
Algorithms for Cartogram Animation ∗

Min Ouyang Peter Revesz
Computer Science and Engineering Department

University of Nebraska-Lincoln
Lincoln, NE68588, USA

Abstract

We describe several value-by-area cartogram animation
algorithms that can be used to visualize geographically dis-
tributed continuous spatiotemporal data that often occur in
GIS systems. We implemented the algorithms as part of the
graphical user interface of the MLPQ/GIS database system.

1. Introduction

Many GIS databases contain spatiotemporal data such
that the geographically distributed value change continu-
ously by time. Population and precipitation distributions
are two such examples. Value-by-area cartograms provide
a highly expressive visualization for this kind of data. A
value-by-area cartogram is created by dividing the original
map into small areas (cells) and then enlarge or shrink each
cell to make its area proportional to its given “value”. For
example, a value-by-area cartogram where the cells are the
continental U.S. states and the values are their populations
in 1990 is shown in Figure 1. In this value-by-area car-
togram, each state’s area is proportional to its population.
By looking at the map, we can easily see the population
distribution in the continental United States.

For continuously changing data such as population or
precipitation data the value-by-area cartogram animation
successively displays value-by-area cartograms at different
time instances. Such animations can reveal more informa-
tion than is revealed by only a few selected value-by-area
cartogram snapshots. For example, we did an animation
for the monthly precipitation in the continental U.S. states
between 1948 and 1998. The animation revealed that the
precipitation has more regular cycles in the New England
states than in the western states. Such animations allow ev-
eryone to make similar observations without even knowing
anything about statistics.

∗This research was supported in part by NSF grant IRI-9625055and a
Gallup Research Professorship.

Figure 1. A Value-by-Area Cartogram for the
U.S. Population in 1990

In this paper, we propose several methods for value-by-
area cartogram animation. Each animation method is based
on a new algorithm for creating single value-by-area car-
tograms. Computer experiments show that our cartogram
algorithm works much faster than previous cartogram al-
gorithms [2]. We implemented the animation algorithms
and integrated them into the MLPQ/GIS constraint database
system[5].

The rest of the paper is structured as follows. Section 2
discusses three different methods for creating sequences of
value-by-area cartograms as well as a new fast value-by-
area cartogram algorithm. Section 3 gives implementation
results. Section 4 discusses related works. Finally, Sec-
tion 5 concludes with possible directions for future work.

2. Animation with Large Number of Snapshots

Some cartogram animation models [6, 8] pre-compute
and save the snapshots for display. Each of these models
contains only a few cartogram snapshots, thus they can be
pre-computed and saved for display. However, if the ani-
mation contains a large number of snapshots, then the pre-
computation strategy is not practical. A better way is to



compute the snapshots during animation. But this strategy
requires fast algorithms for snapshot computation.

2.1. Value-by-Area Cartogram Animation Methods

We describe three basic methods for value-by-area car-
togram animation, which provides a visualization of geo-
graphically distributed continuous spatiotemporal data.

Each animation method uses as a basic procedure some
value-by-area cartogram snapshot algorithm. Each snap-
shot algorithm takes as input a map with some cell division
and values for each cell and gives as output a distorted map
in which each cell has the same cell density (the “density”
is the result of cell value divided by cell area). Independent
of the basic snapshot procedure used, the three animation
methods work in different ways.
Parallel Method: For each time instancet to be displayed
this method takes the original map with the cell values at
time t and gives an output map or snapshot. This is called
the parallel method because the snapshots can be computed
in parallel (see Figure 2).

...

data2data1
Original map

data_n

Figure 2. Constructing cartogram snapshots
using Parallel Method

Serial Method: In this method each cartogram snapshot is
constructed from the previous cartogram snapshot (except
for the first cartogram snapshot, which is constructed from
the original map) as shown in Figure 3.

...

data2data1
Original map

data_n

Figure 3. Constructing cartogram snapshots
using Serial Method

Hybrid Method: This method combines the previous two
methods. It generates eachk×nth snapshot from the origi-
nal map, and all the other snapshots from the previous snap-
shots (see Figure 4).

