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Abstract

We describe novel image similarity measures that are
affine-invariant. Based on these new similarity mea-
sures, we further describe efficient affine-invariant im-
age indexing algorithms. We present also our experi-
ments on a preliminary data set with 400 images.

1 Introduction

Different images of the same object are affine-
invariant transformations of each other under the so-
called weak perspective assumption [20]. Hence rec-
ognizing that a new image and a stored image show
the same object requires an affine-invariant similarity
measure between pairs of images. Computer vision re-
searchers already proposed several affine-invariant sim-
ilarity measures between pairs of pictures, for exam-
ple the minimum Hausdorff distance measure [5], the
geometric hashing [25] technique, and least squares
distance-based similarity measures [12]. However, none
of these measures leads to efficient indexing.

Database researchers also already proposed some ef-
ficient image indexing methods based on the properties
such as shape [13], color histograms [22, 23], attributed
relational graphs [18], and image compression coeffi-
cients [1, 21]. However, none of these properties is
affine-invariant.

We propose, for the first time, affine-invariant sim-
ilarity measures that allow efficient indexing. Both of
our measures extract shape features of an image in the
same way, but they differ regarding color feature extrac-
tion. For color feature extraction, we propose a novel
measure called primary color ratio measure. This mea-
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sure computes the ratios of the sums of the red, respec-
tively green and blue color values of all image pixels.
We also implement the rainbow color ratio measure first
proposed in [19]. Here, N colors are defined a priori,
and the ratios of the areas of the image occupied by each
color are computed. Both measures use Euclidean dis-
tance between vectors of ratios to compare images. For
shape feature extraction, we propose an affine triangu-
lation method for spatial data. This method is based on
the computation of barycentric points in convex poly-
gons obtained by the so-called sketch of the image. A
spatial triangulation method is called affine-invariant, if
whenever it is applied to two spatial figures A and B
(e.g., the two stars in Figure 1) that can be mapped to
each other by an affinity α of the plane, also the result-
ing triangulations can be mapped to each other by that
same affinity α (see the triangulation in Figure 1). In the
remainder, we always consider affinities of the plane.

The outline of this article is as follows. In Sec-
tion 2 we describe two methods for color feature ex-
traction. We propose an affine-invariant triangulation in
Section 3. In Section 4 we propose a comparison mea-
sure for pictures combining both color and shape infor-
mation. The experimental results are explained in Sec-
tion 5. Section 6 gives a conclusion and discusses further
work.

2 Affine-invariant color feature extraction

We start with the description of two methods for color
feature extraction. The primary color ratio measure
computes the ratios of the sum of the red, respectively
green and blue color values of all pixels, whereas the
rainbow color ratio measure defines N colors a priori
and computes the ratios of the areas of the picture filled
with each color. We show that both measures are affine-
invariant. We assume that each image is represented as
a set of colored points. Most pixel-based image repre-
sentations allow 256 different shades of green, red and
blue.
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2.1 The primary color ratio similarity measure

Let RA (respectively GA, BA) be the sum of all red
(respectively green, blue) color values of the pixels of an
image A. Then the ratios RA

GA
and BA

GA
(if GA 6= 0)1 are

independent of each other. Hence, we can describe each
image A as a two-dimensional vector VA = (RA

GA
, BA

GA
),

which we call the primary color ratio vector.
We now prove that the primary color ratios are affine-

invariant.

Property 2.1 Let RA, GA and BA be the sums of the
red, green and blue pixel values of image A. Let α be
an affinity. Then Rα(A) = |α|RA, Gα(A) = |α|GA and
Bα(A) = |α|BA, where |α| is the determinant of the
transformation matrix of α. ut

Property 2.2 Let RA, GA and BA the sums of the red,
green and blue pixel values of image A. Let α be an
affinity. Then all ratios of two of these values are affine-
invariant. ut

Definition 2.1 Let VA and VB be the primary color ra-
tio vectors of images A and B, respectively. Then the
primary color ratio similarity measure defines the dis-
tance betweenA andB as the distance between the two-
dimensional vectors VA and VB . ut

Remark that any distance measure can be used. In our
implementation we use the Euclidean distance between
the primary color ratio vectors.

