) and g(m) are not unifiable and neither
are the terms g(m) and m.

M G U ~ : This is an extension of the mgu of two terms where we allow sub-
stitutions of infinite terms for variables in h , t2 . For example, we say that
the terms g(z) a n d z a r e unrestricfed unifiable by sqbstituting g(g(g(...)))
for z, (see Dwork e~ al. 1984; Paterson ~ Wegman 1978 for the technical
definitions).

I f the input terms have at most k distinct variables, we have the problems MGU[k
vats] and MGU~176 vats]. A variable is repeated if it occurs more than once in the input,
(i.e., i t occurs in both t l and t~, or it occurs twice in tl or t2). I f the input terms have
at mos t k repeated variables we have the problems MGU[k repeated vats] and MGU~176
repeated vats]. Clearly if we have /k vars] we have [k repeated vats] but not inversely. If
one of the two terms contains no repeated variables we have the problems linear-MGU
and linear-MGU e~ (Dwork et al. 1988). Finally, if we are given a set of input pairs
{t11, Q2} , . . . , {t~l, tk2}, where all the function symbols have arity 1, and we want the
most general substitution that simultaneously makes t11 equal to t12, . . . , t~l equal to
tk2, then we have the problems mon-MGU and mon-MGU ~176

432 P . C . K a n e l l a k l s a n d P. Z. Revesz

E D F A : This is the problem of determining whether two given deterministic
finite au tomata accept the same language.

T h e above problems represent a wide spectrum of applications which we will now
reduce to two combinatorial problems.

CC: Let G = (V, A) be a directed graph such that each vertex v E V has 0 or
2 ordered successors. Let C be any equivalence relation on V. The congruence
closure ~ of C is the finest equivalence relation on V that contains C such
tha t for all vertices v and w with corresponding successors vl, wl and v2, w2
we have:

V 1 ,W~ ?3J 1 , v 2 ,~ "1/2 2 ~ V ~ t0

U C : Let G = (V, A) be a directed graph such that each vertex v E V has 0 or
2 ordered successors. Let C be any equivalence relation on V. The unification
closure ,.~ of C is the finest equivalence relation on V that contains C such
tha t for all vertices v and w with corresponding successors vl, Wl and v2, wz
we have:

Vl '~ ~JI, V2 ~ ~2 r V ",~ II~

We distinguish among several cases of congruence closure and unification closure
depending on the structure of G and C. We use the notation [k azioms] when C is the
reflexive, symmetric, and transitive closure of k pairs of distinct vertices. We use the
n o t a t i o n / k classes] when C has at most k nonsingleton equivalence classes. We use the
nota t ion [k leaves] when G has at most k leaves. (s)dag-CC and (s)dag-UC refer to cases
where the input graph is a (simple) directed acycli6 graph.

Remark on outdegree: In the introduction CG and UC are presented without
any restrictions on the outdegrees of vertices in G. In our formalization we
restrict the outdegrees to 0 or 2. This makes the combinatorial problems eas-
ier to state and simplifies the notation in our proofs. It is used for the same
purposes in Downey et al. (1980). More importantly~ using the techniques of
Downey et ai. (1980), one can easily show that both for sequential algorithms
and for NC algorithms the restriction can be made without any loss of gen-
erality. For example, vertex labels in the sdag representation of terms can be
eliminated without loss of generality, using sdags with vertex outdegrees 0 or
2.

Many applications of unification closure and congruence closure require that the graph
formed f rom the input graph by contracting the equivalence classes of the closures be
aeyclic. We define ACCand A UC'to have the same inputs as CCand UC. They return the
closure (if the graph formed by tile input graph by contracting the closure's equivalence
classes is acyclic) or the message "has cycle" (otherwise).

We s ta te four propositions from the literature, which relate the applications UWORD,
MGU~ MGU ~176 and EDFA to the combinatorial problems CC and UC. Two problems
are log-space equivalent if each one is log-space reducible to the other. All the reductions
in Proposi t ions 2.1 to 2.4 involve simple and straightforward manipulations of the repre-
sentat ions commonly used for terms and for finite automata. Hence~ for each one of these
cases we will use the combinatorial problems to reason about the application problems.

