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ABSTRACT

Data classification is usually based on measurements recorded at the same time. This
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paper considers temporal data classification where the input is a temporal database that
describes measurements over a period of time in history while the predicted class is
expected to occur in the future. We describe a new temporal classification method that

Datalog improves the accuracy of standard classification methods. The benefits of the method
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are tested on weather forecasting using the meteorological database from the Texas
Commission on Environmental Quality and on influenza using the Google Flu Trends
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1. Introduction

Data classifiers, such as support vector machines or
SVMs [28], decision trees [18], or other machine learning
algorithms, are widely used. However, they are used to
classify data that occur in the same time period. For
example, a set of cars can be classified according to their
fuel efficiency. That is acceptable because the fuel
efficiency of cars is not expected to change much over
time. Similarly, we can classify a set of people according to
their current heart condition. However, people’s heart
condition can change over time. Therefore, it would be
more interesting to classify people using the current
information according to whether they are likely to
develop a serious heart condition in the future.

Consider a patient who transfers from one doctor to
another. The new doctor may give the patient a set of tests
and use the new results to predict the patient’s prospects.
The question arises whether this prediction could be
enhanced if the new doctor would get the older test
results of the patient. Intuitively, there are cases where
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the old test results could be useful for the doctor. For
example, the blood pressure of a patient may be 130/80,
which may be considered within normal. However, if it
was 120/80 last year and 110/80 the year before, then the
doctor may be still concerned about the steady rise of the
patient’s blood pressure. On the other hand, if the
patient’s blood pressure in the past was always around
130/80, then the doctor may be more confident of
predicting the patient to be in good health. Therefore,
the history of the patient is important in distinguishing
between these two cases.

Nevertheless, the temporal history of data is usually
overlooked in the machine learning area. There are only a
few previous works that combine some kind of spatio-
temporal data and classification algorithms. Qin and
Obradovic [17] are interested in incrementally maintain-
ing an SVM classifier when new data are added to a
database. Therefore, [17] is not useful to predict the future
health of a patient or other classes that one may want to
predict for the future. Tseng and Lee [26] classify temporal
data using probabilistic induction. Our earlier work [22]
considered data integration and reclassification by classi-
fiers when all the data were measured at the same time.

In this paper, we propose a new temporal classification
method that instead of probabilistic induction [26]
extends existing linear classifiers to deal with temporal
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Fig. 1. Comparison of the standard and the temporal classification
methods.

data. Fig. 1 compares the standard classifiers and the new
temporal classifier method. The standard classifiers take
as input the current (at time t) values of the features in
the feature space and the class label some n time units
ahead (at time t+n). The temporal classifiers take as input
in addition to the current features and the class, the
history, that is, the old values of the features up to some i
time units back in time (that is, from time t—i to t—1).

Weather forecasting is a challenging task. It is also
natural to study because the major interest is in the
prediction of the weather ahead of time instead of
describing the current conditions. We tested our temporal
classifier on a meteorological database of the Texas
Commission on Environmental Quality. At a first glance
it would seem useless to look at the weather history back
more than a couple of days. Surprisingly, we discovered
that the history does matter more than expected and the
classification can be improved if one looks back 15 days
back in time.

We were also surprised that the history of some
features were considerably more useful than the history
of the others. Moreover, the features that are the most
important when looking at only time t are not the same as
the features that are important when one looks at the
weather history. That happens because the different the
features have different permanency. For example, wind
direction may change greatly from one hour to another.
On the other hand, ozone levels are fairly constant.

The rest of the paper is organized as follows. Section 2
presents a review of classifiers and constraint databases.
Section 3 describes our database representation and
querying of linear classifiers. These representations are
used in our implementations. Section 4 presents the new
temporal classification method and a corresponding data
mapping. Section 5 describes computer experiments to

evaluate the performance of the temporal classification
method. Section 6 compares the proposed temporal
classification method with the popular IDW interpolation
method. Finally, Section 7 gives some concluding remarks
and open problems.