2.2 The rainbow color ratio similarity measure

The rainbow color ratio similarity measure was first
introduced in Chapter 21 of [19]. From all possible red,
green and blue values of the image pixels, a large set of
colors of the rainbow can be defined. Suppose we clas-
sify each part of an image as having one of N different
colors. The ratio of the total areas of any pair of colors
is affine-invariant [19].

Suppose that we have a set of N different colors. We
can derive M = N − 1 ratios that are independent of
each other, e.g. by fixing one color and use it as the
denominator for all ratios. We can describe each image
as a vector of M values where the ith entry corresponds
to the value of the ith rainbow color ratio.

1It is very unlikely that all three values RA, GA and BA are zero
for some image A. This would mean that the image is completely
black. Therefore, we can always find one of RA, GA and BA that
is not zero and use this value in the denominator for computing the
ratios. We assume that each image has some green in it.

The rainbow color ratio similarity measure is defined
as follows [19]:

Definition 2.2 Let VA and VB be the vectors of the rain-
bow color ratios in images A and B, respectively. Then
the distance between A and B is defined as the Eu-
clidean distance between VA and VB . ut

The primary color ratio measure treats the red, green
and blue color values independently, but is a very global
method. The rainbow color ratio measure results in a
higher-dimensional feature vector, hence the vectors are
possibly more sparsely distributed. However, the defi-
nition of colors out of their red, green and blue values
implies that they are not completely independent from
each other. In Section 5.1 we compare both methods
experimentally.

2.3 Indexing feature vectors

The primary color ratio measure and rainbow color
ratio measures described above construct a feature vec-
tor from an image. There exist several efficient tech-
niques for indexing multidimensional points. In gen-
eral, spatial access methods (SAM) can be divided into
two classes: data-driven and space-driven. Examples of
data-driven techniques are R−trees [9], R∗−trees [2]
and Hilbert-R−trees [14]. Those are all based on a hier-
archy of minimum bounding rectangles (MBRs). Quad
trees [7] are an example of a space driven indexing
technique. Quad trees, in the case of two-dimensional
points, recursively partition the plane into four equal
parts, until each part only contains one element. Quad
trees are generally used when the feature vectors are
two-dimensional, but they can be extended for higher
dimensions too.

3 Affine-invariant triangulation of spatial
data

We believe that for invariant image retrieval not only
color information is relevant. Therefore, we need a tech-
nique for affine-invariant shape matching. For this pur-
pose, we introduce a novel affine-invariant triangulation
method. If we want to test whether an image is in the
database, or is an affine distortion of an other image in
the database, we triangulate the image, and look for im-
ages that have the same (up to a threshold) triangulation.

We assume a figure to be a union of (possibly over-
lapping) simple polygons. A simple polygon is a region
enclosed by a single, closed polygonal line that does not



intersect itself, i.e. it contains no holes. We allow poly-
gons to degenerate into line segments or points.

We define the sketch of a figure as the collection of
boundary line segments of that figure. The sketch of
an image can be computed in time O(n2logn) using the
well-known plane sweep technique, as described in [15].
Figure 1 shows at the left a star-shaped image which is
the union of four triangles (the triangles are indicated
with different colors). The center image is the triangula-
tion of the sketch of the star-shape.

Definition 3.1 Let A be an image. A collection of tri-
angles2 {T1, . . . , Tm} in R2 is a triangulation of A if
the interiors of different Ti are disjoint and if the union
∪mi=1Ti equals A.