Relationship of Congruence Closure and Unification 433

P r o p o s i t i o n 2.1. UWORD[k azioms] is log-space equivalent to sdag-CC[k azioms].

Kozen (1977) reduces UWOI~D[k azioms] to the more general version of sdag-CC[k
azioms], where the vertices in the input graph may have other than 0 or 2 successors.
This is done based on straightforward representation of terms via sdags. Downey et al.
(1980) reduce this more general caze to sdag.CC[k azioms] where the vertices in the input
graph have 0 or 2 successors.

P r o p o s i t i o n 2.2. MGU is Ivy-space equivalent to sdag-AUC[1 aziomJ.

P r o p o s i t i o n 2.3, M G U ~ is log-space equivalent to sdag-UC[1 aziom].

The reductions follow from Paterson & Wegman (1978).

P r o p o s i t i o n 2.4. EDFA is log-space equivalent to UC[O leaves].

This reduction follows from ttopcroft & Karp (1971).
We close this section with algorithms for solving CC and UC. Let G and C be as

in the definitions of CC and UC above and let u and v be vertices of G. We define
symmetric and reflexive relations E and F on pairs of vertices of G. These relations are
represenLed by undirected edges added to G and labeled E or F. For each two vertices u
and v that are in the same equivalence class of C we add undirected edges uEv and uFv
to the graph. Also,

Add "undirected edge uEv if it is not present and either:

1, u l E v l and l~2Ev 2 a r e present, where uz, u2 and Vl,V 2 are the ordered successors of
u, v. In this case u and v are distincl vertices. This is called up-propagation step
UPV.

~. n e w and wEv are present, where w is some vertez in G, In this case u and v are
distinct vertices. This is called transitivity step uTv.

Add undirected edge uFv if it is not present and either:

1. u~Fv ~ is present, where u and v are corresponding successors of u~, v ~. In this case
u and v are distincf vertices. This is called down-propagation step uP~v.

~. u F w and wFv are present, where to is some vcrtez in G. In this case u and v are
distinct vertices. This is called transitivity step uTv.

From Kozen (1977) and Paterson ~ Wegman (1978) we have the following character-
ization of the congruence closure relation (~) and the unification closure relation (,-~).

P r o p o s i t i o n 2.5. u ,,~ v (u ,,~ v) iff undirected edge uEv (uFv) is added after some
finite sequence of up(down)-propagation and transitivity steps.

434 P .C. Kanellakis and P. Z. Revesz

3 U n i f i c a t i o n C l o s u r e R e d u c e s t o C o n g r u e n c e C l o s u r e

Let I be an instance of UC and u, v be two vertices in I. In this section we will
t ransform the question whether the pair (u, v) is in the unification closure of I (i.e., u ,-~ v)
into a uniform word problem for monadic finitely presented algebras. This together with
ProposRion 2.1 reduces unification closure to congruence closure.

Given I, u, v as above we now produce a set of equations S(I), an equation s(I), and
an instance of CC we call dual(I) as follows'.

1. For each vertex xl in I with indegree i > 1 do the following modification. If
(z l , x l) , . . . , (z i , z l) are the arcs coming into xl , with arc labels 1 or 2, then re-
place (z2, z l) , . . . , (zi, x l) by (zz, a~2), . . . , (zi, xl), with the same arc labels, where
z 2 , . . . , zl are new vertices. Add new axioms zl "~ ~z, �9 �9 �9 zl ~ :c~.

2. The graph resulting from step 1 is a forest, thus there is at most one arc coming
into each vertex. Add vertex labels using the following procedure. If vertex z has
incoming are (z, z) with arc label 1 (2) then label x with monadic function symbol
h (#). If vertex ~ has no incoming arc then label x with a unique constant symbol.

