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Abstract

This paper describes the MLPQ constraint database

system. The query language of MLPQ is SQL ex-

tended with linear arithmetic constraints. The input

and output databases are Linear Constraint Databases

(LCDBs). An important feature of the MLPQ system

is that it can handle aggregate operators, Min, Max,

Sum, Avg, etc. In MLPQ, these operators are evalu-

ated for a series of linear programming (LP) problems.

This approach provides an e�cient way of evaluation

of SQL queries with aggregate operators on linear con-

straint databases.

1. Introduction

Relational databases are limited in dealing with

problems that involve numerical computations. For

instance, consider the following problem. Mr. John-

son who lives in Omaha, Nebraska wants to send three

packages to three clients who live in Atlanta, Boston,

and Chicago. He wants to know how much he should

pay for his packages. The weight of each package can

be represented in the following relational database ta-

ble.

Package

Serial No. From Destination Weight

101 Omaha Chicago 12.6

102 Omaha Atlanta 27.3

103 Omaha Boston 37.5

The postage fee charged for packages could be com-

puted based on the weight of the package and the
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postage rate associated with the weight. Up to �ve

ounces, the fee is the weight of the package times 0.53,

between 5 and 15 ounces the fee is $2.65 plus 0.45

times the weight over 5 ounces, etc. In other words,

the postage rate increases piecewise linearly as the

ounces increase. Ideally, we would like to represent

the Postage relation as the table:

Postage

Weight Fee

5 2.65

.

.

.

.

.

.

50 16.65

The above representation would be very convenient,

because, then we could express Mr. Johnson's query in

SQL as follows:

SELECT Sum(Fee)

FROM Package, Postage

Unfortunately, in relational databases we cannot do

that. The reason is that Postage is an in�nite relation,

hence we cannot represent it in relational databases.

Fortunately, constraint databases can rescue the

situation. Constraint databases combine relational

databases with numerical constraints. Within the ta-

bles we can use attribute variables and constraints ap-

pended to each tuple. The Postage1 relation can be

represented using a constraint table as follows:

Postage1

Weight Fee

w f 0 � w:w � 5; f = w � 0:53

w f 5 < w;w � 15;

f = 2:65 + (w � 5) � 0:45

w f 15 < w;w � 30;

f = 7:15 + (w � 15) � 0:3

w f 30 < w;w � 50;

f = 11:65+ (w � 30) � 0:25



The meaning of the constraint databases is the set of

instantiations into the attribute variables of any tuple

that make the appended constraints true. Hence, the

Postage1 table will represent �nitely the same table as

Postage represents using an in�nite number of tuples.

In constraint databases, it is permissible to use the

same SQL queries as in relational databases. Con-

straint SQL queries are computed and the compuation

returns constraint tables as answers, i.e., other tables

that may contain attribute variables and constraints.

Mr. Johnson's query can now be computed, and it will

return a total fee of 27.785 for the three packages.

Although the basic idea of extending relational

databases and query languages to constraint databases

and query languages was presented by Kanellakis et

al. [?] in 1990, the implementation issues behind con-

straint databases still need to be explored in detail.

In particular, an essential issue that was not dealt

with in earlier papers [?, ?, ?, ?] on the topic of lin-

ear constraint databases (LCDBs for short) is how to

implement e�ciently the aggregate operators of SQL,

in particular the maximum Max, minimum Min, and

sum Sum aggregate operators.

[?, ?] considered the e�cient implementation of

relational algebra operators select, project, join, inter-

section, and cross product. [?] considered query op-

timization for SQL without the aggregate operators.

[?] studied strategies for variable elimination and sim-

pli�cation of redundant linear arithmetic constraints.

[?] compared the expressive power of relational al-

gebra queries over linear vs. polynomial constraint

databases. None of these papers consider aggregate

operators within the query language.

In this paper we present a solution to the prob-

lem of computing aggregate operators. The solution

is based on e�cient reduction of each aggregate oper-

ation to a series of linear programming instances. We

describe the ideas behind the evaluation method. We

also present running time results for our prototype im-

plementation of SQL queries over LCDBs. The running

time results show that the speed of the system is satis-

fying even for queries that reduce to hundreds of linear

programming problems.