The interior of a triangle is defined to be its topolog-
ical interior. The interior of a line segment is defined to
be the segment without endpoints, and the interior of a
point is defined to be the point itself. ut

In Figure 1, two stars with their respective triangula-
tions are shown. Triangulations, as defined here, basi-
cally partition images. Indeed, a triangulation of an im-
age is a partition of this image into triangles, but this is
not a partition in the mathematical sense, as the elements
of the partition may have common boundaries, but their
topological interiors do not intersect. For spatial data, it
is customary to allow the elements of a partition to share
boundaries (see for example [6]).

A spatial triangulation method is a procedure (or
function) that on input of an image produces a triangu-
lation of this spatial image.

Next, we define what it means for such methods to be
affine-invariant.

Definition 3.2 A spatial triangulation method MS is
called affine-invariant if and only if for any two images
A and B, for which there is an affinity α : R2 → R2

such that α(A) = B, also α(MS(A)) =MS(B). ut

3.1 An affine-invariant triangulation method

Next we describe an affine-invariant triangulation
method ATS for images and prove its correctness, im-
proving the triangulation method of [16]. Our algorithm
is based on the fact that any set of lines partitions the
plane in a set of convex polygons. This partition is
affine-invariant.

Given an image, we compute first the sketch of the
image. Then we compute the intersection points of all

2We mean filled triangles; we allow a triangle to degenerate into a
line segment or point.

lines through one of the boundary segment in the sketch.
We keep only those intersection points that are part of
the original image. By connecting all pairs of consec-
utive intersection points on each boundary segment, we
obtain a set of line segments isolating a set of convex
polygons in the plane.

Each polygon is either part of at least one polygon of
the original image, or part of the convex closure of it.
Each line segment belongs to at most two polygons. If
we traverse each polygon in an a priori chosen direction,
each line segment is only traversed once in each direc-
tion. After we find all polygons, we triangulate those
that are not triangles yet by connecting their center of
mass to each corner point. Figure 1 shows in the center
the triangulation of a star shape.

We now give the algorithm more formally. In the fol-
lowing, we will denote points in the plane by bold letters
p,q, . . . and vectors between two points in the plane by
−→pq,−→qr, . . .. We will denote the length of the vector −→pq
by |−→pq|. The line segment between the points p and
q will be represented pq. The line through the points
p and q will be denoted Lp,q. We sometimes refer to
Lp,q as the carrier of the line segment pq or the vector
−→pq. Real numbers that represent coordinates of points
in the plane will have index 1 (resp. 2) if they represent
the first (resp. second) spatial coordinate of a point with
respect to the standard coordinate system.

The input of this triangulation algorithm is an im-
age A that is represented as a finite union of polygons
pi where each pi is given by a series of corner points
pi,1,pi,2, . . . ,pi,k (i = 1, ..., n), i.e., A = ∪ni=1pi.

In the following description we leave out the special
cases where input polygons are line segments or points,
due to space restrictions. It only requires little adapta-
tion to include these cases. Polygons that are degener-
ated to points are added to the output directly. Lines are
returned after Step 5 of the algorithm.

Algorithm 3.1 ATS(input snapshot A):

Let Out be a set of triples of points. Let P be a set
of convex polygons. A convex polygon is represented as
a list of directed line segments, represented as pairs of
points.

Let A′ be a list of line segments. Let C be a list of
elements of the form (−→pq, x). Here, x points to a list
points(−→pq), who’s elements are composed of a point and
a real number. The elements of the lists points(−→pq) are
sorted by this real number.
Step 0. Choose an affine coordinate system (e0, e1, e2)
for the plane. We define the oriented angle between the



vectors −−→e0e1 and −−→e0e2 to have a positive orientation3.
C := NULL
A′ := NULL
P := ∅
Out := ∅

Step 1. Compute the sketch of A. Store all boundary
line segments of the sketch in the list A′.

Step 2. For each element pq of A′ do the following:
C := C ∪ {(θ(−→pq), ∅)}, where θ(−→pq) equals −→pq if

the oriented angle between −−→e0e1 and −−→e0u, where u =
q − p + e0, is both positive and between 0 and π, and
−→qp otherwise.