3. In the graph resulting from step 2 reverse the directions of the arcs and change all
arc labels to 1. The resulting graph is the sdag representation of a set of monadic
ground terms. These monadic ground terms are constructed from constants and
the symbols h and g. In this sdag every vertex x denotes a monadic ground term

4. S(I) is {tz = ~y [where �9 ,-, y is an axiom of I or a new axiom from step 1 }; s(I)
is tu = tv.

5. The instance of CC dual(I) consists of a graph G t and an equivalence relation C ~,
'I 'he graph G r is the directed graph with are labels resulting from step 3 with the
following modification. Add two new vertices h and g and make new vertex h
(g) the second successor of each vertex labeled by symbol h (g). The equivalence
relat ion C ~ is the one defined by axioms of I and the new axioms from step 1.

Figure 1 illustrates this method of reduction. The sdag- UC[1 axiom] instance in Fig-
ure l a (ignore vertex labels) is transformed into Figure lb. This in turn is the sdag
representat ion for the mon-UWORD instance {g(h(c)) = h(g(d)), g(c) -~ h(d), c = d}
{h(h(c)) = g(g(d))}. Compare this sdag with the sdag in Figure l a which can be used
for comput ing the unification closure of terms f (f (a , y), x)) and f (x , f (y , b)). The impli-
cation in the word problem holds. In ~he unification closure of the two terms the vertices
labeled a and b are in the same class; this leads to a failure of the homogeneity test of
Paterson ~c Wegman (1978) for mgu's.

T h e o r e m 3.1. Let I be an instance of UC and u,v be lwo vertices in I. Lei S(I) be a
set of equations, s (I) an equation, and dual(I) an ir~stance of CC defined as above. Then
~he following are equivaten~:
(a) u ..~ v is in ~he unification closure of I.
(b) s(I)
(C) U ~ v is in ~he congruence closure of dual(I).

Relationship of Congruence Closure and Unification 435

(

(

() ; @

(a)

(
1

(
1

(3 ; ()
(b)

Figure 1: Example of reduction from sdag-UC to mon-UWORD.

Proof ' . The equivalence of (b) and (c) follows from Kozen's algorithm for the uniform
word problem for finitely presented algebras in Kozen (1977).

Consider the instance I ~ of UC that we get right after step 1 of the reduction above,
i.e., after the addition of the x vertices and the new axioms. It is easy to see that u --~ v
is in the unification closure of I iff u ,-, v is in the unification closure of I t. The arc label
changes in steps 2, 3 and 5 are such that every down-propagation step on I t corresponds
to an up-propagation step in dual(I) and vice versa. The same is true for the transitivity
steps on I t and dual(I). Thus by Proposition 2.5 (a) and (b) are equivalent.

As we described in Proposition 2.2 computing MGU ':'~ is in~ima~ely related to comput-
ing the unification closure of sdag- UC[I axiom] instances. The additional homogeneity
test can be performed in N C . Based on the above reduction we have:

C o r o l l a r y 3.2. Let I be an instance of sdag-UC[1 axiom] and u, v be ~wo verlices in I.
Let k = ~[indegree (~ :) - l] , where x is a leaf in I of indegree >_. 1. The S (I) , s (I) defined
above are an instance of mon-UWORD[1-t-k axioms], such lhat, u ..~ v i r iS(I) ~ s(I).

Consider the MGU ~ instance t l , t2. If represented in sdag form then there are leaves
denoting both variable and constant symbols. One can replace each occurrence of a
constant with a unique new variable and use the unification closure on the sdag of the
new terms ~ t t l , t 2. This closure can be used to find the mgu ~176 of Q,t2, because constants
can only be unified with themselves. Therefore for the MGU ~~ application the k used ix1
Corollary 3.2 is k = (number of occurrences of variables in ~1, ~2) - (number of distinct
variables in tl , t~).

Using the reduction of Theorem 3.1 and reductions from (Dwork et al. 1984; Dwork
el al. 1988) one can show that:

C o r o l l a r y 3.3. mon-UWORD[2 functions] is log-space complete in PTL~fE.

