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1 Introduction

The need for affine-invariance arises naturally from many spatial applications where
different images such as various aerial photographs of some land area have to be recognized
to belong together. For example, after the recent floods in the U.S. Midwest an aerial
survey had to be made to assess the damages. In bringing together the “before” and
the “after” images, a computer program needs to solve two distinct problems. First, the
change of the landscape due to the flood. Second, even where there is no flood, due to
different viewing angles, the “before” and the “after” images are not perfect copies but
only affine-invariant images of each other. Hence affine-invariant similarity measures are
needed between pairs of images [14,15,18]. After matching the “before” and the “after”
images, the finer details of the flood can be examined by a spatial database query. In this
paper, we propose a practical approach to combine the two steps and use affine-invariant
spatial database queries.

The main idea of our affine-invariant spatial database queries, which we call affine trian-
gle logic, is to use sets of triangles as a basic data representation. This can be considered
an abstract spatial data type [21]. Geographic information systems also rely on triangles
as the fundamental basis of representation, particularly in Triangulated Irregular Net-
works [19,29]. In computer graphics and traffic network simulations data is approximated
by triangular meshes (e.g., [4,6,7,31]), and in many spatial interpolation algorithms those
triangular meshes serve as the basis for the interpolation [3,20]. If in all these areas the
data is represented as a finite union of triangles, why should one reason about data as
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a collection of points [12]? That is the main motivation of our paper for considering
first-order languages in which variables are interpreted to range over triangles.

The rest of the paper is organized as follows. Section 2 reviews some prior work on affine-
invariant similarity measures and affine-invariant queries. Section 3 introduces triangle
databases and a simple first-order logic over the reals on triangle databases. Section 4
proposes a new, first-order query language that has triangles as basic elements. We show
that this language has the same expressive power as the affine-invariant segment of the
queries in Section 3. We give some examples illustrating the expressiveness of our language
and address the notion of safety of triangle queries. We show that it is undecidable whether
a specific triangle query returns a finite output on finite input. However, it is decidable
whether the output of a query on a particular finite input database can be represented as a
finite union of triangles. We also show that we can express this finite representation in our
triangle language. Section 5 considers the problem of affine-invariant image recognition
for patterned triangles, which occurs many applications, where we have to consider not
only the shape but also the patterns and colors that may be present on the surface of the
objects. The patterns and colors can add extra visual information about the nature of
objects and help recognize them. Finally, Section 6 gives some conclusion and directions
for future work.

2 Related Work and Basic Concepts

Affinities are one of the transformation groups proposed at the introduction of the concept
of “genericity of query languages” applied to constraint databases [24]. In addition, vari-
ous subgroups of the affinities [24] and supergroups of the affinities [17,23] have been stud-
ied. Affine-invariance of patterned triangles was studied by Revesz [28]. Affine-invariant
norms and triangulations were studied and used in computer graphics [22], affine-invariant
image retrieval was studied in [13,26,30], affine-invariant data transformations of spatial
and spatio-temporal constraint databases in [8,25,27] and affine-invariant query languages
in [11,12]. Affine-invariance is also useful in analyzing and generating mazes [9].

The idea that the result of a spatial database query should be invariant under some
group of spatial transformations was introduced by Paredaens, Van den Bussche and Van
Gucht [24]. In a follow-up article, Gyssens, Van den Bussche and Van Gucht [12] proposed
several first-order query languages which are invariant under the group of the affinities of
the ambient space or some subgroup thereof. In these languages, variables are assumed to
range over points in some real space Rn (R denotes the set of real numbers), rather than
over real numbers (that is, the coordinates of such points). For the transformation group
consisting of the affinities, the point language with only one predicate that expresses
betweenness of three points, is shown to have the same expressivity as the affine-invariant
fragment of first-order logic over the reals, on point databases. We use this result to prove
the expressiveness of the triangle-based logic which is introduced and discussed in this
paper. Therefore, we recall some definitions from the article of Gyssens, Van den Bussche
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and Van Gucht [12]. All definitions listed in this section can be found there.

We start with the well-known definition of a constraint database [16,25,27] (or semi-
algebraic database), since this is the general setting which we work in.

Definition 2.1 A semi-algebraic relation in Rn is a subset of Rn that can be described
as a Boolean combination of sets of the form

{(x1, x2, . . . , xn) ∈ Rn | p(x1, x2, . . . , xn) > 0},

where p is a polynomial with integer coefficients in the real variables x1, x2, . . . , xn. ut

In mathematical terms, semi-algebraic relations are known as semi-algebraic sets [5].

We also call a semi-algebraic relation in Rn a semi-algebraic relation of arity n. A semi-
algebraic database is essentially a finite collection of semi-algebraic relations. We give the
definition next.

Definition 2.2 A (semi-algebraic) database schema σ is a finite set of (semi-algebraic)
relation names, where each relation name R has an arity associated to it, which is a
natural number and which is denoted by ar(R).

Let σ be a database schema. A semi-algebraic database over σ is a structure D over σ
with domain R such that, for each relation name R of σ, the associated relation RD in
D is a semi-algebraic relation of arity ar(R). ut

Example 2.1 Let σ = {R, S}, with ar(R) = 2 and ar(S) = 1 be a semi-algebraic
database schema. Then the structure D given by

(R, RD = {(x1, x2) ∈ R2 | x2
1 + x2

2 < 1}, SD = {x ∈ R | 0 ≤ x ≤ 1})

is an example of a semi-algebraic database over σ that contains the open unit disk and
the closed unit interval. ut

Definition 2.3 Let σ be a semi-algebraic database schema. The language FO(+, ×, <,
0, 1, σ) (or FO(+, ×, <, 0, 1), for short , if σ is clear from the context), which is first-
order logic over the real numbers with polynomial constraints, is the first-order language
where the variables are assumed to range over real numbers, where the atomic formulas
are either of the form p(x1, x2, . . . , xn) > 0, with p a polynomial with integer coefficients
in the real variables x1, x2, . . . , xn, or the relation names from σ applied to real terms.
Atomic formulas are composed into formulas, using the operations ∧, ∨ and ¬ and the
quantifiers ∀ and ∃. ut

Example 2.2 Consider the semi-algebraic database from Example 2.1. The expression

R(x, y) ∧ y > 0
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is an FO(+, ×, <, 0, 1, {R, S})-formula selecting the part of the open unit disk that lies
strictly above the x-axis of the plane R2. ut

We restrict all further definitions and results to the dimension n = 2, as this is the
dimension we work in in the remainder of this paper.

Apart from semi-algebraic databases, we also consider geometric and triangle databases,
in this paper. For clarity of notation, we use the notational convention that is summarized
in Table 1, throughout the paper. This convention contains the notation for the three
types of databases as well as their schemes and relations. In the context of semi-algebraic,
geometric and triangle databases, the basic objects are real number, 2-dimensional points
and triangles in the plane. Table 1 also gives the notation for variables and constants of
these data types.

Table 1
Notational conventions

variables constants schema relation database

semi-algebraic xi xi σ R D

geometric pi pi σ̇ Ṙ Ḋ

triangle Mi Ti σ̂ R̂ D̂

Now, we give the definition of a “geometric database”, a special type of constraint da-
tabase. In a geometric database, the relations contain (a possibly infinite number of)
tuples of points in R2. To express the relationship between geometric and semi-algebraic
databases, we use the canonical bijection canp : (R2)k → R2k, which associates with each
k-tuple (p1, . . . , pk) of points in R2 the 2k-tuple canp((p1, . . . , pk)) = (x1

1, x
2
1, . . . , x

1
k, x

2
k) of

real numbers, where we have pi = (x1
i , x

2
i ), for 1 ≤ i ≤ k.

Definition 2.4 A (geometric) database schema σ̇ is a finite set of (geometric) relation
names, where each relation name Ṙ has an arity associated to it, which is a natural
number and which is denoted by ar(Ṙ).