We call the system MLPQ (an abbreviation for

multiple linear programming queries). We hope that

MLPQ will be very useful for a number of application

domains. Basically, it is surprising that while there are

numerous packages available for linear programming

(based on either the SIMPLEX method, or more re-

cent methods such as the ellipsoid method) we found

no packages that are concerned with e�cient solving

of a series of closely related linear programming prob-

lems. It is even di�cult to express such problems, even

though they occur naturally as our examples will illus-

trate later in the paper. MLPQ will provide a easy way

of expressing such problems with all the conveniences

of SQL. For example, with MLPQ it is easy to reformu-

late problems using joins and more complex queries. It

would be very hard to reformulate problems using the

standard input format for linear programming prob-

lems.

This paper is organized as follows. In Section 2 we

describe a complex motivating example and the syntax

of constraint SQL. In Section 3 we describe the imple-

mentation of MLPQ, (in section 3.1 for the relational

algebra operators, and in section 3.2 for the aggregate

operators). In Section 4 we present running time re-

sults for MLPQ queries. In Section 5 we discuss further

possible extensions of the MLPQ system.

2. Constraint SQL

2.1. A motivating example for constraint SQL

Let us consider a food production company which

has manufacturing plants in four cities A, B, C, and

D around the world. The company produces candies,

chocolate bars, ice cream, and yogurt. For producing a

unit of each of these four items in city A, the company

needs 15, 8, 10, and 15 units of sugar, 30, 25, 5, and

10 units of milk, and 0, 50, 25, 0 units of chocolate re-

spectively. Further, each unit of these four items yields

a pro�t of 300, 250, 100, and 150 respectively. In city

A the company has on store 3,000 units of sugar, 8,000

units of milk, and 2,000 unit of chocolate. Similar data

is also available for the other three cities.

LCDBs can conveniently represent the above sort of

data in a constraint table called Food. In this table,

attributes chocolate-bar, ice cream, sugar, milk, and

chocolate are abbreviated as C-B, I-C, S, M, and C,

respectively.

There are some very natural questions that one may

ask considering the above data. For example, an in-

vestor may want to know what is the maximum amount

of total pro�t that the company can produce in all the

cities. The CEO of the company may want to expand

the company, and he/she would like to know where is

the location of the most pro�table company plant. The

above problem can be considerably more complicated

in real life examples. For example, we would have to

consider taxes, tari�s, labor wages, costs of supplies

and plant facilities, plant storage capacity etc. How-

ever, the above example already illustrates the main

bene�ts of constraint databases and constraint SQL

queries that we propose in this paper and that we im-

plemented in the MLPQ constraint database system.



City Candy C-B I-S Yogurt S M C Pro�t

A x

1

x

2

x

3

x

4

s m c z 300x

1

+ 250x

2

+ 100x

3

+ 150x

4

= z

15x

1

+ 8x

2

+ 10x

3

+ 15x

4

� s

30x

1

+ 25x

2

+ 5x

3

+ 10x

4

� m

50x

2

+ 25x

3

� c

s = 3000;m = 8000; c = 2000

B x

1

x

2

x

3

x

4

s m c z 170x

1

+ 230x

2

+ 100x

3

= z

20x

1

+ 30x

2

� s

14x

1

+ 12x

2

+ 30x

3

� m

s = 10000;m = 5200

C x

1

x

2

x

3

x

4

s m c z 290x

2

+ 160x

3

+ 200x

4

= z

30x

2

+ 10x

3

+ 25x

4

� m

35x

2

+ 16x

3

� c

m = 6500; c = 2000

D x

1

x

2

x

3

x

4

s m c z 230x

1

+ 150x

2

+ 190x

3

+ 350x

4

= z

25x

1

+ 18x

2

+ 23x

3

+ 9x

4

� s

36x

1

+ 10x

2

+ 20x

3

+ 5x

4

� m

75x

2

+ 25x

3

� c

s = 2300;m = 4200; c = 3800

Figure 1. The Food relation

The chief advantage is the ability to use aggregate oper-

ators, which is needed in expressing both the investor's

or the CEO's query.