436 P.C. Kaneltakis and P. Z. Revesz

One constant and two monodic function symbols suffice for the proof of Corollary 3.3.
However, for one monodic function symbol we have the following.

P r o p o s i t i o n 3.4, mort. UWORD[I function] is in N C 2.

P r o o f : Consider a directed graph G - (V,A) such that each vertex v ~ V has 0
or 1 successor. Let C be an equivalence relation on V. The closure of C is the fines~
equivalence relation C* such that for all vertices v, w with successors ff, w r we have:
(v, w) e c " ~ (r w') e c * .

Comput ing C* is the monodic outdegree version of UC. By reversing the direction of
the arcs it is easy to see that computing C* in N C ~ would suffice to prove this theorem.

Each component of graph G is either a tree directed towards the root~ or a single
directed cycle onto whose vertices such trees are rooted. The N C 2 algorithm consists of
bwo parts. In the firs~ par~ c o m p o n e n t s are merged, In the second pare r compute.Lion
is performed on separate components,

Merge: If an axiom (v, w) of C has vertices in two components we merge
these components into one component, This merge operation is performed
by merging descendants of v and ~u that h~ve the same distance from v and
w. One merge operation can he performed in O(logN) parallel time. Merges
can be performed so tha t after O(logN) phases there are no axioms between
components.

Separate: We have reduced the computation of C* to subcomputat ions where
O is one component. Each one of these subcomponents is ~ special case of
UC, namely, UC[O leaves] or UC[1 leaf]. These can be performed in N C ~.
We will give a more general proof for UC[k leaves] k fixed in Theorem 6.1. []

Using the proof of this theorem we have, (as in Auger 1985 for mon-MGU):

C o r o l l a r y 3.5. mon-MGU ~~ is in N C 2.

Let us close this section by noting that the uniformity of the word problem is impor-
tant for the log-space completeness, The proposition below can also be shown to follow
from Ruzzo (1980), so we only provide a sketch of the proof.

P r o p o s i t i o n 3.6. 5'- WORD is in N C 2 for any fixed S.

P r o o f S k e t c h : For a fixed S we can produce in constant t ime a tree automaton
presentation of the algebra of Thatcher g; Wright (1968). To check for an equality
t t - t2 in the algebra all we have to do is run this automaton on t l and t2. This can be
performed in N C ~,

4 C o n g r u e n c e C l o s u r e W i t h a F i x e d N u m b e r o f A x i o m s

In this section we show that there is a distinction between UC and CC. Namely, we
show tha t dad-COil axiom] is in N C 2 whereas it is known that sdag-UG[1 axiom] is
log-space complete for PTIME.

T h e o r e m 4.1 . CC[O axioms] and dag-CC[i axiom] are in N C 2. CC[k axioms] and
dag-CC[k§ axioms] are log-space complete in P TIME for each fixed k ~ 2.

Relationship of Congruence Closure and Unification 437

We first prove two lemmas. In this section by propagation steps we mean up-
propagat ion steps, and by a (congruence) proof we mean any valid sequence of up-
propagat ion and transit ivity steps.

L e m m a 4.2. CC[O axioms] is in N C 2.

P r o o f i The lemma follows from two observations: (1) C has no axioms then all proofs
containing some transit ivi ty steps can be replaced by proofs containing only propagat ion
steps and (2) sequences of propagation steps can be done in NC 2.

To show (1) we apply repeatedly the claim below for any proof, always replacing the
righemost transitivity step until none remains.

Claim: When C has no axioms, any transitivity step preceded by propagation steps
only can be replaced by a sequence of propagations.