Let σ̇ be a geometric database schema. A geometric database over σ̇ in R2 is a structure
Ḋ over σ̇ with domain R2 such that, for each relation name Ṙ of σ̇ of arity k = ar(Ṙ), the

associated relation ṘḊ in Ḋ is mapped by the canonical bijection canp to a semi-algebraic
relation in R2k. ut

A geometric database Ḋ over σ̇ in R2 can be viewed naturally as a semi-algebraic database
D = canp(Ḋ) over a schema σ, which has, for each relation name Ṙ of σ̇, a relation name
R with arity 2k, where k is the arity of Ṙ in σ̇. For each relation name Ṙ, of arity k, RD

is obtained from ṘḊ by applying the canonical bijection canp between (R2)k and R2k.

Definition 2.5 Let σ̇ be a geometric database schema. A k-ary geometric query Q̇ over
σ̇ in R2 is a partial computable function on the set of geometric databases over σ̇. Further-
more, for each geometric database Ḋ over σ̇ on which Q̇ is defined, Q̇(Ḋ) is a geometric
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relation of arity k. ut

Queries that are invariant under some transformation group G of R2, are also called
G-generic [24]. We define this next.

Definition 2.6 Let σ̇ be a geometric database schema and Q̇ a geometric query over σ̇
in R2. Let G be a group of transformations of R2. Then Q̇ is called G-generic if, for any
two geometric databases Ḋ and Ḋ ′ over σ̇ in R2 for which Ḋ ′ = g(Ḋ), for some g ∈ G,
we have that Q̇(Ḋ ′) = g(Q̇(Ḋ)). ut

In the remainder of this text, we focus on the group G of affinities. The affinities of R2

form the group of linear transformations having a regular matrix, that is, their matrix
has a determinant different from zero. In other words, affinities of the plane have the
following form: x

y

 7→
a b
c d


x
y

 +

e
f

 ,
where ad− bc 6= 0.

We now give the definition of the first-order point logic FO({Between}, σ̇), a first-order
language where the variables are not interpreted as real numbers, as in FO(+, ×, <, 0,
1), but as 2-dimensional points.

We first introduce the point predicate Between.

Definition 2.7 Let p = (px, py), q = (qx, qy) and r = (rx, ry) be points in the plane
R2. The expression Between(p, q, r) is true if and only if either q lies on the closed line
segment between p and r or p and/or q and/or r coincide. ut

In the example of Figure 1, Between(p, t, q), Between(p, p, q) and Between(t, s, r) are
true. On the other hand, Between(t, q, p) and Between(p, q, r) are not true.

p

r

s

t

q

Fig. 1. The predicate InTriangle can be expressed using Between.

Definition 2.8 Let σ̇ be a geometric database schema in R2. The first-order point lan-
guage over σ̇ and {Between}, denoted by FO({Between}, σ̇) (or, if σ̇ is clear from
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the context, FO({Between})), is a first-order language with variables that range over
points in R2, (denoted p, q, . . .), where the atomic formulas are equality constraints on
point variables, the predicate Between applied to point variables, and the relation names
from σ̇ applied to point variables. ut

A FO({Between})-formula ϕ(p1, p2, . . . , pl) over the relation names of σ̇ and the pred-
icate Between defines on each geometric database Ḋ over σ̇ a subset ϕ(Ḋ) of (R2)l in
the standard manner.

Gyssens, Van den Bussche and Van Gucht have shown that the language FO({Between})
expresses exactly the affine-generic geometric queries expressible in FO(+, ×, <, 0, 1).

3 Triangle Databases and Triangle Database Queries

In this section, we introduce triangle databases and triangle database queries. Triangles in
the plane R2 are the basic objects for this type of databases. The notational conventions
concerning triangle variables, constants, relations and databases (and their schemes) are
given in Table 1. We remark that triangles can be modelled as triples of points in R2.
Therefore, in addition to these conventions, we remark that we also use the notation
Tpqr when we want to stress that a (constant) triangle has corner points p, q and r.
Occasionally, we need to refer to the area of a triangle. The area of a triangle T will be
denoted area(T).

We start with the definition of a triangle database, that is, a database that contains a
(possibly infinite) collection of triangles. We model triangles by triples of points of R2,
that is, by elements of (R2)

3
. Triangles can degenerate, that is, corner points are allowed

to coincide. For the remainder of this text, the term triangle refers to a triple of points.
We refer to the set of points that is represented by a triangle as the drawing of that
triangle.

Definition 3.1 (Drawing of a triangle) Let Tpqr = (p, q, r) ∈ (R2)
3

be a spatial tri-
angle. The drawing of Tpqr is the subset of R2 that is the convex closure of the points p,
q and r. ut

We use the following generalization of the canonical bijection canp and use the same

notation for it: canp : (Rn)k → Rnk maps tuples (p1, . . . , pk) to (p1,1, . . . , p1,n, . . . , pk,1, . . . ,
pk,n), where, for 1 ≤ i ≤ k and 1 ≤ j ≤ n, pi,j denotes the jth real coordinate of the
point pi of Rn.

We also introduce the new bijection cantr : ((R2)
3
)
k
→ (R2)

3k
that maps k-tuples of

triangles in R2 to 3k-tuples of points in R2.

We noe give the definition of triangle relations and databases (and their schemas).
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Definition 3.2 (Triangle relations and databases) A (triangle) database schema σ̂
is a finite set of relation names, where each relation name R̂ has a natural number ar(R̂),
called its arity, associated to it.

A subset T of ((R2)
3
)
k

is a triangle relation of arity k if

(i) its image under the canonical bijection canp ◦ cantr : ((R2)
3
)
k
→ R6k is a semi-

algebraic relation of arity 6k, and
(ii) for each element t = ((p1,1, p1,2, p1,3), (p2,1, p2,2, p2,3), . . . , (pk,1, pk,2, pk,3)) ∈ T , also

the elements ((p1,j1,1 , p1,j1,2 , p1,j1,3), (p2,j2,1 , p2,j2,2 , p2,j2,3), . . . , (pk,jk,1 , pk,jk,2 , pk,jk,3)) are
in T , where σi(1, 2, 3) = (ji,1, ji,2, ji,3), for 1 ≤ i ≤ k and σi ∈ S3, where S3 is the
set of all permutations of {1, 2, 3}.

Let σ̂ be a triangle database schema. A triangle database over σ̂ in (R2)
3

is a structure

D̂ over σ̂ with domain (R2)
3

such that, for each relation name R̂ of σ̂, the associated

triangle relation R̂D̂ in D̂ is a spatial triangle relation of arity ar(R̂). ut

We make the following remarks about items (i) and (ii) in Definition 3.2. They are dis-
cussed in Remark 3.1 below and Remark 3.4, which is postponed until after the definition
of triangle database queries.

Remark 3.1 A triangle database D̂ over σ̂ in (R2)
3

can be viewed naturally as a geo-
metric database Ḋ over the schema σ̇, which has, for each relation name R̂ of σ̂, a relation
name Ṙ with arity 3 · ar(R̂). For each relation name R̂, of arity k, ṘḊ is obtained from

R̂D̂ by applying the canonical bijection cantr : ((R2)
3
)
k
→ (R2)

3k
. ut

Example 3.1 It follows from the definition of triangle relations that they can be finitely
represented by polynomial constraints on the coordinates of the corner points of the
triangles they contain. For example, the unary triangle relation containing all triangles
with one corner point on the x-axis, one on the y-axis and a third corner point on the
diagonal y = x, can be finitely represented as follows:

{(p1, p2, p3) = ((x1, y1), (x2, y2), (x3, y3)) ∈ (R2)
3 |

(x1 = 0 ∧ y2 = 0 ∧ x3 = y3) ∨ (x1 = 0 ∧ y3 = 0 ∧ x2 = y2)

∨ (x2 = 0 ∧ y1 = 0 ∧ x3 = y3) ∨ (x2 = 0 ∧ y3 = 0 ∧ x1 = y1)

∨ (x3 = 0 ∧ y2 = 0 ∧ x1 = y1) ∨ (x3 = 0 ∧ y1 = 0 ∧ x2 = y2)}.

Figure 2 gives some elements of this relation. Each triangle that is drawn is stored three
times in the relation. ut

Remark 3.2 For the remainder of this paper, we assume that databases are finitely
encoded by systems of polynomial equations and that a specific data structure is fixed
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Fig. 2. Some elements of the relation represented in Example 3.1.

(possible data structures are dense or sparse representations of polynomials). The specific
choice of data structure is not relevant to the topic of this paper, but we assume that one
is fixed. When we talk about computable queries later on, we mean Turing computable
with respect to the chosen encoding and data structures. ut

We also remark the following.