2. Review of classifiers and constraint databases

In many problems, we need to classify items, that is,
we need to predict some characteristic of an item based
on several parameters of the item. Each parameter is
represented by a variable which can take a numerical
value. Each variable is called a feature and the set of
variables is called a feature space. The number of features
is the dimension of the feature space. The actual
characteristic of the item we want to predict is called
the label or class of the item.

To make the predictions, we use classifiers. Each
classifier maps a feature space X to a set of labels Y. The
classifiers are found by various methods using a set of
training examples, which are items where both the set of
features and the set of labels are known. A linear classifier
maps a feature space X to a set of labels Y by a linear
function. In general, a linear classifier f(X) can be
expressed as follows:

f(?):<v‘v’7>+b=2w,»x,-+b 1)

where w; € R are the weights of the classifiers and b € R is
a constant. The value of f(¥) for any item X directly
determines the predicted label, usually by a simple rule.
For example, in binary classifications if f(X) > 0, then the
label is +1 else the label is —1.

Example 2.1. Suppose that a disease is conditioned by
two antibodies A and B. The feature space is X =
{Antibody_A,Antibody_B} and the set of labels is Y =
{Disease, No_Disease}, where Disease corresponds to +1
and No_Disease corresponds to — 1. Then, a linear classifier
is

f({Antibody_A,Antibody_B})
= wiAntibody_A+w,Antibody_B+b

where wy,w, € R are constant weights and be R is a
constant. We can use the value of f({Antibody_A,Anti-
body_B}) as follows:

o If f({Antibody_A, Antibody_B}) > 0 then the patient has
Disease.

e If f({Antibody_A, Antibody_B}) < 0 then the patient has
No_Disease.

2.1. Support vector machines

Suppose that numerical values can be assigned to each
of the n features in the feature space. Let X; € R" with
ie[l...1] be a set of | training examples. Each training
example x; can be represented as a point in the n-
dimensional feature space.
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Fig. 2. A set of training examples with labels +1 (<) and —1 (e). This set
is linearly separable because a linear decision function in the form of a
hyperplane can be found that classifies all examples without error. Two
possible hyperplanes that both classify the training set without error are
shown (solid and dashed lines). The solid line is expected to be a better
classifier than the dashed line because it has a wider margin, which is the
distance between the closest points and the hyperplane.

Support vector machines (SVMs) [28] are increasingly
popular classification tools. SVMs classify the items by
constructing a hyperplane of dimension n—1 that will
split all items into two sets of classes +1 and —1. As
shown in Fig. 2, several separating hyperplanes may be
suitable to split correctly a set of training examples. In
this case, an SVM will construct the maximum-margin
hyperplane, that is, the hyperplane which maximizes the
distance to the closest training examples.

2.2. ID3 decision trees

Decision trees were frequently used in the 90s by
artificial intelligence experts because they can be easily
implemented and they provide an explanation of the
result. A decision tree is a tree with the following
properties:

e Each internal node tests an attribute.
e Each branch corresponds to the value of the attribute.
e Each leaf assigns a classification.

ID3 [18] is a greedy algorithm that builds decision trees.
The ID3 decision tree and SVMs are both linear classifiers
because their effects can be represented mathematically
in the form of Eq. (1).

2.3. Constraint databases

Constraint databases [14,20] form an extension of
relational databases [7], where the database can contain
variables that are usually constrained by linear or
polynomial equations.

Example 2.2. Fig. 3 shows a moving square, which at
time t=0 starts at the first square of the first quadrant of
the plane and moves to the northeast with a speed of one

0 1 2 3 4 5 6

Fig. 3. A moving square.

unit per second to the north and one unit per second to
the east.

Moving Square

X Y

X y t x>tx<t+ly>ty<t+1,t>0

When t=0, then the constraints are x>0,x<1,y>0,y <1,
which is the unit square in the first quadrant. We can
calculate similarly the position of the square at any time
t>0s. For example, when t=5s, then the constraints
become x>5,x<6,y>5,y <6, which is another square
with lower left corner (5,5) and upper right corner (6,6).