Comparison: The Parallel Method is easily parallelized
because each snapshot can be computed independently,
while the Serial Method is not immediately parallelizable.

...

...

data_2*n

data_k*n+1 data_k*n+2 data_(k+1)*n

data1 data2

data_n+2

. . .

...

Original map
data_n

data_n+1

Figure 4. Constructing cartogram snapshots
using Hybrid Method

However, the Parallel Method is slower than the Serial
Method in a single processor computer because there is
usually a bigger difference between the original map and
a snapshot than between two consecutive snapshots, hence
calculating the snapshot from the original map requires gen-
erally more time than calculating it from the previous snap-
shot.

For the Serial Method the cartogram snapshot quality is
not as good as for the Parallel Method, because in the Serial
Method the previous snapshot will transmit any possible the
cell distortion error to its successor and hence the cell shape
distortion may accumulate.

The Hybrid method overcomes the cell shape distortion
accumulation problem inherent in the Serial Method, while
being almost as fast as the Serial Method. Table 1 summa-
rizes the discussions on three methods.

Parallel Hybrid Serial
Category Method Method Method

Speed Slow Fast Fastest
Easily

Parallelizable Yes Yes No
Shape Distortion

Accumulates No Not much Yes

Table 1. Comparison of three Snapshots Con-
struction Methods

2.2. A New Value-by-Area Cartogram Algorithm

Among previous value-by-area cartogram algorithms the
rubber-sheet based algorithms of [2, 3] produce the most



S0

Effective range

Map area

S4

S3

S2

S1

Figure 5. Effective Range

accurate cartograms although they may be slow. We review
and improve the speed of these algorithms below.

In both rubber-sheet transformations [2, 3] the map is
divided into small cells (polygons). Each cell has a “value”
which describes the size of its desired area. The cell is in-
flated (if its actual area is smaller than the desired area) or
deflated (if its actual area is larger than the desired area).An
iterative process to inflate or deflate the cells is done until
the difference between the actual cell area and the desired
cell area is less than some error tolerance value.

In order to prevent holes in the map or overlaps among
the cells, in [2, 3] the inflation/deflation of any cell influ-
ences all the corner vertices of the cells in the map. The
two algorithms calculate slightly differently the influence
values, but in both the further the corner vertex is from the
center of the inflated/deflated cell the less it is influenced or
changed.

In the computation of inflation/deflation influences on
the corner vertices of cells, instead of computing each in-
fluence, it is practical to ignore some small influences.
Suppose that a map with left bottom(0, 0) and right top
(100, 100) is divided into100×100 equal size square cells.
If the cell with left bottom(50, 50) and right top(51, 51)
inflates 1%, then the influence on a vertex say at(52, 53)
is about 0.0005, while the influence on a vertex at(1, 2) is
about 0.00002, which may be too small for consideration.

The influence of a particular cell’s inflation/deflation on
the corner vertices in the map decreases with the distance
from the cell center to this corner vertex and increases with
the percent the cell is inflated/deflated. Therefore, for any
particular cell inflation/deflation, we can have an effective
range. If a corner vertex is out of a cell inflation/deflation
effective range, the change on this vertex will be too small
for consideration and can be ignored.

For example, in Figure 5 the dotted lines represent the
original cell division andS0 is inflated. Here the effective
range is shown by the dashed cycle. The corner vertices

within the effective range are changed resulting in the new
cell division shown in solid lines.