Remark 3.3 The data model and the query languages presented in this paper can be
extended straightforwardly to the situation where spatial relations are accompanied by
classical thematic information. However, because the problem that is discussed here is
captured by this simplified model, we stick to it for reasons of simplicity of exposition. ut

We now define triangle database queries.

Definition 3.3 (Triangle database queries) Let σ̂ be a triangle database schema and
let us consider input triangle databases over σ̂. A k-ary triangle database query Q̂ over
σ̂ is a computable partial mapping (in the sense of Remark 3.2) from the set of triangle
databases over σ̂ to the set of k-ary triangle relations. ut

Remark 3.4 In item (ii) of Definition 3.2, we require that, if a triangle T is involved in
a relation, that also all other triangles with the same drawing are stored in that relation.
The reason for this is that we do not want the triangle queries to be dependent of the
actual order and orientation used when enumerating the corner points of a triangle. When
emphasizing property (ii) of a triangle relation, we will call it consistency and talk about
consistent triangle relations. Also, a database is said to be consistent, if all its relations
are consistent. ut

We illustrate the consistency property with some examples:

Example 3.2 Let σ̂ = {R̂} be a triangle database schema. First, we list some queries
over σ̂ that are not consistent:
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• Q̂1: Give all triangles in R̂ for which their first and second corner points coincide.

• Q̂2: Give all triangles for which the segment defined by their first and second corner
point is a boundary segment of one of the triangles in R̂.

Now some consistent queries follow:

• Q̂3: Give all triangles in R̂ that are degenerated into a line segment.

• Q̂4: Give all triangles that share a boundary segment with some triangle in R̂.

It is clear that the inconsistent queries are rather artificial. When a user specifies the
triangles that should be in the result of a query, she intuitively thinks of the drawings of
those triangles. The order of the corner points used in the construction of those triangles
should not be important. ut

Definition 3.4 (Equivalence of point queries and triangle queries) Let σ̂ be a tri-
angle database schema and let us consider input triangle databases over σ̂. Let σ̇ be the
corresponding point database schema (see Remark 3.1). Let Q̂ be a k-ary triangle data-
base query over σ̂ and let Q̇ be a 3k-ary point database query over σ̇. We say that Q̂ and
Q̇ are equivalent, denoted Q̂ ≡M Q̇, if for every database D̂ over σ̂ we have

cantr(Q̂(D̂)) = Q̇(cantr(D̂)).

ut

With this definition of equivalence between triangle database queries and point database
queries we can now discuss how the point language FO({Between}) can be used to query
triangle databases. We have to keep in mind that only point databases can be considered
that are the image under the bijections cantr of spatial triangle databases.

Definition 3.5 (FO({Between}) as a triangle query language) Let σ̂ = {R̂1, R̂2,
. . . , R̂m} be a triangle database schema. Let Ṙi be the corresponding point relation names
of arity 3·ar(R̂i), for i = 1 . . .m, and let σ̇ be the point database schema {Ṙ1, Ṙ2, . . . , Ṙm}.

Let ϕ(p1,1, p1,2, p1,3, p2,1, p2,2, p2,3, . . . , pk,1, pk,2, pk,3) be a FO({Between})-formula express-

ing a (3k)-ary point query Q̇ which is equivalent to a k-ary triangle query Q̂. For each

input triangle database D̂ over σ̂, Q̂(D̂) is defined as the set of points (p1,1, p1,2, p1,3,

p2,1, p2,2, p2,3, . . . , pk,1, pk,2, pk,3) in (R6)
k

such that

(R2,=,Between, ṘḊ
1 , Ṙ

Ḋ
2 , . . . , Ṙ

Ḋ
m) |=
ϕ[p1,1, p1,2, p1,3, p2,1, p2,2, p2,3, . . . , pk,1, pk,2, pk,3].

Here, Ḋ is the image of D̂ under the canonical bijection cantr. ut
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The language FO({Between}, σ̇) is designed to formulate queries on point databases over
some input schema σ̇. Using this language to query triangle databases, involves expressing
relations between the point sets that compose the triangles. This is a rather indirect way
of expressing triangle relations. In the spirit of Geerts, Haesevoets and Kuijpers [11], we
now construct affine-generic query languages based on triangle variables. As this language
directly expresses relations between the triangles, this results in a more intuitive way of
querying triangle databases. We define triangle-based logics next. Afterwards, we propose
a specific triangle logic in Section 4.

Definition 3.6 (Triangle logics) Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a triangle database
schema and let ∆ be a set of (primitive) predicates of a certain arity over triangles
in R2. The first-order logic over σ̂ and ∆, denoted by FO(∆, σ̂), can be used as a tri-
angle query language when variables are interpreted to range over triangles in R2. The
atomic formulas in FO(∆, σ̂) are equality constraints on triangle variables, the predicates
of ∆ applied to triangle variables and the relation names R̂1, R̂2, . . . , R̂m from σ̂, applied
to triangle variables.

A FO(∆, σ̂)-formula ϕ(M1,M2, . . . ,Mk) defines for each spatial database D̂ over σ̂ a subset

ϕ(D̂) of ((R2)
3
)
k

defined as

{(T1,T2, . . . ,Tk) ∈ (R2)
3k | (R2,∆R2

, R̂D̂
1 , R̂

D̂
2 , . . . , R̂

D̂
m) |= ϕ[T1,T2, . . . ,Tk] }.

ut

Remark 3.5 We use the symbol =M to indicate equality of triangle variables, as opposed
to equality of point variables. If it is clear from the context of a formula which type of
variables is used, we will omit the index. ut

In Section 4, we develop languages that have the same expressive power as FO({Between})
on triangle databases. We prove this by showing both soundness and completeness of this
triangle language with respect to FO({Between}).

We introduce the concepts of soundness and completeness of logics at the level of coordinate-
based languages and later lift them to geometric- and triangle-based langauges.

Definition 3.7 (Soundness and completeness) Let G be a group of transformations
of R2 and let σ be a semi-algebraic database schema.

A query language L is said to be sound for the G-generic FO(+, ×, <, 0, 1, σ)-queries
on semi-algebraic databases, if formulas in L only express G-generic FO(+, ×, <, 0, 1,
σ)-queries on semi-algebraic databases.

A query language L is said to be complete for the G-generic FO(+, ×, <, 0, 1, σ)-
queries on semi-algebraic databases, if all G-generic FO(+, ×, <, 0, 1, σ)-queries on
semi-algebraic databases can be expressed in L . ut
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4 Affine-Invariant Triangle Queries

In this section, we propose a triangle logic that captures exactly the class of first-order
affine-generic queries on triangle databases. First, we remark the following.

Remark 4.1 We defined a triangle database as a special type of geometric database.
Accordingly, we take the affine image of a triangle for affinities of R2, and not of R6. This
corresponds to our intuition. One triangle is an affine image of another triangle, if the
drawing of the first one is the affine image of the drawing of the second one. Hence, the
affine image of a triangle with corner points p1, p2 and p3 under some affinity α of the
plane R2, is the triangle with corner points α(p1), α(p2) and α(p3). ut

We introduce one binary triangle predicate, that is, PartOf. Intuitively, when applied to
two triangles, this predicate expresses that the drawing of the first triangle is a subset (⊆)
of the drawing of the second triangle. We consider (R2)

3
as the underlying domain. We

show that the triangle predicate PartOf allows a natural extension to higher dimensions
and other types of objects (not only triangles).

First, we define the predicate PartOf and equality on triangles more precisely.

Definition 4.1 (The triangle predicate PartOf) Let T1 = (p1,1, p1,2, p1,3) and T2 =
(p2,1, p2,2, p2,3) be two triangles. The binary predicate PartOf, applied to T1 and T2,
denoted PartOf(T1,T2), expresses that the convex closure of the three points p1,1, p1,2

and p1,3 is a subset of the convex closure of the three points p2,1, p2,2 and p2,3. ut

Figure 3 illustrates the predicate PartOf.

p1

p2

p3

q1

q2

q3

r1

r2

r3

Fig. 3. An illustration of the PartOf predicate. Let T1 = (p1, p2, p3), T2 = (q1, q2, q3) and
T3 = (r1, r2, r3). Then the expressions PartOf(T2,T1) and PartOf(T3,T1) are true, but the
expression PartOf(T3,T2) is false.