Constraint databases can be queried by both Datalog
and SQL queries [1,19,27]. Constraint database systems
include CCUBE [4], DEDALE [10], IRIS [3], and MLPQ [21].

Constraint databases, which were initiated by Kanellakis
et al. [13], have many applications ranging from spatial
databases [24,6] through moving objects [11,2] to
epidemiology [23]. However, only Geist [8] and Johnson
et al. [12] applied them to classification problems. In
particular, both Geist [8] and Johnson et al. [12] discussed
the representation of decision trees by constraint databases.

2.4. IDW interpolation

When we consider a variable over some surface, the
values at the unmeasured locations can be expected to be
related to the values at the nearby measured locations.
Based on this observation, a simple nearest-neighbor
interpolation method interpolates the variable at the
unmeasured location as the average of all the values at
the measured points that are within a fixed radius from
the unmeasured location, as shown by the solid circles
around the unmeasured locations X and Y in Fig. 4.
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Fig. 4. Interpolation of the values at unmeasured locations X and Y can be based on the average of the values at those measured locations x; and y; for
1 <i<4 that fall either within a fixed radius (solid circles around X and Y) or within a varying radii circles that include a minimum of four measured

locations (the solid circle around X and the dashed circle around Y).

A problem with this simple method is that the set of
surrounding locations may contain different numbers of
points, possibly zero points, in which case, the
interpolated value cannot be obtained.

A slight improvement of this simple method is to vary
the size of the radius to allow always a fixed minimum
number of measured locations to calculate the interpo-
lated value. If the minimum number of measured
locations is 4, then the radius around the unmeasured
location Y needs to be increased to the dashed circle as
shown in Fig. 4. This improvement still fails the natural
intuition that the interpolated value should be influenced
most by the nearby points and less by the more distant
points within the (enlarged) circle.

The above problem is solved by the popular inverse
distance weighted (IDW) interpolation method, which
weights the value of each neighboring measured location
based on its distance to the unmeasured location. More
precisely, the interpolation value v of the unmeasured
location x is the weighted average of the values of the k-
nearest measured locations x; as defined in Eq. (2), where
v; is the value of x; and wy(x) is the weight of x; based on its
distance to x.

S o WitV
Yo Wit
The weight function is largest at zero distance and
decreases as the distance increases. The most commonly
used weight function (defined in Eq. (3) is based on the
power function and was introduced by Shepard [25],
where d(x.x;) is the distance between x and x; and p e R*

is called the power parameter.

1
(x) = 3
W)= g 3
Li and Revesz [15] introduced a constraint database
representation of IDW interpolation. This representation

can be queried using a constraint database system,

v(x) = (2)

facilitating convenient solutions to otherwise hard
problems, such as, complex spatio-temporal reasoning
about epidemiological data [23]. In Section 6, we evaluate
our temporal classification by comparing it with the
constraint database representation of IDW interpolation.

3. Representation and querying of linear classifiers

This section describes the representation of linear
classifiers in constraint databases [14,20], which
were reviewed in Section 2.3. In each case, the constraint
database representation can be queried using any
linear constraint database system. We also describe a
few typical queries that are useful for classifying new
data.

3.1. Representation and querying of SVMs

The Texas Commission on Environmental Quality (TCEQ)
database (see Section 5.1 for details) contains weather data
for over 7 years. For simplicity, consider the following
smaller version with only six consecutive days, where for
each day D, the features are: precipitation P, solar radiation
R, and wind speed (north-south component) W, and the
label is temperature T, which is “high” or “low.”