VALUE-BY-AREA CARTOGRAM ALGORITHM
Input: A map withn cells and a value for each cell,

cell area percent error toleranceε,
Output: New coordinates for cell vertices that

make them form a value-by-area cartogram
begin

for i = 1 to n do
ComputeADi, the desired area of theith cell

end for
repeat

for i = 1 to n do
ComputeACi, the area of theith cell,
(xi, yi), the center of theith cell, and
ei = abs(ACi−ADi)

ADi

, the percent area error
if ei ≥ ε then

reff = 100∗abs(ADi−ACi)√
πACi

for j = 1 to n do
dj =

√

(xi − xj)2 + (yi − yj)2

if dj ≤ reff then
for each corner vertex(x, y) in cell j do

d =
√

(x − xi)2 + (y − yi)2

if d ≤ reff then
if d ≤

√

ACi/π then

x = xi + (x − xi)
√

ADi

ACi

y = yi + (y − yi)
√

ADi

ACi

else
x = xi + (x − xi)

ADi−ACi

2πd2

y = yi + (y − yi)
ADi−ACi

2πd2

endif
endif

end for
endif

end for
endif

end for
for i = 1 to n do

RecomputeACi andei

end for
until (∀i, ei < ε)

end

In the value-by-area cartogram transformation (see pseu-
docode above), if a cellS0 with center coordinate(x0, y0)
inflates/deflates, then instead of computing the distances
from (x0, y0) to each of the corner vertices(xi, yi) in the
map to see if(xi, yi) is inside the effective range, we can
simply compute the distancedi, which is the distance from



(x0, y0) to the center of cellSi. We can use the distance
di to approximately represent the distances from(x0, y0) to
each of the corner vertices of cellSi in deciding if a corner
vertex of cellSj is inside the effective range. This will de-
crease the computational time if each cell has a lot of corner
vertices.

At the beginning of the algorithm there is afor loop
which computes the desired areaADi for each celli, fol-
lowed by arepeat loop, which does the value-by-area car-
togram transformation.

Inside therepeat loop are fourfor loops. The firstfor
loop computes the cell areaACi, cell center(xi, yi) and the
precent cell area errorei for each center. Ifei is greater
than the error toleranceε, then inside the firstfor loop, the
secondfor loop computes the radius of the effective range
reff based onADi andACi. Then the secondfor loop
computes the distancedj as described before. Ifdj is less
thanreff , then the third loop transforms the corner vertices
of cell Sj which are inside the effective range. The goal of
the fourthfor loop inside therepeat loop is to compute the
percent cell area error between the cell area and the desired
cell area for each cell. Those are used to control the termi-
nation of the algorithm. The algorithm terminates if all the
percent error between cell area and desired cell area is less
than the error toleranceε.

3. Implementation Results

We implemented in Visual C++ the algorithms and did
some experiments on a 450 MHz Pentium-Pro PC with
128MB memory running Windows/NT.

3.1. Runtime Comparisons for Different Animation
Methods

Table 2 gives the run time results for three problems:
daily mean temperature, daily temperature spread, and
monthly precipitation of the United States. Four strate-
gies are used for creating animations. ParD is the Parallel
Method with Dougenik et al.’s cartogram algorithm, ParN
is the Parallel Method with the new cartogram algorithm,
HybN is the Hybrid Method with the new cartogram algo-
rithm the SerN is the Serial Method with the new cartogram
algorithm. The temperature and precipitation data are from
the website of the United States National Climatic Data
Center (http : //www.ncdc.noaa.org). For daily mean
temperature and daily temperature spread animation, the pe-
riods are from January 1, 1993 to December 31,1994. For
monthly precipitation animation, the period is from January
1948 to December 1997.

Table 2 shows that the Hybrid Method with the new car-
togram algorithm runs much faster than the Parallel Method
with Dougenik et al. cartogram algorithm.

Run time (seconds)

Problem Snap- ParD ParN HybN SerN
shots

DMT 730 343 89 44 N/A
DTS 730 353 136 56 N/A
MPR 600 287 135 50 44

Table 2. Computational times for differ-
ent problems (DMT: daily mean tempera-
ture. DTS: daily temperature spread. MPR:
monthly precipitation)

We did several experiments to see the runtime results
with different divisions of the map. Generally, the more
cells a map has, the more time is required for finding the
value-by-area cartogram. Figure 6 shows the relationship
of the run time and the number of cells.