Let vTw be a counterexample to the claim, such that, it is preceded by the fewest
number of propagation steps. Without loss of generality the sequence must look as
follows:

P1, v Pu, P2, uPw, Pa, vTw

where PI, P2 and P3 are (possibly empty) sequences of propagation steps.
Since C has no axioms, v ~ u and u ~ w were proven by propagation and all of v, u, w

have exactly two children, say vl,vg., ul,u~, and Wl, w2, respectively. Note that either
vl is ul or vlPul must precede vPu, and either ul is Wl or ulPwl must precede uPw.
Therefore, either vl is wl or we can replace the end of the original sequence to get

P1, vPu, P2, vITWl

Since vlTwl is preceded by fewer propagation steps than vTw, it cannot be a coun-
terexample. Hence vlTwl can be replaced by a sequence of propagations, showing that
vl ~ w1 can be proven by propagations only. Reasoning similarly, v2 ,~ w~ can also be
proven by propagations only. Therefore v ~-. w also has a propagation proof, which is a
contradiction to the counterexample vTw. This completes (1).

To show (2) we reduce CC[O axioms] with G = (V,A) to transitive closure of the
directed graph G' = (V ' ,A ') , where Y' -" {(v,w) : v,w e V} U {x} where x is a new
node, nd A' is as follows:

For all v E V let (v, v) have successor x in G'. For all v, w ~ V with successors
vl, v2 and wl, w~ in G, respectively, let (v, w) have successors (vl,wl) and
(v2, w~) in G'.

Then for all v, w E V, v ~ w if and only if the following conditions both hold:

Each descendant of (v, w) has x as a descendant (except for x itself).
The descendants of (v, w) form an acyclic graph.

The correctness of this reduction can be easily proven by induction on the length of
propagat ion sequences. This completes (2) and the lemma. []

The single pair congruence closure problem seems harder than congruence closure with
no axioms. Given a directed acyclic graph like that in Figure 2, we need transitivity steps,
to show for example tha~ x ~ zl. Moreover, to show that x ~ zi, we need i al ternations

438 P.C. Kanellakis and P. Z. Revesz

1,2 2 1

Figure 2'. Example of dag-CC[1 axiom]

in p ropaga t ion and transi t ivi ty steps. However, since x does not have any children, in
this case we could merge it with y and then perform propagat ion and transi t ivi ty steps.
In this way the problem reduces to the no axioms case, and only propagat ion steps are
needed. The next theorem shows that this can be done in general.

L e m m a 4.3. dag-CC[k-i-1 axioms] log-space reduces to CC[k axioms], k > O.

Proof . - Let us first give the proof for k = 0.
Let G = (V, A) be any dag with z ~ y an axiom in C, where x and y are two distinct

vertices in V, and let T be an arbi trary topological ordering of the vertices. Without loss
of generali ty T(y) > T(z). Let us assume that there are no common subexpressions, i.e.,
we per formed congruence closure with 0 axioms. This is because this computat ion can
be done in N O 2 by Lemma 4.2. Now we prove the following claim.

Claim: When G is acyclic and T(y) > T(z), if u ~. v holds, then T(u), T(v) > T(x).
T h e claim is shown by induction on the length of the proof for u ~ v.

Base: Suppose u ~ v has a proof of length 1. Then it must be a propagat ion proof.
Let u i and us be the successors of u, and vl and v2 be t;he successors of v. Since
u # v when C has no axioms (because of common subexpression elimination), the proof
mus t depend on z ~ y. Then without loss of generality (ul,vl) = (x,y). Therefore,
T(u) , T(v) > T(z) , and the claim holds for proofs of length 1.

Induction hypothesis: "If u ~ v has a proof of length i > 1, then T(u), T(v) > T(x)."
Then suppose u .~ v has a proof of length i + 1. There are two cases:

i. The last step was transit ivity of the form: uEw, wEv ==ez uTv. Then u ~ w
and w ~ v have proofs shorter than i + 1, hence by the induction hypothesis,
T(u), T(v), T(w) > T(x). Hence T(u) , T(v) > T(x).