Texas_Weather

D P R w T
1 1.73 2.47 -13 Low
2 0.95 3.13 9.32 High
3 3.57 3.56 429 Low
4 0.24 1.84 1.51 Low
5 0.0 1.19 3.77 High
6 031 472 —0.06 High

To classify the above data, we can use an SVM linear
classifier. First, we need to assign a numerical value to
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symbolic features because SVMs are unable to handle
non-numerical values. For instance, we assign the value t
= —1 whenever t=‘low’ and t = +1 whenever t=‘high’.
Then, we use the svmlib [5] library to build a linear
classification using a SVM. Like most other SVM packages,
LibSVM does not output the equation of the maximum-
margin separating hyperplane. Instead, it returns the
coordinates of the support vectors in the n-dimensional
feature space. Hence, we implement routines that calcu-
late the equation of the separating hyperplane given the
support vectors. In this case the SVM can be represented
by the following linear constraint relation:

Texas_SVM

PRWT
pr w t —0.442838p + 0.476746r + 2.608779w —0.355809 = t

Given the Texas_Weather(d, p, r, w) and the Tex-
as_SVM(p,r,w,t) relations, the following datalog query
finds for each day the distance t to the hyperplane
separating the two temperature classes.

Temp_SVM(d, t) :- Texas_Weather (d, p, r, w), Texas_SVM(p,
r, w, t).

Finally, we can use the SVM relation to do the predictions,
based on whether we are above or below the hyperplane.

Predict(d, y) : —TempSVM(d, t)," high’ =y,t >0
Predict(d, y) : —TempSVM(d, t)," low =vy,t <O0.

Instead of the above datalog queries, one can use the
logically equivalent SQL query:
CREATE VIEW Predict AS
SELECT D.d, “High”
FROM Texas_Weather as D, Texas_SVM as T
WHERE D.p = T.pANDD.r = T.r ANDD.w = T.w AND T.t > 0
UNION
SELECT D.d, “Low”
FROM Texas_Weather as D, Texas_SVM as T
WHERE D.p = T.pANDD.r = T.xr ANDD.w = T.wAND T.t < 0

3.2. Representation and querying of ID3 decision trees

Fig. 5 shows the ID3 decision tree for the
Texas_Weather_Data in Section 3.1. Note that in this ID3
decision tree only the precipitation feature is used. That is
because the value of precipitation is enough to classify the
data for each day in the small database. For a larger
database some precipitation values are repeated and
other features need to be looked at to make a
classification.

A straightforward translation from the ID3 decision tree
in Fig. 5 to a linear constraint database yields the following.

Precitations

Texas_ID3

P R w T

p r w t p=1.73, t="Low’
p r w t p=0.95, t="High’
D T w t p=3.57, t="Low’
p r w t p=0.24, t="High’
p r w t p=0.0, t="Low’
p r w t p=0.31, t="High’

Given the Texas_Weather(d, p, r, w) and the Texas_ID
3(p,r,w,t) relations, the following datalog query can be
used to predict the temperature for each day:

Predict(d, t) :- Texas_Weather (d, p, r, w), Texas_ID3 (p,
r, w, t).

Instead of datalog queries, one can use the logically
equivalent SQL query:

CREATE VIEW Predict AS

SELECT D.d, T.t

FROM Texas_Weather as D, Texas_ID3 as T
WHERED.p = T.pANDD.r = T.xANDD.w = T.w

3.3. Representation and querying of ID3-interval decision
trees

A straightforward translation from the original deci-
sion tree to a linear constraint database does not yield a
good result for problems where the attributes can have
real number values instead of only discrete values. Real
number values are often used when we measure some
attribute like the wind speed in miles-per-hour or the
temperature in degrees Celsius.

Hence we improve the naive translation by introducing
comparison constraints >, <, >, < to allow continuous
values for some attributes. That is, we translate each node
of the decision tree by analyzing all of its children. First,
the children of each node are sorted based on the possible
values of the attribute. Then, we define an interval around
each discrete value based on the values of the previous
and the following children. The lower bound of the
interval is defined as the median value between the value
of the current child and the value of the previous child.
Similarly, the upper bound of the interval is defined as the
median value of the current and the following children.
For instance, assume we have the values {10, 14, 20} for
an attribute for the children. This will lead to the intervals
{(—00,12],(12,171,(17, + 00)}.

LowTemp LowTemp

Fig. 5. Decision tree for the prediction of the temperature using the weather dataset.
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Fig. 6. Decision tree for the prediction of the temperature using the weather dataset.