We also define triangle-equality, which differs from the standard equality operation.

Definition 4.2 (Equality of triangles) Let T1 and T2 be two triangles. The expres-
sion T1 =M T2 is true if and only if both PartOf(T1,T2) and PartOf(T2,T1) are tue. ut
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Before analyzing the expressiveness of the language FO({PartOf}), we prove that the
FO({PartOf})-queries are well-defined on consistent triangle databases. More concretely,
given a triangle database schema σ̂, we prove that the result of a k-ary FO({PartOf},
σ̂)-query on a consistent input database over σ̂ is a consistent triangle relation of arity k.

Lemma 4.1 (FO({PartOf}) is well-defined) Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a spatial

triangle database schema. Let D̂ be a consistent triangle database over σ̂. For each
FO({PartOf}, σ̂)-query Q̂, Q̂(D̂) is a consistent triangle relation.

Proof. Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a spatial triangle database schema. Let D̂ be a
consistent spatial triangle database over σ̂.

We prove this lemma by induction on the structure of FO({PartOf}, σ̂)-queries. The
atomic formulas of FO({PartOf}, σ̂) are equality expressions on triangle variables, ex-
pressions of the form PartOf(M1,M2), and expressions of the form R̂i(M1,M2, . . . ,Mki),
where ki = ar(R̂i). More complex formulas can be constructed using the Boolean opera-
tors ∧, ∨ and ¬ and existential quantification.

For the atomic formulas, it is easy to see that, if two triangles T1 and T2 satisfy the
conditions T1 =M T2 or PartOf(T1,T2), that also T′

1 =M T′
2 respectively PartOf(T′

1,T
′
2)

are true if and only if T1 =M T′
1 and T2 =M T′

2 are true. As we assume the input database

D̂ to be consistent, the atomic formulas of the type R̂i(M1,M2, . . . ,Mki), where 1 ≤ i ≤ m,
trivially return consistent triangle relations.

Next, we have to prove that the composed formulas always return consistent triangle
relations. Let ϕ̂ and ψ̂ be two formulas in FO({PartOf}, σ̂), of arity kϕ̂ and kψ̂ respec-

tively, already defining consistent triangle relations. Then, the formula (ϕ̂ ∧ ψ̂) (resp.,
(ϕ̂∨ ψ̂)) also defines a triangle relation. This follows from the fact that the free variables
of (ϕ̂ ∧ ψ̂) (resp., (ϕ̂ ∨ ψ̂)) are free variables in ϕ̂ or ψ̂. The universe of all triangles is
trivially consistent. If a consistent subset is removed from this universe, the remaining
part is still consistent. Therefore, ¬ϕ̂ is well-defined. Finally, because consistency is de-
fined argument-wise, the projection ∃T1 ϕ̂(T1,T2, . . . ,Tkϕ) is consistent. ut

After proving that the language FO({PartOf}) is well-defined, we can analyse the ex-
pressive power of the language FO({PartOf}). We prove that it is sound and complete
for the affine-invariant fragment of first-order logic over the reals, on triangle databases.
We prove this by comparing the languages FO({PartOf}) and FO({Between}).

As we have remarked at the end of Section 2, we already know that FO({Between}) is
sound and complete for the affine-invariant fragment of first-order logic over the reals, on
point databases [12].

The soundness and completeness of the query language FO({PartOf}) with respect to
the language FO({Between}) is proved using two separate lemmas (Lemma 4.2 and
Lemma 4.3). In both lemmas, formulas are translated from one language in the other,
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by using induction on the structure of FO({PartOf})- and FO({Between})-formulas,
respectively. This proof technique will be used several times in this text.

Therefore, we give the first such proofs in detail (in the Appendix). Later on, we will only
develop the crucial points in similar proofs.

Lemma 4.2 (Soundness of FO({PartOf}) with respect to FO({Between})) Let
σ̂ = {R̂1, R̂2, . . . , R̂m} be a triangle database schema. Let Ṙi be the corresponding point
relation names of arity 3 · ar(R̂i), for (1 ≤ i ≤ m), and let σ̇ be the point database
schema {Ṙ1, Ṙ2, . . . , Ṙm}. Every FO({PartOf}, σ̂)-expressible query can be expressed
equivalently in FO({Between}, σ̇).

To prove completeness, we translate FO({Between})-formulas into FO({PartOf})-formulas.
Again, we prove this by induction on the structure of FO({Between})-formulas. How-
ever, this translation is not as straightforward as the translation in the other direction.
We refer the interested reader to the Appendix for the rather technical proof.

Lemma 4.3 (Completeness of FO({PartOf})) Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a tri-
angle database schema and σ̇ be the corresponding point database schema. Every FO({Between},
σ̇)-expressible query can be expressed equivalently in FO({PartOf}, σ̂).

Remark 4.2 So far, we showed that we can simulate any FO({Between}, σ̇) formula
ϕ̇(p1, p2, . . . , pk) by a formula ϕ′(M1,M2, . . . ,Mk), where Point(Mi) is true for all Mi (1 ≤
i ≤ k). However, when ϕ̇ expresses a k-ary triangle database query Q (that is, ϕ̇ has 3k
free variables), we can do better.

Let ϕ̇ be the FO({Between}, σ̇)-formula expressing a k-ary triangle database query Q̂.
The free variables of ϕ̇ are p1,1, p1,2, p1,3, p2,1, p2,2, p2,3, . . . , pk,1, pk,2, pk,3.

We now construct the FO({PartOf}, σ̂)-formula ϕ̂ expressing the query Q̂ as follows:

ϕ̂(M1,M2, . . . ,Mk) ≡
∃ M1,1 ∃ M1,2 ∃ M1,3 ∃ M2,1 ∃ M2,2 ∃ M2,3 . . . ∃ Mk,1 ∃ Mk,2 ∃ Mk,3 (

k∧
i=1

CornerP(Mi,1,Mi,2,Mi,3,Mi) ∧

ϕ̂′(M1,1,M1,2,M1,3,M2,1,M2,2,M2,3, . . . ,Mk,1,Mk,2,Mk,3)).

For each triple of points, there are 6 different representations for the triangle having those
points as its corner points. Therefore, for each tuple returned by ϕ̂′, 6k tuples will be
returned by ϕ̂. But we know that ϕ̇ is a well-defined triangle query. This means that, for
each 3k-tuple of points ((p1,1, p1,2, p1,3), (p2,1, p2,2, p2,3), . . . , (pk,1, pk,2, pk,3)) satisfying ϕ̇,
also the tuples ((p1,j1,1 , p1,j1,2 , p1,j1,3), (p2,j2,1 , p2,j2,2 , p2,j2,3), . . . , (pk,jk,1 , pk,jk,2 , pk,jk,3)), whith
σi(1, 2, 3) = (ji,1, ji,2, ji,3), with 1 ≤ i ≤ k;σi ∈ S3, where S3 is the set of all permutations
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of {1, 2, 3}, satisfy ϕ̇. Therefore, ϕ̂ and ϕ̇ are equivalent according to Definition 3.4. ut

We now combine the soundness and completeness lemmas, and use them to prove our
main theorem for this section.

Theorem 4.1 (Expressiveness of FO({PartOf})) Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a
triangle database schema. Let Ri be the corresponding semi-algebraic relation names
of arity 6 · ar(R̂i), for 1 ≤ i ≤ m, and let σ be the semi-algebraic database schema
{R1, R2, . . . , Rm}. The language FO({PartOf}, σ̂) is sound and complete for the affine-
generic FO(+, ×, <, 0, 1, σ)-queries on triangle databases.

Proof. Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a triangle database schema. Let Ṙi be the cor-
responding point relation names of arity 3 · ar(R̂i), for 1 ≤ i ≤ m, and let σ̇ be the
point database schema {Ṙ1, Ṙ2, . . . , Ṙm}. Let Ri(1 ≤ i ≤ m) be the corresponding semi-
algebraic relation names of arity 6·ar(R̂i) and let σ be the semi-algebraic database schema
{R1, R2, . . . , Rm}.

From Lemma 4.2 and Lemma 4.3, we deduce that FO({PartOf}, σ̂) is sound and com-
plete for the FO({Between}, σ̇)-queries on triangle databases.