Step 3. Sort the vectors of C by ascending positive angle
with the vector −−→e0e1.

Step 4. For every pair of vectors −→pq and −→rs of C, com-
pute the intersection point t of Lpq and Lrs.

If t exists, compute the cross-ratios4 c1 =
CR(p, t,q) and c2 = CR(r, t, s). If either c1 or c2
is between 0 and 1 (bounds included), then add (t, c1)
to points(−→pq) and (t, c2) to points(−→rs), such that the
elements of points(−→pq) and points(−→rs) are sorted by
cross-ratio.

Step 5. For every pair of consecutive vectors −→pq and −→rs
of C such that the points p,q, r, s are all collinear, do
the following:

• For each element (t, c) of points(−→rs) such
that there is not already an element (t, d)
of points(−→pq), add the element (t, c′) to
points(−→pq), where c′ = CR(p, t,q) (in a sorted
way).

• Remove the vector −→rs from C.

Step 6. Traverse the list C. For each element −→pq of C,
append a new element containing the vector −→qp to the
end of C. The list points(−→qp) consists of all elements
of points(−→pq), but sorted in reverse order.

We now define “making one pass through C, starting
from the vector −→pq and the point t” as follows:

Start with the element containing t in points(−→pq) and
visit all later elements of points(−→pq). Then, for all fur-
ther elements −→rs of C, visit all points in points(−→rs). If

3The orientation of the angle between the vectors −→pq and −→pr can
be determined by computing the sign of the expression q1r2−q2r1+
p2r1 − p1r2 + p1q2 − p2q1. The function sign maps real numbers
to the set {+1,−1, 0}.

4The cross ratio CR(p,q, r) of three collinear points p, q, r is
|−→pq|
|−→pr| .

the end of C is reached, restart at the beginning of C,
until the element −→pq is reached again.

Step 7. Now, for each element −→pq and for each point
pj of the points p0,p1, . . . ,pk in the list points(−→pq) do
the following:

Make one pass through C, starting from −→pq and the
point pj. Meanwhile, try to find a cycle of directed line
segments pjq0,q0q1, . . . ,qlpj, where l ≥ 2. Each
such line segment qvqw consists of a pair of consec-
utive points in some list points(−→rs) and is the last un-
marked line segment starting with qv and different from
qvqv−1. If such a cycle of line segments is found, add it
to the set P , and place a mark on the first point of each
line segment, to prevent it from being used more than
once.

Step 8. For each element Q =
{p0p1,p1p2, . . . ,pkp0} of P , check if there ex-
ists a polygon pi in A such that Q is a subset of pi. If
not, remove Q from P .

Step 9. For each element Q =
{p0p1,p1p2, . . . ,pkp0} of P do the following:

If k = 2, then Out := Out ∪ {(p0,p1,p2)},
else compute the center of mass c = 1

k

∑k
i=1 pi of

the points p0,p1, . . . ,pk and let Out := Out ∪⋃k
i=1{(pi, c,p(i+1)Mod(k+1))}. Return Out. ut

We now state that the triangulation algorithm is cor-
rect, affine-invariant and effectively computable. The
proofs are omitted due to space restrictions.

Proposition 3.1 The procedure ATS , given in Algo-
rithm 3.1, returns on input a snapshot A an affine-
invariant triangulation of A. ut

Proposition 3.2 Let A be a union of k polygons
p1, p2, . . . , pk. Let the number of corner points of poly-
gon pi be ni. Define n as the sum n1 + n2 + · · · + nk.
The procedure ATS , given in algorithm 3.1, returns on
input A, a set of O(n6) triangles in O(n6) time. ut

We introduced a novel affine-invariant triangulation
method. In Section 4, we investigate the possibility of
using this technique for shape matching. Indeed, two
images containing the same shape, up to an affinity, will
have the same triangulations.

Now, we propose a distance measure for images that
combines color and shape information.