For example let's try to express the investor's query

mentioned above. Here we need to �nd the maximum

pro�t for each plant �rst, then we have to �nd the sum

of the maximums. We may use constraint SQL to write

the query as follows:

SELECT Sum(Pro�t)

FROM Food

WHERE Pro�t IN (SELECT max(Pro�t)

FROM Food)

Let's try now to express the CEO's query. The query

will be similar to investor's query. The only di�erence

is that the query should return the city name associated

with the maximum pro�t found in above query. Thus,

the CEO's query can be written as follows:

SELECT City

FROM Food

WHERE Pro�t IN (SELECT Max(Pro�t)

FROM Food)

2.2. A formal definition of constraint SQL

A basic constraint SQL query is of the form

SELECT a

i

1

; :::; a

i

l

FROM R

1

; R

2

; : : : ; R

m

WHERE Con

1

; : : : ; Con

k

Here the Rs are relation names, as are attribute

names, and Cons are atomic constraints. Suppose that

the set of attribute names appearing in the relations

R

1

; : : : ; R

m

is S = fa

1

; : : : ; a

n

g. The set of attribute

names appearing in the SELECT line is some subset

S

i

= fa

i

1

; : : : ; a

i

l

g of S. Each atomic constraint is of

the form

c

1

a

1

+ : : :+ c

l

a

n

�b

where cs and b are rational constants and some of

them may be 0, and � is one of the comparison oper-

ators =; <;�; >;�.

Constraint SQL also allows the aggregate operators

Max, Min, Avg, and Sum within the SELECT line.

The Max and the operators are allowed on linear con-

straint constraint databases while the Avg and Sum op-

erators are allowed only on relational databases. (Ev-

ery relational database is a LCDB, but not every LCDB

is a relational database. This is because an in�nite

number of tuples cannot be represented in a relational

database.) Hence a basic constraint SQL query with

aggregation looks like the following:

SELECT a

i

1

; :::; a

i

l

; opt(f(a

1

; : : : ; a

n

)

FROM R

1

; R

2

; : : : ; R

m

WHERE Con

1

; : : : ; Con

k

where opt is one of Max;Min;Avg; Sum with the

restriction mentioned above, and f is a linear con-

straint of the form c

1

a

1

+ : : : + c

n

a

n

. The function

f is called an objective function.

Basic SQL queries can be combined together to form

bigger queries. Two types of combinations are allowed

within the MLPQ system. The �rst combination is the

Union operation which has the form:



BASIC Constraint SQL Query Q

1

UNION

BASIC Constraint SQL Query Q

2

where the set of attribute names in the SELECT

lines of Q

1

and Q

2

the same.

The second combination allowed is more interesting.

It looks as follows:

SELECT opt(f

2

(:::))

FROM R

0

1

; : : : ; R

0

m

0

WHERE a

i

IN (SELECT opt(f

1

(:::))

FROM R

1

; : : : ; R

m

)

In the above, the result of the inner SQL query is

a LCDB with one attribute. The relation names R

i

in

the inner and R

0

j

in the outer basic SQL query may be

equal. The aggregation in the inner and the outer basic

SQL query is optional, it could be instead an attribute

value.

3. Implementation Issues

3.1. Implementation of basic constraint SQL
queries

Each basic SQL query can be translated to a re-

lational algebra expression on LCDBs involving the

project �, select � and Cartesian product � operators

as follows:

�

a

i

1

;:::;a

i

l

(�

Con

1

(: : : (�

Con

k

(R

1

�R

2

� : : :�R

m

)) : : :))

The basic relational algebra operators on LCDBs

are implemented as described by Grumbach and

Lacroix [?]. Let us assume that each R

i

has the fol-

lowing form:

a

i;1

: : : a

i;n

i

R

i

:x

1

: : : R

i

:x

n

i

Con

i;1

.