Gyssens, Van den Bussche and Van Gucht showed that FO({Between}, σ̇) is sound and
complete for the affine-generic FO(+, ×, <, 0, 1, σ)-queries on point databases [12].

From the definition of triangle databases, we know that they are point databases. This
concludes the proof. ut

We remark that in the proofs of Lemma 4.2 and Lemma 4.3 we only use the fact that
triangles are convex objects having three corner points. We use no other properties of
triangles.

The following corollary follows from the known fact that FO({Between}, σ̇) +While is
sound and complete for the computable affine-generic queries on geometric databases [12].
The language FO({PartOf}, σ̂) + While is a language in which FO({PartOf}, σ̂)-
definable relations can be created and which has a while-loop with FO({PartOf}, σ̂)-
definable stop conditions. For details on this language, we refer to [12].

Corollary 4.1 (Expressiveness of FO({PartOf}, σ̂)+ While) Let σ̂ be a spatial tri-
angle database schema. The language FO({PartOf}, σ̂)+ While is sound and complete
for the computable affine-generic queries on triangle databases. ut

We now give some examples of FO({PartOf}, σ̂)-queries. We illustrate some geometrical
constructions in Example 4.1. Afterwards, we formulate queries on an example triangle
database in Example 4.2.
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Example 4.1 We illustrate how to express that two triangles are “similar”, that is, each
side of the first triangle is parallel to a side of the second triangle. We denote the formula
expressing this by Sim.

We use the predicates ColSeg and ParSeg, expressing that two line segments are
collinear and parallel respectively, to simplify the expression for Sim. The predicate
ColSeg is expressed as

ColSeg(M1,M2) := Seg(M1)∧Seg(M2)∧∃ M3 (Seg(M3)∧PartOf(M1,M3)∧PartOf(M2,M3)).

Here, Seg(M1) is a shorthand for

∃ M4 ∃ M5 (Point(M4) ∧Point(M5)∧
∀ M6 ((Point(M6) ∧PartOf(M6,M1))→ (Between∆(M4,M6,M5)))),

and expresses that M1 is a triangle that is degenerated into a line segment. The fact that
two line segments are parallel is now defined as follows:

ParSeg(M1,M2) := Seg(M1) ∧ Seg(M2) ∧ ∀ M3 ∀ M4 (

(ColSeg(M1,M3) ∧ColSeg(M2,M4))→
¬∃ M5 (PartOf(M5,M3) ∧PartOf(M5,M4))).

Now we can write the expression for Sim:

Sim(M1,M2) :=

∃ M1,1 ∃ M1,2 ∃ M1,3 ∃ M1,4 ∃ M1,5 ∃ M1,6 ∃ M2,1 ∃ M2,2 ∃ M2,3 ∃ M2,4 ∃ M2,5 ∃ M2,6 (
2∧
i=1

(CornerP(Mi,1,Mi,2,Mi,3,Mi) ∧CornerP(Mi,1,Mi,1,Mi,2,Mi,4)∧

CornerP(Mi,2,Mi,2,Mi,3,Mi,5) ∧CornerP(Mi,3,Mi,3,Mi,1,Mi,6))∧∨
σ(1,2,3)=(i1,i2,i3),σ∈S3

(ParSeg(M1,4,M2,(3+i1)) ∧ParSeg(M1,5,M2,(3+i2))

∧ParSeg(M1,6,M2,(3+i3)))),

where S3 is the set of all permutations of {1, 2, 3}. ut

We proceed with an example of a spatial database containing information about but-
terflies, and give some examples of FO({PartOf})-queries that can be asked to such a
database.

Example 4.2 Consider a triangle database D̂ over the schema σ̂ = {ButterflyB,
P lantP,Rural} that contains information about butterflies and flowers. The unary tri-
angle relation ButterflyB contains all regions where some butterfly B is spotted. The
unary triangle relation PlantP contains all regions where some specific plant P grows.
We also have a unary triangle relation Rural, containing rural regions. It is known in
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biology that each butterfly appears close to some specific plant, as caterpillars only eat
the leaves of their favorite plant. Suppose that it is also investigated that butterflies like
to live in rural areas.

• Q̂5 : Are all butterflies B spotted in regions where the plant P grows? This query can
be used to see if it is possible that a butterfly was spotted in a certain region. The query
Q̂5(M) can be expressed by the formula

¬(∃ M1 ∃ M2 (ButterflyB(M1) ∧ RealTriangle(M2) ∧
PartOf(M2,M1) ∧ ¬(∃ M3 (PlantP (M3) ∧ PartOf(M2,M3))))).

Here, RealTriangle(M) is a shorthand for ¬Point(M) ∧ ¬Seg(M).

• Q̂6 : Give the region(s) where we have to search if we want to see butterfly B. The query
Q̂6(M) can be expressed by the formula

∃ M2 ∃ M3 (PlantP (M2) ∧ Rural(M3) ∧ PartOf(M,M2) ∧ PartOf(M,M3)).

• Q̂7 : Give the region inside the convex hull of the search region for butterfly B. It is much
more convenient to search a convex region than having to deal with a very irregularly
shaped region.

We first express how to test whether the region is convex (Q̂′
7), this will help understand

the formula that computes the convex hull. The query Q̂′
7 can be expressed by the formula

∀ M1 ∀ M2 ∀ M3 ∀ M4 ((
3∧
i=1

Point(Mi) ∧
3∧
i=1

Q11(Mi) ∧

CornerP(M1,M2,M3,M4))⇒ (Q̂6(M4))).

Hence, the expression

∃ M1 ∃ M2 ∃ M3 ∃ M4 ∃ M5 ∃ M6 (
3∧
i=1

Point(Mi) ∧

3∧
i=1

PartOf(Mi,Mi+3) ∧
6∧
i=4

Q11(Mi) ∧ CornerP(M1,M2,M3,M))

defines the query Q̂7(M). For any three points in some triangles in Q̂6, the triangle con-
necting them is added to Q̂7. Figure 4 illustrates this. ut

Remark 4.3 The first two queries of Example 4.2 ask for relations between regions that
can be expressed by the so-called 9-intersection model [10]. This model defines a relation

16



Fig. 4. The convex hull of a set S of triangles is computed by adding all triangles (in red)
constructed from three points that are inside (shown with the blue triangles) three triangles of
S.

between two regions by investigating the intersections between their boundaries, interiors
and exteriors. As the boundary, interior and exterior of a region can be expressed in FO(+,
×, <, 0, 1, σ), and are affine invariant concepts 1 , all relations that can be expressed by
the 9-intersection model, can be expressed in FO({PartOf}, σ̂). ut

Remark 4.4 As we have remarked before, in the proofs of Lemma 4.2 and Lemma 4.3,
we only used the fact that triangles are convex objects having three corner points. It
is not difficult to prove that the predicate PartOf can be generalized to a predicate
PartOf(n,k), which arguments are n-dimensional convex objects with k corner points
(called (n, k)-objects) and that the language FO({PartOf(n,k)}) is sound and complete
for the first-order affine-generic queries on (n, k)-objects. ut

In the context of this remark, we also want to refer to the work of Aiello and van Ben-
them [1,2] on modal logics of space. They first propose a topological modal logic over
regions, which can express “connectedness” and “parthood”. By adding a “convexity”
operator (expressed using a “betweenness” operator), they obtain an affine modal logic.
In [2], the authors also motivate the use of finite unions of convex sets as basic elements
for spatial reasoning. They argue that it is a very natural way for people to reason about
objects. A fork, for example, is described as the union of its prongs and its handle.

5 Affine-Invariant Similarity of Patterned Triangles

In many applications, we have to consider not only the shape and the color but also the
patterns that may be present on the surface of the objects. Barcodes provide an inspi-
ration for robust affine-invariant similarity measures between pairs of patterned objects.

1 To be exact, they are topological concepts. The affinities of the plane are a subgroup of the
homeomorphisms of the plane, so the invariance under the boundary and interior operations
carry over naturally.
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Barcodes encode information in a robust machine-readable way using sequences of dark
and light bars with different widths. The optical scanners which read barcodes are quite
robust and already allow the presentation of barcodes from slightly different angles.
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Fig. 5. A striped triangle ABC (left) and its affine-transformation A′B′C ′ (right).