4 Affine-invariant recognition of images
using combined color and shape infor-
mation

In previous sections, we introduced an affine-
invariant comparison method for both color and shape
information of an image. We now propose a two-level
indexing structure based on both methods. First, a color
ratio measure is used to group all images with compara-
ble color schemes (up to some threshold). Within such
a group of similar images, shape information is used for
more refined comparison.

We now describe in more detail the implementation
of the measures. We used Intel’s openCV library for im-
age processing functions. The test set consists of colored
drawings of birds, all having a white background. The
images are obtained from http://www.clipart.com. The
test set consists of 292 different images, and 10 of them
have 9 distortions. The distortions include three rota-
tions, two scalings, two sheer transformations and two
reflections. Figure 2 shows an image and its distortions.

4.1 Implementation of the primary color and
rainbow color ratio measures

The implementation of the primary color ratio mea-
sure is straightforward. We used the ratios R

G and B
G .

For the rainbow color ratio measure, we defined 9 col-
ors: red, green, blue, yellow, turquoise, purple, white,
gray and black. Their respective areas are denoted R, G,
B, Y, T, P, W, Gr and Bl respectively. For each image,
we take out the background. Let I be the total area of
the picture without its background. The rainbow color
ratio vector of each image consists of the ratios R

I , GI ,
B
I , YI , TI , PI , GrI and Bl

I .
For both methods, we do not take into account the

pixel values of the background of the image.

4.2 Implementation of the shape comparison
measure based on the affine triangulation

As we use digital images, we don’t have an exact de-
scription of the shape by means of boundary line seg-
ments. We extract the boundary information of an image
and compute the triangulation in the following way:

Algorithm 4.1 Step 1. The image is converted into
black and white to abstract from all color information
and get the shape silhouette;

Step 2. The shape boundary is detected using a Canny
edge detector operation. This method, proposed by

Canny [3], is considered the most efficient method for
edge detection. It is implemented in the openCV library;

Step 3. From this boundary, lines are extracted us-
ing the Simple Hough Transform (SHT) [24]. This is
a popular method for extracting geometric primitives.
Each line in an image corresponds to a point (ρ, θ) in
the Hough space such that the equation of the line is
ρ = xcos(θ)+ysin(θ). Given a threshold τ , the Hough
transform returns (ρ, θ)−pairs corresponding to lines
that contain at least τ boundary points.

Step 4. The lines are then clipped against the image
frame and merged.

The nature of the Hough transform is such that it re-
turns a lot of redundant lines. If the image contains a
strong line, then it is detected as a bundle of lines that
vary only slightly. Ideally, there would be only a lim-
ited amount of lines. Otherwise, the triangles resulting
from the triangulation become very small and the chance
that two different images match increases because of the
small triangles. Therefore, we merge the lines until there
are at most L left. The input of the merging procedure is
a set of line segments. First, all lines receive weight one.
The weight of line segment p,q is denoted W (p,q).
A threshold is initialized on one pixel. Repeatedly this
threshold is increased until no more than L lines are
left. For each value of the threshold, all pairs of line
segments pq and rs are tested whether their end points
are closer together than the threshold value. If so, the
pair of segments is replaced by one segment uv that is
computed as follows:

u =
W(p,q)

W(p,q) +W(r, s)
p+

W(r, s)

W(p,q) +W(r, s)
r

and

v =
W(p,q)

W(p,q) +W(r, s)
q+

W(r, s)

W(p,q) +W(r, s)
s.

Step 5. The four segments bounding the image frame are
added and the triangulation is computed as described in
Algorithm 3.1.

In our experiments, we reduce the number of lines L
to 10. Figure 3 shows a parrot and the lines which result
using Algorithm 3.1.

Because we are dealing with very approximate
boundary information, it is not robust to compare the



exact topological information of the triangulations of
the two images. Instead, we compute the color ra-
tio vectors of the N biggest polygons (i.e., we don’t
compute the last step of the triangulation algorithm).
As relative areas are affine-invariant, it is true that if
p1, p2, . . . , pN are the N biggest polygons in the trian-
gulation of image A, and α is an affine transformation,
then α(p1), α(p2), . . . , α(pN ) are the biggest polygons
of the triangulation of image α(A).