Relationship of Congruence Closure and Unification 439

2. The last step was propagation. Then ul ~ vl, and u2 ~ v2 have proofs shorter
than i + 1, hence by the induction hypothesis, T(ul), T(u2), T(vl) , T(v2) > T(x).
Since the graph is acyclic, T(u), T(v) >__ T(x) also holds.

Since nodes that are greater than x cannot use the descendants of x, by the above
claim, we can make the successors of x be the same as the successors of y. This modifi-
cation of G will not change the computation of the congruence closure but will allow us
to merge vertex x and y and still get a directed graph with outdegrees 0 or 2. Then the
problem reduces to congruence closure with no axioms, which by Lemma 4.2 is in N C 2.
Note that this reduces dag-CC to CC and not to dag-CC.

Finally if k >__ 0 the same technique can be used to eliminate one equality by start ing
from the vertex with the lowest number in the topological order. This completes the
lemma. []

P r o o f o f T h e o r e m 4.1: The theorem follows for k "-- 0 by Lemmas 4.2 and 4.3
and for k >__ 2 by a reduction from the circuit value problem (CVP) which was proven
logspace complete for PTIME by Ladner (1975). The circuit value problem is a sequence
gl,g2,...,gn, where each gi is either (i) a Boolean variable, which is assigned true or
false, or (it) NOR(j, k), with j, k < i. The circuit value problem operation is: for a given
circuit and an assignment to the variables find the output of the circuit.

To do the reduction, we introduce two special vertices 1 and 0. Every boolean variable
g~ tha t is assigned true is assigned to 1, and every boolean variable gi that is assigned
false is assigned to 0. In addition, for each g~ that is not a variable we create a vertex with
first successor gy and second successor g~. We can encode into the congruence closure
problem the function of a NOR gate by adding three congruences in Figure 3. Ou~ of
these the congruence 0 ~ z can be eliminated by merging the vertices 0 and z (see Figure
4).

Now it is easy ~o prove by induction that the CVP is true if and only if the node
gn will be congruent to 1. Hence the CVP problem can be reduced to dag congruence
closure with 3 axioms and to congruence closure with 2 axioms. The cases for k > 2 are
also immediately implied. []

Note that the complexity of CC[1 axiom] and dag-CC[2 axioms] is open. dag-CC[2
axioms] reduces to CC[1 axiom] by Lemma 4.2. Finally, the large number of paths in a
dag was important in the proof of Theorem 4.1. The complexity of sdag-CC[k axioms]
for fixed k :> 2 is open.

5 Acyclic Congruence Closure

In this section we show that there is a further distinction between UC' and CC.

T h e o r e m 5.1. ACC[k classes] is in NC 2 for each fixed k >_0.

P r o o f i Suppose tha t we have an input graph with k classes. If the input graph is
cyclic, then return a "has cycle" message, else eliminate common subexpressions. Then
take the graph G formed from the input graph by contracting the equivalence classes in
C. If G is cyclic, then return a "has cycle" message, else pick an arbitrary topological
ordering of the vertices in G. Find the vertex in some nontrivial equivalence class, such
that this vertex has the least topological number. Similarly to Lemma 4.3 we can show

440 P, C, Kanellakis and P. Z. Revesz

Figure 3: Example of dag-CC[3 axioms].

1 2

Figure 4: Example of CC[2 axioms].

Relationship of Congruence Closure and Unification 441

that the descendants of this merged vertex are not needed. By acyclicity this is t rue
for the other vertices in its class. Hence we can take tim input graph and merge only
these vertices, whose descendants are not needed and discard their descendants. Since
the merged vertices correspond to one nontrivial equivalence class in C, this yields a new
graph with k - 1 classes. The new graph is also acyclic. Since this reduction is in N C 2,
we can repeat it k times, and the theorem must hold. 0

Based on this theorem and on Proposition 2.2 we can show the following.

C o r o l l a r y 5.2. MGU[k repealed vats] is in N C 2 for each fixed k > O.