Although natural objects do not have barcodes, they have rich patterned and textured
surfaces with a variety of colors. In such cases, the surface of objects can be broken into
a set of triangles that each contain some interesting pattern. For example, consider the
left side of Figure 5,which shows a triangular land area ABC that contains corn and
wheat parcels, which are seen as green and white stripes, respectively, in an areal image.
Suppose that we view ABC from a different point in the air, where the new image A′B′C ′

(see the right side of Figure 5) will be the following affine transformation of the previous
image:

f(x, y) =


5
4

1
3

1
2

2




x

y



Although the shape of triangle ABC becomes highly distorted, one can identify the point
D as the midpoint on the edge CD in triangle ABC. Similarly, one can identify also the
corresponding midpoint D′ on the edge C ′D′.

Now let us consider scanning the line segment AD from point A to point D. During
the scan one sees a series of lighter and darker areas. In particular, one sees in sequence
1 unit light area, 3 units dark area, 1 unit light area, 2 units dark area, 2 units light
area, and 1 unit dark area. Hence the barcode of the AD segment can be represented as
(1,3, 1,2, 2,1), with the boldface numbers representing the dark areas.

Interestingly, when one scans the line segment A′D′, one finds also a similar sequence of
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light and dark areas. In particular, one sees 2 units light area, 6 units dark area, 2 unit
light area, 4 units dark area, 4 units light area, and 2 units dark area. Hence the barcode
of A′D′ can be represented as (2,6, 2,4, 4,2).

The two barcodes are similar because they have the same number of light and dark areas
and those have the same length ratios, which are equal to the ratio of the lengths of the
two line segments.

Let the length of a line segment l be denoted as length(l). The similarity of barcodes is
a general feature of affine transformations as expressed in Theorem 5.1.

Theorem 5.1 Let (a1, . . . , an) and (b1, . . . , bm) be the barcodes of two corresponding line
segments l1 and l2 in two affine transformations of a patterned triangle. Then n = m,
and the following hold for each 1 ≤ i ≤ n:

ai
bi

=
length(l1)

length(l2)

Example 5.1 Consider again the barcodes of AD and A′D′ of the two affine transfor-
mations shows in Figure 5. In this case the barcode of AD is:

(a1, a2, a3, a4, a5, a6) = (1,3, 1,2, 2,1)

and the barcode of A′D′ is:

(b1, b2, b3, b4, b5, b6) = (2,6, 2,4, 4,2)

We have that length(AD) = 10 and length(A′D′) = 20. Further, as expected by Theo-
rem 5.1,

ai
bi

=
10

20
= 0.5 for all i, 1 ≤ i ≤ 6

5.1 Similarity Measures for Barcodes

Let us now consider a similarity measure for two barcodes. Let a = (a1, . . . , an) and
b = (b1, . . . , bm) be the barcodes of two corresponding line segments l1 and l2 in two
affine transformations of a patterned triangle. If n 6= m, then we simply say that the two
barcodes are not similar. Otherwise, let

d =
length(l1)

length(l2)

Equalize the total length of the two line segments by scaling l2 by the factor d. After
scaling we obtain a barcode c = (c1, . . . , cn) where each ci = bi × d for 1 ≤ i ≤ n.
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Next compare a and c. If one is an affine transformation of the other, then by Theorem 5.1
and the choice of the scaling factor d, the following holds:

ai
ci

=
ai

bi × d
=

length(l1)

length(l2)× d
= 1 ∀ 1 ≤ i ≤ n

In general, one cannot expect two barcodes to be perfect affine transformations of each
other, that is to have ai = ci for each 1 ≤ i ≤ n. Hence one needs to consider how much
ai and ci deviate from each other. One can use a root mean square error measurement as
follows:

E(a, c) =

√√√√√√
n∑
k=1

(ai − ci)2

n

Example 5.2 Let a = (1,2.5, 1,2, 2.5,1) and b = (2,5.5, 2,4.5, 4,2). Then

length(a) = 1 + 2.5 + 1 + 2 + 2.5 + 1 = 10

and

length(b) = 2 + 5.5 + 2 + 4.5 + 4 + 2 = 20.

Hence

d =
length(a)

length(b)
=

10

20
= 0.5

and

c = (1,2.75, 1,2.25, 2,1).

Further,

E(a, c) =

√
02 + (−.25)2 + 02 + (−.25)2 + .52 + 02

6
= 0.375

Since the root mean square error is small, the two barcodes are quite similar.
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5.2 Different Patterns

The barcode-based similarity measure can accommodate other patterns beside striped
patterns. For example, consider again the land area within triangle ABC but suppose
that it is a grass land with a few oval shaped watering pond areas for animals as shown
by green color in Figure 6. In this case, the barcodes are still similar after the same affine
transformation.
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Fig. 6. A spotted triangle ABC (left) and its affine-transformation A′B′C ′ (right).
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Fig. 7. Midpoints of a striped triangle ABC (left) and a spotted triangle A′B′C ′ (right).

Note that the barcodes in Figures 5 and 6 are the same. That means that a single
barcode for a triangle is incapable of distinguishing between the striped and the spotted
patterns within the triangle. However, one can improve the situation by considering not
one but two or three barcodes for a single triangle. Each barcode is scanned along the
line segment whose endpoints are a corner vertex of the triangle and the midpoint vertex
on the opposite side of the triangle. Figure 7 shows the three line segments A′D′, B′E ′

and C ′F ′ in the striped and the spotted triangles.
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5.3 Colored Patterns

There are several ways to add more colors than just two to the barcode-based similarity
measure. For example, the barcode can be enhanced with a sensor of the color (or average
color) in each “bar” instead of sensing only white and black. Assume that in Figure 5
non-white stripes (shown as black) are from left to right red, blue, and red. Then a
barcode representation of the striped triangle would be (1−white, 3− red, 1−white, 2−
blue, 2−white, 1− red). Such a colored barcode representation would be distinguishable
from another colored barcode representation such as (1− white, 3− blue, 1− white, 2−
red, 2− white, 1− blue) based purely on the color differences.

5.4 Complex Objects

The above discussion focused on the handling of triangles. Of course, many objects are
more complex than triangles. However, the more complex objects can be decomposed into
a set of triangles. In fact, a particular triangulation, or subdivision into non-overlapping
triangles, can be found that can be shown to be affine-invariant. That is, the same object,
no matter what particular affine invariant image is given, can be triangulated into the
same set of triangles, such that, the set of triangles are also affine-invariant to each other.

Applying the above affine-invariant triangulation method should be the first step in han-
dling complex objects, once they are identified and separated from the background and
other objects. Since each complex object is triangulated also into a set of affine-invariant
triangles, to find whether two images are similar, we need to find the best mapping from
triangles to triangles in the two sets, then we need to sum the similarity scores.

Example 5.3 Suppose that a complex object I1 consists of the following three affine-
invariant triangles:

∆1,1,∆1,2,∆1,3.

Similarly, suppose that another complex object I2 consists of the following three affine-
invariant triangles:

∆2,1,∆2,2,∆2,3.

Further suppose that the best mapping (the mapping that yields the lowest sum of the
triangle-triangle similarity scores) is the following:

∆1,1 ↔ ∆2,3, ∆1,2 ↔ ∆2,1, ∆1,3 ↔ ∆2,2.

Then the similarity score S im between the two complex objects is the following.
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S im(I1, I2) = S im(∆1,1,∆2,3) + S im(∆1,2,∆2,1) + S im(∆1,3,∆2,2).
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Fig. 8. Three zebra images top left (A), top right (B) and bottom right (C).

When the image is a convex polygon that is the silhouette of an object, then we can
apply Delauney triangulation that generates a unique triangulation for every polygon.
Even when the polygon is concave, there may be obvious choice in breaking it into a
set of convex polygons, and then applying to each a Delauney triangulation. Hence two
silhouette images can be compared as two sets of triangles. If a large number of the
triangles can be shown to be affine invariant copies of each other, then we can say that
the two images are affine-invariant.

When the images are not only silhouettes but also contain some patterns, then the affine-
invariance test has two be performed into steps. In the first step, we test only the affine-
invariance of the silhouettes. If that succeeds, then we can proceed to the second step,
which is testing the affine-invariance with respect to the patterns. For corresponding
triangles, the patterns that they contain have to be shown to be affine-invariant of each
other.