Finding a one-to-one mapping between the biggest
polygons would have to deal with the case that several
polygons have Reni, we take the weighted average of the
N feature vectors for each image, and compare those.
We call those vectors weighted color ratio vectors. The
weight of each polygon is the ratio of the area of that
polygon and the total area of the three biggest polygons
(hence the weight is also an affine invariant). If N is
large, then there could be a large difference in the size
of the biggest and the smallest polygons. If N is small,
then in general there is only a small difference and in that
case the weight may be even eliminated without a signif-
icant loss of performance. The shape similarity measure
is defined as the distance (e.g., the Euclidean distance)
between two weighted color ratio vectors.

5 Experimental results

5.1 Comparison of the color ratio methods

We compare the primary color ratio and the rainbow
color ratio measure. We compare the distribution of
the values of the distances between all pairs of images.
Also, we test for each of the 10 images of which there
are distortions in the database, how accurate all distor-
tions can be found using each method.

We first compare the distribution of the values of the
distances between all pairs of images. Figure 4 shows
this distributions for each method. The horizontal axis
shows the range of the distance values. The vertical axis
shows the number of image pairs that have a distance
within a certain range. It appears that the rainbow color
ratio measure has a smaller range of distance values,
they are all smaller than 1.3. For the primary color ra-
tio measure, the values range between zero and 2.7 (for
clarity, in the graph of Figure 4, all values greater than 2
are put in one category).

We now compute, for each of the 10 test images, the
distances to all other images and sort the other images by
that distance. We count the maximal distance between
each image and its 9 distortions, and the number of im-
ages (called rank) we have to return in order to get all

relevant matches, i.e. the 9 distortions. These calcula-
tions are shown in the table below, for both the primary
color ratio and the rainbow color ratio. Figure 5 shows
for both measures the closest images for a parrot, corre-
sponding to image one in the table. The upper row is the
result for the primary color ratio measure, the lower row
is the rainbow color ratio measure. We see that the pri-
mary color ratio measure has better performance. The
average distance of the primary color ratio measure is
only half that of the rainbow color ratio measure. If we
compute the efficiency of both methods we have that the
rainbow color ratio measure has an efficiency of 60%,
where the efficiency of the primary color ratio is 89%.

primary rainbow combined
id rank dist. rank dist. rank scan
1 11 0.0486 14 0.2172 9 14
2 9 0.1793 10 0.9633 9 10
3 9 0.0293 11 0.0931 9 11
4 9 0.0096 21 0.1203 10 21
5 10 0.0274 9 0.0337 9 10
6 9 0.0619 10 0.0919 9 10
7 16 0.0212 31 0.1511 9 31
8 9 0.1078 23 0.1027 9 23
9 10 0.0413 10 0.0411 9 10
10 9 0.0253 10 0.0664 9 10

max 16 0.1793 31 0.2172 10 31
avg 10.1 0.0552 14.9 0.1018 9.1 15

If we combine all information, we can say that the pri-
mary color ratio measure both spreads the distances over
a bigger range (although the feature vectors have a lower
dimension than those of the rainbow color ratio method)
and puts the distortions of the same image closer to each
other. So the primary color ratio measure can distin-
guish better between images that are distortions of each
other and images that have a similar color scheme but a
different shape.

In Figure 5, we can see that the extra images found by
both color methods are different. Images 7 and 10 of the
first are different from images 7, 10, 11 or 12 from the
second row. This leads to the novel idea of combining
both the primary color ratio measure and the rainbow
color measure by taking the intersection of the nearest
neighbors found by the two methods. In the rainbow and
primary color ratio measure, we still need to distinguish
the relevant from the nonrelevant images in the output.
This can be done either by the user of the system, or by



some automatic method, for example an affine-invariant
shape comparison method.