As after Corollary 3.2 there is only one fine point. Consider the MGU instance Q, t2.
If represented in sdag form then there are leaves denoting both variable and constant
symbols. One can replace each occurrence of a constant with a unique new variable and
use the unification closure on the sdag of the new terms t~, it. This closure can be used
to find the mgu of tl , t2, because constants can only be unified with themselves.

In Corollary 5.2 we have a new class of term unification problems that is shown to be
in N C 2. The previously known cases were linear-MGU (Dwork et al. 1988), mon-MGU
(Auger 1985), and MGU~ vats] (Yasuura 1983) for each fixed k > 0.

6 O n D e t e r m i n i s t i c F i n i t e A u t o m a t a E q u i v a l e n c e

T h e o r e m 6.1. UC[k leaves] is iu N C 2 for each fixed k >_ O.

P r o o f i Let us implement the procedure of Proposition 2.5 as the following algori thm
NU (for naive unification).

1. On the graph G add the axioms of C as undirected edges ulVv, as well as, all
self-loops uFu.

2. Perform as many down-propagation steps as possible.

3. Perform as many transitivity steps as possible.

4. If a leaf is connected via an undirected edge to another then merge it with that
vertex.

5. If any new propagation is possible then go to step 2 else terminate.

By Proposition 2.5 this algorithm will produce the closure, provided we keep track of
which vertices the leaves are merged with. Steps 2 and 3 can be performed in NC. The
problem with this algori thm as a general parallel algorithm is tha t Steps 2 and 3 migh~
have to alternate O(N) times (Dwork et al. 1984).

Let us first examine the k = 0 case; (by Proposition 2.4 this is leg-space equivalent to
EDFA). In this case we can argue that executing Steps 2 and 3 once suffices. Suppose it
does not. Then some new propagation step is enabled, i.e, at Step 3 we have shown some
x lF~ i and Yl, Yi are corresponding successors of z l , z~ for which we have not discovered
ylFy~. Now in order to show XlF~i we have found a (perhaps empty) sequence of
vertices z 2 , . . . , Xi_l such that ~:lFx2,. . . , x i - lFxl . Because there are no leaves and all
outdegrees are 2 there exist y2 yi-1, which are are the corresponding successors of
x2 , . . . ~:i-1. In Steps 2 and 3 we would have already discovered y lFy2 , . . . , y i - lFyi and
therefore ylFy~. This is the desired contradiction.

442 P . C . K a n e l l a k i s and P. Z . Revesz

. . . . O

cc[21 @~
.

o o 13
dag'CC(l' m~ lunc] ~_ / ~ EDFA

0 ~ 0 0
l|neai'-MGU 0 MGUIE vars] MGUIk repeated vats I

mon-MGU

Figure 5: The reduction map, o in NC, �9 is P-complete.

For the k > 0 case all we have to note is that , !n Step 4 at every i teration one leaf is
e l iminated at least. Since k is fixed we reduce to the k -- 0 case after a fixed number of
NC 2 computations. This completes the proof of the theorem. []

An immediate Corollary of this theorem is that MGU~~ vats]for fixed k is in N C '~.
Since the rngu ~176 has only k variables, by counting the number of possible subst i tut ions
(i.e., O(N~)) we could reach a similar conclusion. However, the proof of Theorem 6.1 gives
a more structured way of building NC 2 circuits for mgu ~~ A more involved construction
for MGU~ vats] is contained in Yasuura (1983).

C o r o l l a r y 6.2. MGU~[k vats] is in NC 2 for each fixed k >_ O.

7 O p e n P r o b l e m s

In Figure 5 we summarize the known results about subcases of congruence closure
and unification. The edges (P, Q) between problems can be read as "Q reduces to P ' .

The re are a few problems whose complexity is open. These are CG[1 aziom], dag-
CC[2 axioms], sdag-CC[k azioms] and MGU~~ repeated vats], where k > 2 and is fixed.
We conjecture that these problems are in NC.

A c k n o w l e d g e m e n t : Tile authors would like to thank Foto Afrati for her helpful
comments on a previous draft of this paper.