Fig. 6, which shows a modified decision tree, based on
the above heuristic. Translating that modified decision
tree yields the following constraint relation:

the subscripts go back in time, in this particular
representation two days back to d—1 and d-—2. The
Texas_Weather_History relation is the following.

Texas_ID3-Interval

Texas_Weather_History

P R w T

D Pa_> Ri_2 Wy Pag_1 Ri_y Wyg_1 P4 Re Wg T

r<2,w<264,t="_Low’
r<2,w>264,t="High
r>2r<43,p<251,w<863,t="Low
r>2,r<43,p<251,w>8.63,t="High
r>2r<43,p>251t="'Low’
r>43,t="High

TTTT T T
e T T T T
SRR
I )

The querying of ID3-interval decision tree representa-
tions can be done like the querying of ID3 decision tree
representations after replacing Texas_ID 3 with Texas_ID
3-Interval.

4. A temporal classification method

The Texas_Weather database in Section 3.1 is an
atypical data for linear classifiers because it involves a
temporal dimension. Although one may consider each day
as an independant instance and simply ignore the
temporal dimension, as we did earlier, it probably would
not be the best solution. Instead, we propose below a
temporal classification method for dealing with temporal
data. The temporal classification method is based on an
alternative representation of the database.

As an example, the Texas_Weather(d,p,r,w,t) relation
can be rewritten into the temporal relation

Texas_Weather_History
(d,pd-2:T4-2:Wd—2,Pd—1,Td—1,Wd—1,Pa,Ta:Wa,t)

where for any feature f € {p,r,w} the f; indicates the day i
when the measurements are taken. Note that even though

we did not use in Texas_Weather any subscript, the
implicit subscript for the features was always d. Now

1.73 247 -13 095 3.13 932
095 3.13 932 357 356 429 024 184 1.51 Low
3,57 356 429 024 184 151 00 119 3.77 High
024 184 151 00 1.19 3.77 031 4.72-0.06 High

3.57 3.56 4.29 Low

(<2 IO, IV~ VY]

The Texas_Weather_History relation uses the same set of
feature measures as the Texas_Weather relation because the
data in the P4_5, Ry_», Wy_» and the Py_q, Ry_1, Wy_1
columns are just shifted values of the Py, Rz, Wy columns.
However, when the Texas_Weather_History relation is used
instead of the Texas_Weather relation to generate one of the
linear classifiers, then represented and queried as in
Section 3, then there is a potential for improvement because
each training data includes a more complete set of features.

For example, if today’s precipitation is a relevant feature
in predicting the temperature a week ahead, then it is likely
that yesterday’s and the day before yesterday’s precipitations
are also relevant features in predicting the temperature a
week ahead. That seems to be the case because the
precipitation from any particular day tends to stay in the
ground and affect the temperature for many more days.
Moreover, since the average precipitation of three consecu-
tive days varies less than the precipitation on a single day, the
former may be more reliable than the latter for the prediction
of the temperature a week ahead. These intuitions lead us to
believe that the alternative representation is advantageous
for classifying temporal data. Although this seems a simple
idea, it was not tried yet for decision trees or SVMs.

In general, the alternative representation allows one to
go back i number of days and look ahead n days, as
outlined in Fig. 1. The original representation is a
representation that looks back 0 days and looks ahead
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the same number n of days. Therefore, the transformation
from a basic to an alternative representation, which we
denote by =, can be described as

Texas_Weather®"=sTexas_Weather_History™"

where for any relation the first superscript is the days of
historical data and the second superscript is the days
predicted in the future. Based on the above ideas,
Section 5.1 develops an algorithm for predicting meteor-
ological data. Similar algorithms can be developed for
other temporal datasets.

5. Experimental evaluation of the temporal classification
method using the TCEQ Data

5.1. Experiments with the complete TCEQ data

We experimentally compared the regular classification
and the temporal classification methods. In some experi-
ments both the regular and the temporal classification
methods used SVMs and in some other experiments both
methods used decision trees. In particular, we used the
SVM implementation from the SVMLIib [5] library and our
implementation of the ID3Interval algorithm described in
Section 3.2.