We first search the matching images by means of both
the rainbow color ratio and the primary color ratio, and
then reduce the output using the following algorithm:

Algorithm 5.1 Step 1. Let L1 be the output of the pri-
mary color ratio measure, containing m images. 5 Let
L2 be the output of the rainbow color ratio measure, con-
taining m images. Let L′1, L′2 and Out be lists of image
ID’s, initialize both lists to the empty list.

Step 2. Sequentially scan L1 and L2 in parallel. The
first time, take 2 elements of L2 such that we always
read one element ahead in that list. Add each element
that had been viewed to L′1 or L′2, corresponding to the
list it originates from. Each time an element from both
lists is read, check of L′1 and L′2 contain any common
elements. If so, add the common element to Out and
remove it from both L′1 and L′2.

Step 3. Return Out.

In the Table above, we show again the number of el-
ements we have to return in order to obtain 100% rel-
evance. We can see that, except for image number 4
(i.e. in 90% of the cases), the first 9 elements of the
intersection are the 9 distortions of the image (column
6). Column 7 shows how far we have to scan both lists
before the number of intersections in column 6 of the
corresponding row are found. This is the same as the
maximum of the ranks for the primary and the rainbow
color measure. The efficiency of the combination is sig-
nificantly better than the efficiency of the primary color
ratio method. We obtain that 98.9% of the returned im-
ages is relevant. In Figure 6, the performance of all three
methods is combined into one graph.

5.2 Comparing shapes

As we already mentioned in the previous subsection,
when the system returns the best matched to the user, ei-
ther the user or some other technique needs to separate
the relevant from the nonrelevant images. We now look
if we can use the shape comparison method to do this
separation. For the primary color ratio method we apply
the shape comparison on the 16 nearest neighbors found
by the primary color ratio method. For the rainbow color

5The m is the number of images returned that guarantees that
100% of the relevant images are found. In our previous experiments
m = 31 when using the rainbow color ratio method.

ratio method we search amongst the 31 nearest neigh-
bors.

The following table shows the experimental results
for the shape measure. We computed the distance for
N = 1, i.e. the biggest polygon only is considered.

distance rainbow primary
color rank color rank

1 0.1938 13 10
2 0.3986 16 11
3 0.4059 30 15
4 0.5903 29 10
5 0.5936 30 16
6 0.2126 10 10
7 0.2898 24 9
8 0.1999 23 12
9 0.7869 30 16
10 0.6930 31 15

max: 0.7869 31 16
avg: 0.4364 23.6 12.4

It seems that the shape comparison cannot add any value
to the rainbow color ratio and primary color ratio mea-
sures. There are two explanations for this. First, the
primary color and rainbow color ratio measures perform
very well. Secondly, the boundary detection method
used (i.e., the Hough transform) is not very accurate.

Without more accurate boundary detection algo-
rithms, it seems that the applications of the affine-
invariant triangulation lie mainly in the field of con-
straint databases [17, 19]. Here, the exact equations that
define the boundary of figures are known.

6 Conclusion and further work

Our experients show that the primary color ratio mea-
sure clearly outperforms the rainbow color ratio mea-
sure. It would be interesting to also investigate whether
the primary color ratio measure is robust against im-
ages saved at different compressing qualities, or taken
in varying lightning conditions. Also, more tests need to
be done to test recognition of images when objects are
only partially visible, for example due to occlusion.

We also plan to study affine-invariant queries [10, 8,
11, 4], whose results are not affected by affine transfor-
mations of the input spatial data.
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Figure 1. An example of an affine-invariant triangulation.

Figure 2. An example of an image representing a cockatiel and its distortions.

Figure 3. The detected lines after reduction.

Figure 4. Comparison of both color measures: distribution of the distance values.



Figure 5. Comparison of the both color measures: closest images.

Figure 6. Comparison of the performance of the three color measures.