Figure 6. Runtime for different number of cells

The average number of edges for the polygonal cells will
also affect the computation runtime, but is generally not as
much as the number of cells. Figure 7 shows the relation-
ship between the animation time and the average number of
edges for cells when the number of cells dividing a map is
fixed.

Figures 6 and 7 together suggest experimentally that
Dougenik et al.’s algorithm has an average case complexity
of O(m × n2) while our cartogram algorithm has approx-
imately O(m × n) complexity, wheren is the number of
cells andm is the average number of edges for the cells.



Figure 7. Runtime for different number of av-
erage number of cell edges

In particular, Figure 7 shows that they all grow linear inm,
while Figure 6 shows that Dougenik et al.’s algorithm grows
quadratically while our cartogram algorithm grows approx-
imately linearly inn.

3.2. Accuracy of the Algorithms

Dougenik et al.’s algorithm runs slowly. The Serial
Method runs fast but due to shape distortion accumulation it
gives poor cartogram snapshots or even totally distorts the
cartogram snapshots during the animation. Thus neither of
them is suitable for animation.

The Parallel and the Hybrid Methods with new car-
togram algorithm give highly accurate cartograms and run
fast. More specifically, the Hybrid Method often runs faster
and gives more accurate cartogram snapshots than the Par-
allel Method. Figure 8 shows the error comparison for the
Parallel Method and the Serial Method during daily mean
temperature animation.

Figure 8. Area error comparison for Parallel
Method and Hybrid Method

4. Related Work

Beside [2, 3] there are a number of other value-by-area
cartogram snapshot algorithms [1, 4, 7]. Kocmoud and
House [6] give an animation for the U.S. population car-
tograms from 1900 to 1996 and White et al. [8] give an
animation for the infant mortality in the United Kingdom
from 1856 to 1925. However, the drawback of both methods
is that they only consider the parallel method of animation
and require pre-computing all the snapshots, because they
use much slower value-by-area cartogram algorithms than
our algorithm. They can get away with this because their
animations contain only a small (less than eleven) number
of snapshots.

5. Conclusions

We presented a fast value-by-area cartogram transforma-
tion algorithm that can be used as a subroutine within ani-
mation algorithms. We also presented novel serial and hy-
brid animation methods that further enhance the speed of
the animation while avoiding excessive cell shape distor-
tion accumulation. The speed of our animation methods
avoids the need to pre-compute all the snapshots. We also
added the hybrid animation method as a user callable func-
tion within the MLPQ/GIS [5] user interface.

References

[1] D. Dorling. Visualizing Changing Social Structure froma
Census.Environment and Planning, 27:353–378, 1995.

[2] J. A. Dougenik, N. R. Chrisman, and D. R. Niemeyer. An
Algorithm to Construct Continuous Area Cartograms.Pro-
fessional Geographer, 37(1):75–81, 1985.

[3] S. M. Gusein-Zade and V. S. Tikunov. A New Technique for
Constructing Continuous Cartograms.Geography and Geo-
graphic Information Systems, 20(3):167–173, 1993.

[4] D. H. House and C. J. Kocmoud. Continuous Cartogram Con-
struction. InProc. of IEEE Visualization Conference. IEEE,
1998.

[5] P. Kanjamla, P. Revesz, and Y. Wang. MLPQ/GIS: A GIS
Using Linear Constraint Databases. InProc. of the 9th
COMAD International Conference on Management of Data,
pages 389–393, 1998.

[6] C. J. Kocmoud and D. H. House. Car-
togram Animation of U.S. Population Car-
tograms from 1900 to 1996. In http://www-
viz.tamu.edu/faculty/house/cartograms/DecadeAnim.html.

[7] W. R. Tobler. Pseudo-Cartograms.The American Cartogra-
pher, 13(1):43–50, 1986.

[8] B. White, I. Gregory, and H. S. H. Analyz-
ing and Visualizing Long-term Change . In
http://www.geog.qmw.ac.uk/gbhgis/gisruk98.