The experiments used the Texas Commission on
Environmental Quality (TCEQ) database (available from
http://archive.ics.uci.edu/ml), which recorded meteorolo-
gical data between 1998 and 2004. From the TCEQ
database, we used only the data for Houston, Texas and
the following 40 features and the class to predict.

1-24. sr: hourly solar radiation measurements
25. asr: average solar radiation
26. ozone: ozone pollution (0 = no, 1 = yes)
27. th: base temperature where net ozone production begins
28-30. dew: dew point (at 850, 700 and 500 hPa)
31-33. ht: geopotential height (at 850, 700 and 500 hPa)
34-36. wind-SN: south-north wind speed component (at 850, 700
and 500 hPa)
37-39. wind-EW: east-west wind speed component (at 850, 700
and 500 hPa)
40. precp: precipitation
41. T: temperature class to predict

For sr, dew, ht, wind-SN, wind-EW we use a subscript
to indicate the hour or the hPa level. We also use the
following procedure to predict the temperature T, where n
is a training set size control parameter:

(1) Normalize the dataset.

(2) Randomly select 60 records from the dataset as a
testing set.

(3) Randomly select n percent of the remaining records as
a training set.

(4) Build a SVM, ID3, or ID3-interval classification using
the training data.

(5) Test the accuracy of the classification on the testing set.

In step (1), the data were normalized by making for each
feature the lowest value to be —1 and the highest value to
be +1 and proportionally mapped into the interval

[—=1,+1] all the other values. This normalization was a
precaution against any bias by the classifications. The
normalization also allowed a clearer comparison of the
SVM weights of the features.

For testing the regular classifiers, we used the above
procedure with TCEQ®?, which we obtained from the
original TCEQ®? database by shifting backwards by two
days the T column values. For testing the temporal
classifiers, we made the transformation

TCEQ®2=TCEQ'>?

as described in Section 4.

Fig. 7 reports the average results of repeating the above
procedure 12 times for n equal to 5, 15, 25, ..., 95 using the
original ID3 algorithm. The vertical line segments show the
standard deviation. The T-test statistical measurement, for
which the p and ¢ are given in the caption, shows a
statistically very significant improvement. Similarly, Fig. 8
reports the average results using SVMs.

The experiments show that adding the historical data
significantly improve the temperature predictions using
both the ID3 and the SVM algorithms. Moreover, the SVM
algorithm performed better than the original ID3
algorithm, although the ID3-Interval algorithm (not
shown) gave some improvements.

5.2. Experiments with reduced TCEQ data

Databases with a large number of features often
include many noisy variables that do not contribute to
the classification. The TCEQ database also appears to
include many noisy variables because the SVM placed
small weights on them. Since we normalized the data, the
relative magnitudes of the SVM weights correspond to
the relative importance of the features. In particular, the
following numerical features had the highest weights:

25.  asr: average solar radiation
35. wind-SN7ge: south-north wind speed component at 700 hPa
40. precp: precipitation

How accurate classification can be obtained using only
these three selected features? These features have some
interesting characteristics that make them better than
other features. For example, wind-SN5qq, the south-north
wind speed component, is intuitively more important
than wind-EW5qq, the east-west wind speed component,
in determining the temperature in Houston, Texas. In
addition, the precipitation can stay in the ground for some
time and affect the temperature a longer period than most
of the other features. Hence our hypothesis was that these
three features can already give an accurate classification.

To test this hypothesis, we conducted an another set of
experiments by applying the experimental procedure
described in Section 5.1 to the reduced three-feature
TCEQ database. The results of these experiments are
shown in Figs. 9 and 10. The accuracies of the classifiers
based on only three features were surprisingly similar to
the accuracies of the classifiers based on all 40 features. In
this experiment the temporal classification was again
more accurate than the traditional classification.
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Fig. 7. Comparison of regular and temporal classification using 40 features and ID3. T-test p=0.01% and 6 = 31.1%.
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Fig. 8. Comparison of regular and temporal classification using 40 features and SVMs. T-test p=0.04% and J = 4.93%.