Relationship of Congruence Closure and Unification 443

R e f e r e n c e s

Auger I.E., Krishnamoorthy M.S. (1985). A Parallel Algorithm for the Monadic Unifi-
cation Problem, B I T 25,302-306.

Downey, P.J., Sethi, 1L (1978). Assignment Commands with Array References, J. ACM
25, (4), 652-666.

Downey, P.J., Sethi, It., Tarjan, R.E. (1980). Variations on the Common Subexpression
Problem, J. ACM 27, (6), 758-771.

Dwork, C., Kanellakis, P., Mitchell, J. (1984). On the Sequential Nature of Unification,
Journal of Logic Programming 1, (1), 35-50.

Dwork, C., Kanellakis, P., Stockmeyer, L. (1988). Parallel Algorithms for Term Match-
ing, IBM Research R,eport, B.J 5328, (to appear in the SIAM Journal of Computing).

Fortune, S., Wyllie, J. (1978). P~rallelism in Random Access Machines, Proc. 10 th

ACM STOC, pp. 114-118.

tlopcroft, J.E., Karp, R.M. (1971). An Algorithm for Testing the Equivalence of Finite
Automata, Tech. Rep. 71-114, Computer Science Dept., Cornell Univ., Ithaca,
N.Y.

Huet, G. (1976). R~solution d'equations dans les langages d'ordre t,2, . . . ,w. ThSse
d'~tat de l'Universit~ de Paris 7.

Iluet, G., Oppen, D. (1980). Equations and t~ewrite Rules: a Survey, In Formal Lan-
guages: Perspectives and Open Problems, Book, R., Ed., Academic Press, 349-403.

Kozen, D. (1977). Complexity of Finitely Presented Algebras, Proc. 9 *h ACM STOC,
pp. 164-177.

Ladner, R. (1975). The Circuit Value Problem is Log Space Complete for P, SIGACT
News 7, (1), 18-20.

Lloyd, J.W. (1984). Foundations of Logic Programming., Springer-Veda.g.

Martelli, A., and Montanari, U. (1982). An Efficient Unification Algorithm, ACM Trans.
on Prog. Lang. and SysL 4, (2), 258-282.

Nelson G., and Oppen, D. (1980). Fast Decision Procedures based on Congruence
Closure, J. ACM 27, (2), 356-364.

Oppen, D. (1980). Reasoning about Recursively Defined Data St~ruc~ures, J. ACM 27,
(3), 403-411.

Paterson, M.S., Wegman, M.N. (1978). Linear Unification, JCSS 16,158-167.

Pippenger, N. (1979). On Simultaneous Resource Bounds, in Proc. 20 ~h IEEE FOCS,
pp. 307-311.

Rarnesb, 1~., Verma, R.M., Krishnaprasad, T., Ramakrishnan, I.V. (1987). Term Match-
ing on Parallel Computers, ICALP '87, in Springer-Verlag Lec. Notes Comp. Sci.
267, 336-340.

Robinson, J.A. (1965). A Machine Oriented Logic Based on the Resolution Principle,
J. ACM 12, (1), 23-41.

Robinson, J.A. (1975). private communication in Paterson & Wegman (] 978).

Ruzzo, W.L (1980). Tree-size Bounded Alternation, JCSS 21, (2), 218-235.

444 P.C. Kanellakis and P, Z. Revesz

Tarjan, R.E. (1975). Efficiency of a Good but not Linear Set Union Algorithm, J. ACM
22,215-225.

Thatcher, J.W., Wright, J.B. (1968). GeneraliT.ed Finite Automata Theory with an
Application to a Decision Problem of Second Order Logic. Math. Syst. Th. 2.

Vitter, J.S. and Simons, R. (1986). New Classes for Parallel Complexity: a Study of
Unification and Other Complete Problems for P. IEEE Transactions on Computers
C-35, (5), 406-418.

Yasuura, tI. (1983). On the Parallel Computational Complexity of Unification. EI~
83-01, Yajima Lab.