Example 5.4 There are cases when the first step of the affine-invariance test succeeds,
but the second step fails. Consider the three zebra-like images shown in Figure 8. Like in
Figure 5, in these three areal images the zebra stripes are corn fields and the other areas of
the zebra are wheat fields. Hence these areal images are similar to Nazca Indian drawings,
which can be seen from great distances. Here the A and B are affine-invariant images of
each other according to both steps, while A and C are not affine-invariant because they
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fail the second step.

As a practical matter, when the complex images are composed of a large number of tri-
angles, then we cannot expect the affine-invariant triangulation to find for two different
images two different triangulations that are perfectly mappable into each other. It could
well happen, for instance, that one triangulation yields 90 triangles and another triangu-
lation yields 100. Obviously, in this case at least ten triangles in the first triangulation
cannot be mapped into the other. Such an imperfect match can be expected between two
images of the land surface, when in the second image a flood occurs. However, notice
that even in the case of partial flooding, many of the triangles associated with the dry
areas can be identified and mapped to each other. Therefore, it may be possible to find
in general a number k, such that if k triangles can be mapped into each other by an
affine transformation, then they are images of the same land area. It is at that point that
the study of their differences, i.e., the changes over time, become interesting. In the flood
example, we may naturally want to compute the total area flooded. That natural problem
would need some extra operators beyond the ones we already have in our language, in
particular an area-ratio operator. Note that affine-invariance preserves the area ratios.
Hence if in any of the images we can calculate the ratio of the area flooded to the total
area of a state, which can be assumed to be a fixed already known constant, then the
total flooded area can be calculated too.

6 Conclusions and Future Work

The use of triangles instead of points or real numbers is motivated by the spatial practice,
where data is often represented as a collection of triangles. In this paper, we introduced
the new triangle-based query language FO({PartOf}) that fits well with this practice.
We showed that our query language has the same expressiveness as the affine-invariant
FO({Between})-queries on triangle databases. We did this by showing that our language
is sound and complete for the FO({Between})-queries on triangle databases. In addition,
we gave several examples to illustrate the expressiveness of the triangle-based language
and the ease of use of manipulating triangles.

We then turned to the notion of safety. We showed that, although we cannot decide
whether a particular Tquery returns a finite output given a finite input, we can decide
whether the output is finite. We also extended this finiteness to the more intuitive notion
of sets that have a finite representation. We proved that we can decide whether the
output of a query has a finite representation and compute such a finite representation in
FO({PartOf}).

Geerts, Haesevoets and Kuijpers [11] already proposed point-based languages for sev-
eral classes of spatio-temporal queries. The data model used there represented a moving
two-dimensional object as a collection of points in three-dimensional space. There ex-
ist however, data models that represent spatio-temporal data as a collection of moving
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objects (see for example [6,7]), which is more natural. Hence, a moving triangle-based
language with the same expressiveness as the spatio-temporal point languages mentioned
above would be much more useful in practice, but that remains an open problem.
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Appendix

We collect below some of the technical proofs, starting with the proof of the soundness
lemma.

Proof of Lemma 4.2. Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a triangle database schema. Let Ṙi

be the corresponding spatial point relation names of arity 3 · ar(R̂i), for 1 ≤ i ≤ m, and
let σ̇ be the corresponding point database schema {Ṙ1, Ṙ2, . . . , Ṙm}. We translate each
formula ϕ̂ of FO({PartOf}, σ̂) into an equivalent formula in FO({Between}, σ̇). We do
this by induction on the structure of FO({PartOf}, σ̂)-formulas.

First, we translate the variables of ϕ̂. Each triangle variable M is naturally translated into
three spatial point variables p1, p2 and p3. We allow one or more of the corner points of a
triangle to coincide, so there are no further restrictions on the variables pj, for 1 ≤ i ≤ 3.

The atomic formulas of FO({PartOf}, σ̂) are equality expressions on triangle variables,
expressions of the form PartOf(M1,M2), and expressions of the form R̂i(M1,M2, . . . ,Mki),
where ki = ar(R̂i), for 1 ≤ i ≤ m. More complex formulas can be constructed using the
Boolean operators ∧, ∨ and ¬ and existential quantification.

The translation of atomic formulas.

We first show that all atomic formulas of FO({PartOf}, σ̂) can be expressed in the
language FO({Between}, σ̇).

(i) The translation of (M1=M2), where M1 is translated into p1,1, p1,2 and p1,3 and M2 is
translated into p2,1, p2,2 and p2,3, equals

∨
σ(1,2,3)=(j1,j2,j3),σ∈S3

(p1,1 = p2,j1 ∧ p1,2 = p2,j2 ∧ p1,3 = p2,j3),

where S3 is the set of all permutations of {1, 2, 3}. This formula expresses, that the
corner points of M1 and M2 coincide, when taken in the right order. The correct-

27



ness of this translation follows trivially from the definition of triangle equality (see
Definition 4.2).

(ii) The translation of PartOf(M1,M2), where M1 is translated into p1,1, p1,2 and p1,3

and M2 is translated into p2,1, p2,2 and p2,3, is

3∧
i=1

InTriangle(p1,i, p2,1, p2,2, p2,3),

where the definition of InTriangle is:

InTriangle(p, p1, p2, p3) := ∃ p4(Between(p1, p4, p2) ∧ Between(p4, p, p3)).

Figure 9 illustrates the corresponding geometric construction. The correctness of this
translation follows from the definition of the predicate PartOf (see Definition 4.1).

(iii) The translation of R̂i(M1,M2, . . . ,Mk), where Mi is translated into pi,1, pi,2 and pi,3
for 1 ≤ i ≤ k, is

Ṙi(p1,1, p1,2, p1,3, p2,1, p2,2, p2,3, . . . , pk,1, pk,2, pk,3).

The correctness of this translation follows from Definition 3.2 and Remark 3.1.

pp1

p2

p3

p4

Fig. 9. In this illustration, the expression InTriangle(p, p1, p2, p3) is true because there exists
a point p4 between p1 and p2 such that p lies between p4 and p3.

The translation of composed formulas.

Assume that we already correctly translated the FO({PartOf}, σ̂)-formulas ϕ̂ and ψ̂ into
the FO({Between}, σ̇)-formulas ϕ̇ and ψ̇. Suppose that the number of free variables in
ϕ̂ is kϕ and that of ψ̂ is kψ. Therefore, we can assume that, for each triangle database

D̂ over the input schema σ̂, and for each kϕ-tuple of triangles (T1,T2, . . . ,Tkϕ) given as
((p1,1, p1,2, p1,3), (p2,1, p2,2, p2,3), . . . , (pkϕ,1, pkϕ,2, pkϕ,3)) that

D̂ |= ϕ̂[T1,T2, . . . ,Tkϕ ] if and only if

Ḋ |= ϕ̇[p1,1, p1,2, p1,3, p2,1, p2,2, p2,3, . . . , pkϕ,1, pkϕ,2, pkϕ,3]

is true when Ḋ is the point database over the input schema σ̇, obtained from D̂ by

applying the canonical bijection cantr between ((R2)
3
)
kϕ

and (R2)
3kϕ , on D̂ . For the

formula ψ̂ the analog holds.
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In the following, we omit the kϕ-tuples (resp., kψ-tuples) of triangles and 3kϕ-tuples
(resp., 3kψ-tuples) of points on which the formulas are applied, to make the proofs more
readable.

(i) The translation of ϕ̂ ∧ ψ̂ is ϕ̇ ∧ ψ̇. Indeed,

Ḋ |= (ϕ̇ ∧ ψ̇)

iff. Ḋ |= ϕ̇ and Ḋ |= ψ̇

iff. D̂ |= ϕ̂ and D̂ |= ψ̂

iff. D̂ |= (ϕ̂ ∧ ψ̂).

(ii) The translation of ϕ̂ ∨ ψ̂ is ϕ̇ ∨ ψ̇. Indeed,

Ḋ |= (ϕ̇ ∨ ψ̇)

iff. Ḋ |= ϕ̇ or Ḋ |= ψ̇

iff. D̂ |= ϕ̂ or D̂ |= ψ̂

iff. D̂ |= (ϕ̂ ∨ ψ̂).