6. Comparison of temporal classification and IDW
interpolation

6.1. Experiments with influenza temporal data

Seasonal influenza is a major public health concern
causing millions of respiratory illnesses and 250,000-
500,000 deaths worldwide each year. If a new strain of
influenza virus emerges, a pandemic could ensue with the
potential to cause millions of deaths. The ongoing HIN1
(“swine flu”) pandemic is responsible for the hospitaliza-
tion of nearly 700,000 people worldwide, causing the
death of over 8,200 patients.! In the United-States alone

! Statistics from http://www.flucount.org/ as of 2009/11/15.

the Centers for Disease Control and Prevention estimates
nearly 100,000 hospitalizations and the death of 3900 of
patients.? These statistics highlight the need for early
disease prediction and vaccinations, which can greatly
reduce the number of people affected.

Ginsberg et al. [9] showed that the increased use of
certain flu-related search terms are good indicators of flu
activity. In particular, they established a strong correla-
tion between the number of influenza-like illness (ILI)
searches and the data collected by the Centers for Disease
Control and Prevention. Google Flu Trends is a novel
service from Google that utilizes this correlation and uses
aggregated Google search data to estimate current flu

2 U.S. CDC statistics as of 2009/10/17.
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Fig. 9. Comparison of regular and temporal classification using three features and ID3. T-test p=0.01% and 6 = 29.17%.
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Fig. 10. Comparison of regular and temporal classification using three features and SVMs. T-test p=0.01% and J = 6.02%.

activity around the world in near real-time. The dataset
provides weakly ILI measurements since 2003 for each
U.S. state as well as national average measurements. The
raw values provided by Flu Trends correspond to
the number of ILI cases per 100,000 physician visits. The
historical nature of this dataset makes it particularly
interesting for the evaluation of the temporal classifica-
tion method. The database describes two variables:

(1) t, the date the measurement was recorded,
(2) ili, the number of ILI cases per 100,000 physician
visits.

Unlike interpolation methods, SVMs and decision trees are
not designed to estimate a value in the future, but assign a

label to records. The IDW interpolation and temporal
classification methods thus cannot be compared directly.
Hence, we derived a new variable alert by applying a fixed
threshold to ili values. The binary alert variable determines
whether the current flu activity is within normal levels given
the ILI value or whether an alert should be raised. The
threshold was arbitrarily choosen after analyzing the
distribution of ILI values. The interpolated value could be
used to predict one of the two possible alert states and could
therefore be compared against the temporal classification
methods using the following procedure:

(1) Normalize the dataset.
(2) Randomly select 10% of the records from the dataset
as a testing set.
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(3) Build an IDW, SVM or ID3-interval classifier using the
remaining data.

(4) Analyze the accuracy of the classifier using the testing
set.

As mentioned earlier, the prediction of disease outbreaks is
critical to raise an alert state, so that appropriate measures to
prevent the disease from spreading may be taken. On the
other hand, the alert should be temporary and raised only
when necessary because maintaining an alert state indefi-
nitely would be too expensive. The analysis of the overall
accuracies of the classifiers is therefore not satisfying, and the
classifier should be evaluated in terms of sensitivity and
specificity. The sensitivity—or true positive rate—is the
probability that an alert is predicted when there is actually
an alert state. The specificity—or false positive rate—is the
probability that the alert state will not be raised when it is
unnecessary.

In order to distinguish the two alert states, the
predictions of the two methods were analyzed using a
receiver operating characteristic (ROC) curve analysis
[16,29]. A ROC curve represents the sensitivity as a
function of the specificity. The ROC curve analysis is
specially useful when the distribution of the classes to
predict is unbalanced as it is the case with the flu dataset.
The overall performance of a specific classifier is defined
as the area under the curve (AUC). This simple value is
representative of both the sensitivity and the specificity of
the classifier. The AUC normally ranges from 0.5, which

corresponds to a classifier that randomly classifies items
to 1, which corresponds to a perfect classifier.