.

.

.

.

.

.

.

.

.

.

.

R

i

:x

1

: : : R

i

:x

n

i

Con

i;m

i

Then the cross product of R

i

and R

j

will be the

following:

R

i

:a

i;1

: : : R

j

:a

j;n

j

R

i

:x

1

: : : R

j

:x

n

j

Con

i;1

; Con

j;1

R

i

:x

1

: : : R

j

:x

n

j

Con

i;1

; Con

j;2

.

.

.

.

.

.

.

.

.

.

.

.

R

i

:x

1

: : : R

j

:x

n

j

Con

i;m

1

; Con

j;m

j

Note that R

1

:x

1

and R

2

:x

1

are two di�erent vari-

ables. (If we did not have that, then we would have a

join operation instead of a cross product.)

The selection �

Con

R

i

will yield the table:

a

i;1

: : : a

i;n

i

R

i

:x

1

: : : R

i

:x

n

i

Con

i;1

; Con

.

.

.

.

.

.

.

.

.

.

.

.

R

i

:x

1

: : : R

i

:x

n

i

Con

i;m

i

; Con

Note that the selection condition Con is conjoined

with the selection condition within each constraint tu-

ple. Some of the constraint tuples become unsatis�-

able. The satis�ability of constraint tuples is checked

in MLPQ and the unsatis�able ones are removed.

The projection �

a

i

1

;:::;a

i

l

R

j

is implemented using

Fourier-Motzkin elimination. We delete from R

i

each

column that is headed with an attribute name a that

does not occur in the index of the projection opera-

tion. Then we eliminate R

j

:a from each constraint in

the rightmost column. We do the variable elimination

one by one for each variable that does not occur in the

selection condition.

3.2. Implementation of aggregate operators

Linear programming is widely used in engineer-

ing, management, planning and economics to optimize

(minimize or maximize) single or multiple objective

functions based on given linear constraints [?]. The

LP problem can be presented in its standard format

such that

Minimize z = c x

Subject to Ax = b

All subject to x � 0

where z is an objective function, x is the vector of

variables that need to be solved, A is the coe�cient

matrix, and b and c are known vectors of constants.

Finding the maximum or minimum of an objective

function over a single constraint tuple is easily express-

ible as a LP problem. Finding the maximum or min-

imum of an objective function over a relation with n

constraint tuples can be reduced to n separate LP prob-

lems followed by �nding the maximum or minimum of

the values of the objective function returned by the n

separate LP problems. Alternatively, the sum or the

average of the values can be also taken.

In MLPQ linear programming is implemented based

on the SIMPLEX method developed in the 1940s. The

method is very e�cient and uses only basic arithmeti-

cal operations [?]. The theory behind the SIMPLEX

method is that only the corner points of the feasible

region can be unique optima. No point in the feasi-

ble region can ever be better than all corner points.

Those corner points will give basic feasible solution to



the problem. The basic procedure of the SIMPLEX

method is to obtain any basic feasible solution to start

with. Then it checks the neighboring solutions to see

if they are better. If there is a better solution, then it

moves to it. It repeats the procedure until no improve-

ment can be found.

A family of alternative LP techniques called Interior-

Point methods have been developed in the late 1980s.

These are non-linear programming techniques that can

be used to solve many large scale linear programming

problems. Interior-Point methods are di�erent from

the SIMPLEX method in that they always stays within

the boundaries of the solution space. We could have

also used Interior-Point based algorithms, branch-and-

bound methods [?], or the polynomial time algorithm

developed by Hacijan in 1979 [?] or other methods.

However, since the number of variables are small in

normal constraint SQL queries and therefore also in

each LP problem that need to be solved, the SIMPLEX

method works well. This will be described in the next

section.

3.3. Implementation of complex constraint SQL
queries

The UNION operation takes the union of all con-

straint tuples in the two input relations. We did not

implement at present other operators similar to the

UNION operator, such as INTERSECTION and DIF-

FERENCE, but they can be also implemented as de-

scribed in [?, ?]. Nested SQL queries were implemented

by evaluating the innermost and then the outer con-

straint SQL queries.