(iii) The translation of ¬ϕ̂ is ¬ϕ̇. Indeed,

Ḋ |= ¬ϕ̇

iff. it is not true that Ḋ |= ϕ̇

iff. it is not true that D̂ |= ϕ̂

iff. D̂ |= ¬ϕ̂.
(iv) Assume that ϕ̂ has free variables M,M1, . . . ,Mk and M is translated into p1, p2, p3

and Mi is translated into pi,1, pi,2, pi,3, for 1 ≤ i ≤ k. The translation of

∃ M ϕ̂(M,M1,M2, . . . ,Mk)

is ∃p1 ∃p2 ∃p3 ϕ̇(p1, p2, p3, p1,1, p1,2, p1,3, . . . , pk,1, pk,2, pk,3).

Indeed,

Ḋ |= ∃p1 ∃p2 ∃p3 ϕ̇(p1, p2, p3)[p1,1, p1,2, p1,3, . . . , pk,1, pk,2, pk,3]

iff. there exist points p1, p2, p3 in R2 such that

Ḋ |= ϕ̇[p1, p2, p3, p1,1, p1,2, p1,3, . . . , pk,1, pk,2, pk,3]

iff. there exists a triangle T such that D̂ |= ϕ̂[T,T1, . . . ,Tk], where

Ti is the triangle with corner points pi,1, pi,2 and pi,3 for 1 ≤ i ≤ k

iff. D̂ |= ∃T ϕ̂(T)[T1, . . . ,Tk].

To summarize the proof strategy, let σ̂ = {R̂1, R̂2, . . . , R̂m} be a triangle database
schema. Let σ̇ = {Ṙ1, Ṙ2, . . . , Ṙm} be the corresponding point database schema. Each
formula ϕ̂ in FO({PartOf}, σ̂), with free variables M1,M2, . . . ,Mk can be translated into
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a FO({Between}, σ̇)-formula ϕ̇ with free variables p1, p2, p3, p1,1, p1,2, p1,3, p2,1, p2,2, p2,3,

. . . , pk,1, pk,2, pk,3. This translation is such that, for all triangle databases D̂ over σ̂, D̂ |= ϕ̂

iff. Ḋ |= ϕ̇. Here, Ḋ is the point database over σ̇ which is the image of D̂ under the canon-

ical bijection between ((R2)
3
)
k

and (R2)
3k

. This completes the soundness proof. ut

Next, we give the proof of the completeness lemma.

Proof of Lemma 4.3. Let σ̂ = {R̂1, R̂2, . . . , R̂m} be a triangle database schema and σ̇ be
the corresponding point database schema. We have to prove that we can translate every
triangle database query, expressed in the language FO({Between}, σ̇), into a triangle
database query in the language FO({PartOf}, σ̂) over triangle databases.

We first show how we can simulate point variables by a degenerated triangle, and any
FO({Between}, σ̇)-formula ϕ̇(p1, p2, . . . , pk) by a formula ϕ(M1,M2, . . . ,Mk), where M1

,M2, . . . ,Mk represent triangles that are degenerated into points. We prove this by in-
duction on the structure of FO({Between}, σ̇)-formulas. Initially, each FO({Between},
σ̇)-formula ϕ̇(p1, p2, . . . , pk) will be translated into a FO({PartOf}, σ̂)-formula ϕ̂(M1,M2

, . . . ,Mk) with the same number of free variables.

The translation of a point variable p is the triangle variable M, and we add the condition
Point(M) as a conjunct to the beginning of the translation of the formula. The definition
of Point(M) is

∀ M′ (PartOf(M′,M)→ (M=M′)).

In the following, we always assume that such formulas Point(M) are already added to
the translation as a conjunct.

The translation of atomic formulas.

The atomic formulas of the language FO({Between}, σ̇) are equality constraints on
point variables, formulas of the form Between(p1, p2, p3), and formulas of the type
Ṙi(p1, p2, . . . , pki), where ki = 3 · ar(R̂i). We show that all of those can be simulated
by an equivalent formula of FO({PartOf}, σ̂).

(i) The translation of (p1 = p2) is (M1=MM2).
(ii) The translation of Between(p1, p2, p3), where M1, M2 and M3 (which as assumed

are already declared points) are the translations of p1, p2 and p3, respectively, is
expressed by saying that all triangles that contain both M1 and M3 should also
contain M2. It then follows from the convexity of triangles (or line segments, in the
degenerated case) that M2 lies on the line segment between M1 and M3. Figure 10
illustrates this principle. We now give the formula translating Between(p1, p2, p3):

∀ M4 ((PartOf(M1,M4) ∧PartOf(M3,M4))→ PartOf(M2,M4)).
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Tp

Tq

Tr

Fig. 10. Illustration of the translation of the predicate Between. The (degenerated) triangle
Tq (in blue) lies between the (degenerated) triangles Tp and Tr if and only if all triangles
(illustrated by the orange, red and brown triangles) that contain both Tp and Tr, also contain
Tq.

The correctness of this translation follows from the fact that triangles are convex
objects.

(iii) Let Ṙj be a relation name from σ̇ = {Ṙ1, Ṙ2, . . . , Ṙm}. Let ar(R̂j) = kj and thus
ar(Ṙj) = 3kj, for 1 ≤ j ≤ m. The translation of Ṙj(p1,1, p1,2, p1,3, p2,1, p2,2, p2,3, . . . ,
pk,1, pk,2, pk,3) is:

∃ M1 ∃ M2 . . . ∃ Mk (R̂j(M1,M2, . . . ,Mk) ∧
k∧
i=1

CornerP(Mi,1,Mi,2,Mi,3,Mi)).

The definition of CornerP is:

CornerP(M1,M2,M3,M) := ∀ M4 ((Point(M4) ∧PartOf(M4,M))

→ IntriangleM(M4,M1,M2,M3)).

The predicate InTriangleM is the translation of the predicate InTriangle of the lan-
guage FO({Between}) as described in the proof of Lemma 4.2, into FO({PartOf}).
The FO({Between}) formula expressing InTriangle only uses Between. In the
previous item of this proof, we already showed how this can be translated into
FO({PartOf}).

Given a (3k)-tuple of points (p1,1, p1,2, p1,3, p2,1, p2,2, p2,3, . . . , pa,1, pk,2, pk,3) in R2.
There will be 6k k-tuples of triangles (T1,T2, . . . ,Tk) such that, for each of the Ti,
1 ≤ i ≤ k, the condition CornerP(Ti,1,Ti,2,Ti,3,Ti) is true. However, there will only
be one tuple of triangles that is the image of the 3k-tuple of points (p1,1, p1,2, p1,3,
p2,1, p2,2, p2,3, . . . , pa,1, pk,2, pk,3) under the inverse of the canonical bijection cantr.
This shows that the simulation is correct.

The translation of composed formulas.

Now suppose that we already simulated the FO({Between}, σ̇) formulas ϕ̇(p1, p2, . . . ,
pkϕ) and ψ̇(p1, p2, . . . , pkψ) into formulas ϕ̂ and ψ̂ in FO({PartOf}, σ̂) with free vari-
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ables M1, M2, . . ., Mkϕ and M′
1, M′

2, . . ., M′
kψ

, respectively. Hence, we can assume that,

for each triangle database D̂ over σ̂ and for each kϕ-tuple of triangles (T1, T2, . . ., Tkϕ)
= ((p1, p1, p1), (p2, p2, p2), . . . , (pkϕ , pkϕ , pkϕ)), which are required to be degenerated into
points, that

D̂ |= ϕ̂[T1,T2, . . . ,Tkϕ ] iff. Ḋ |= ϕ̇[p1, p2, . . . , pkψ ].

For ψ̂ we have analogue conditions.

The composed formulas ϕ̇ ∧ ψ̇, ϕ̇ ∨ ψ̇, ¬ϕ̇ and ∃p ϕ̇, are translated into ϕ̂ ∧ ψ̂, ϕ̂ ∨ ψ̂,
¬ϕ̂ and ∃ M (ϕ̂), respectively if we assume that p is translated into M. The correctness
proofs for these translations are similar to the proofs in Lemma 4.2. Therefore, we do not
repeat them here. This concludes the proof of Lemma 4.3. ut
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