For testing the three methods, we used the data of the
past six weeks to predict the alert state two weeks ahead
of time. Hence, we made the following transformation:

FLU% — FLU®?

as described in Section 4. For the IDW interpolation
method the power 0.3 was empirically chosen to max-
imize the performance. Fig. 11 shows the ROC curves for
the IDW interpolation algorithm and the temporal
classification method applied to SVMs and decision trees.

As a control, we also ran experiments on FLU%2, For
SVM the AUC was 0.95. Hence the difference in the AUCs
between FLU%? and FLU® do not seem significant because
both predictions methods have a high accuracy.

6.2. Experiments with influenza spatio-temporal data

In addition to the national average measurements, the
Flu Trends data provide weakly ILI measurements for each
U.S. state. This can be extended to a spatio-temporal
dataset if for each state we add the geographical
coordinates (latitude and longitude) of its capital city of
the state. In our experiments, the database included the
following four variables:

(1) t, the date the measurement was recorded,
(2) x, the longitude of the state capital city,
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Fig. 11. Experimental results for temporal data for national flu trends showing the ROC analysis of temporal interpolation using SVMs, decision trees,
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(3) y, the latitude of the state capital city,
(4) ili, the number of ILI cases per 100,000 physician
visits.

We compared the proposed temporal classification meth-
ods using both SVMs and decision trees against the IDW
spatio-temporal interpolation method on FLU®? (see
Section 4) using the same procedure as in Section 6.1.
The resulting ROC analysis is shown in Fig. 12.

6.3. Discussion

The results of the experiments when using temporal
data only (Fig. 11) show that the temporal classification
method applied to decision trees was able to perfectly
predict the alert state. Overall, when applied to SVMs, the
temporal classification also improves the IDW interpola-
tion because AUCsyy, is greater than AUC;py. In the details,
the ROC analysis reveals that the IDW interpolation has a
higher sensitivity. In other words, this algorithm is more
suitable when one needs to accurately predict when there
is a risk of influenza pandemic. On the other hand, the
temporal classification with SVM has a higher specificity,
which means the temporal SVM classifier predicts better
when the flu activity is within acceptable levels.

When considering spatio-temporal data (Fig. 12), the
feature space has a higher dimension. In this case, we first
notice that all three classifiers have a lower AUC.
However, although the performance of the two temporal
classifiers is only slightly lower, the performance (AUC) of

IDW interpolation has significantly diminished from 0.92
to 0.75. This result confirms the intuition that decision
trees and SVMs handle better highly dimensional feature
spaces. As a result, when considering the spatio-temporal
dataset, our method performed significantly better than
the IDW interpolation algorithm did. This result may be
explained by the local variability of the flu activity in each
state. If the activity varies frequently, unlike both
temporal classifiers, the interpolation algorithm, which
is based on the few past values only, will be unable to
capture those variations and accurately predict the future
values. When using the temporal data only at a national
scale, the local variations are smoothened and the
interpolation performs comparably to the temporal
classification.

7. Conclusions

We proposed a new temporal data classification
method. This method seems applicable in general for
temporal phenomena that exhibit major trends that
develop gradually over time also contain significant
fluctuations in the measured values between adjacent
time instances. Weather is a good example of such a
temporal phenomenon because of clear warming or
cooling trends over weeks or months occurring simulta-
neously with significant daily fluctuations.

The experiments on the TCEQ database show two major
results: (1) significant accuracy improvements are obtained
by using histories, and (2) no accuracy improvement is
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0 £ : : . ; : : : | .
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Fig. 12. Experimental results for spatio-temporal data for the U.S. states showing the ROC analysis for the spatio-temporal interpolation using SVMs,

decision trees, and IDW.
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obtained by using more than three features. The experiments
on an influenza dataset show that our new temporal
classifiers based on decision tree and SVMs are more accurate
than the traditional IDW interpolation method.

A natural question is whether these experimental
results also hold for other databases. Another question is
whether non-linear temporal classifiers would be even
more accurate than the linear temporal classifiers based
on decision trees and SVMs.
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