4. Testing Results

Our testing results were very encouraging. We could

run the investor's and the CEO's queries quite conve-

niently in the MLPQ system. For instance, we run in

MLPQ the investor's query on the input database pre-

sented in table Food. The MLPQ system found �rst

the maximum pro�ts that each plant can achieve using

the SIMPLEX method. MLPQ found the values of the

z's for the plants in the four cities, A B, C, and D to be

63,600.00, 80,667.67, 62,000.00, and 61,577.78, respec-

tively. MLPQ then summed up these four values and

returned the maximum of total pro�t value which was

267,844.45. For the CEO's query, the MLPQ system

returned the name of city B which is correct because

the plant in city B could produce the highest maximum

pro�t.

It is more interesting to see how the MLPQ system

functions when dealing with larger LCDBs. Therefore

we made some computer experiments. We generated a

Food LCDB relation with 50, 100, 200, 300, 400, 700,

and 1000 number of constraint tuples. The coe�cients

of the four variables x

1

; x

2

; x

3

, and x

4

for the objective

function as well as for the four linear constraints in

the constraints tuple were generated using a uniformly

random distribution.

We then ran the investor's query on the randomly

generated databases. and measured the running time

of the query which included input and output time.

The run-time results are reported in the following ta-

ble.

Run-Time Test

Number of LPs Time Used (s)

50 2

100 3

200 6

300 9

400 12

700 20

1000 27

The run-time increases linearly with the number of

LP problems in its input table. Further, the table

demonstrates that the MLPQ system can be extremely

e�cient in performing simple constraint SQL queries.

5. Discussions and Conclusion

At the present time, there is no query language that

allows solutions of multiple linear programming prob-

lems, although it occurs frequently in practice. There

are many algorithms for one single instance of linear

programming, but not for multiple ones. The MLPQ

system is a contribution for the problem of convenient

expression and evaluation of these problems. Since it is

a query language, it can be completely integrated with

other query capabilities, and it is convenient to take

select, project, join, and other operators that are com-

mon even in the simple database queries. This is quite

a contrast with linear programming data as it is usu-

ally represented (even) today. The traditional LP data

input format, called MPS, is close to the punch card

format and originated at the same time when punch

cards were widely used. As a data storage format it is

a far cry from the convenience of relational databases,

and constraint databases.

For example, a selection operation may be needed

if we are interested only in city A. A join operation

may be needed if we get into consideration that in-

stead of sugar, we can substitute several di�erent types



of sugars, for instance cane sugar, corn syrup, beets,

molasses, and honey. For instance, the sugar can be

substituted by 1 unit of cane sugar, 4 units of beets

sugar, 2 units of molasses, and 5 units of honey. Let

us assume that in city A the company has on store 300

units of cane sugar, 200 units of beets, 500 units of

molasses, and 100 units of honey. We can construct an

LCDB relation called Sugar to present this relation as

follows:

Sugar

C C B M H S

i a e o o

t n e l n

y e t a e

s y

s

A y

1

y

2

y

3

y

4

s y

1

+ 1=4y

2

+ 1=2y

3

+ 1=5y

4

= s

y

1

� 300

y

2

� 200

y

3

� 500

y

4

� 100

Suppose that we would like to �nd the maximum

pro�t in city A. The entire query, which involves select,

join, and aggregate operations can be written as:

SELECT Max(Pro�t)

FROM Food, Sugar

WHERE City = \A" and Food.S = Sugar.S

Note that the entire query reduces to a single in-

stance of a linear programming problem. Hence the

query seems trivial. However, it is interesting because

LP packages do not contain algorithms for select and

join. The MLPQ package does provide these opera-

tions.

The problem with the SIMPLEX method, and

MLPQ currently, is that it does not handle problems in

which the variables range over the integer numbers[?].

Therefore, in a future version of MLPQ we will look at

integer programming methods, including cutting-plan

algorithms [?].
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