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1 Introduction

All phenomena in the real world depend on time, such as physical phenomena (vibrations, dy-
namics, acoustics), geographic and geological phenomena (temperature, precipitation, ocean
tide movements), astronomical phenomena (evolution of celestial bodies), biology and chem-
ical phenomena (cell growth & chain reactions, chemical reactions). Many daily life and in-
dustrial processes vary with time, such as accounting, banking, inventory control, and multi-
media [8]. Many systems which collect, process and analyze specific information have to deal
with time, such as Geographic Information Systems/Land Information Systems (GIS/LIS)
[6], environmental information systems [7], medical information systems [16], natural re-
source information systems, scientific data analysis [15], and natural language processing
systems [2]. The ability to represent and retrieve temporal information is essential.
However, the traditional relational data model has the following problems and limitations

in handling information dependent on time.

1. The relational data model cannot answer queries on past states.
The relational data model represents the dynamic real world as a snapshot at a partic-
ular point in time. In many applications, queries on the past states are necessary. For
examples, in the area of medical information systems, retrieving a patient’s medical
history is particularly important. An instance of a relational database is its current
contents. Updating the state of a database is performed using data-manipulation
operations such as insertion, deletion, or replacement, taking effect as soon as it is
committed. Therefore, in this process, past states of the databases and those of the
real world are discarded and forgotten completely. It is evident that queries on past

states are not possible to answer in the relational data model.



2. The relational data model is very ineffective in representing temporal intervals and
implementing temporal queries over intervals.
For example, in order to consider queries such as “Which Ph.D. students studies in the
computer science department at UNL last year”, we need to represent the time intervals
and implement the temporal overlap query. However, the relational data model neither
provide the way to represent time intervals, nor the basic temporal queries such as
overlap. Besides overlap, there are many other possible relationships between time
intervals. In reference [1], Allen introduced thirteen possible ways in which an ordered
pair of intervals can be related, such as before, equal, meets, overlaps, during, starts,
and finishes. But none of them can be evaluated efficiently and conveniently by the

relational data model.

3. The relational data model is inconvenient for querying discretely recorded continuous
data [10], and has limited storage for them.
In reality, continuous temporal data are always recorded at discrete times, for instance,
time series and geographic time series data. In reference [10], such data are called
discretely recorded continuous data. If we choose relational data model to manage
these data, every single record will be stored in the database. Sometimes, the data
sets can be huge, so sooner or later the storage of the relational databases might be
used up. For querying, the relational data model will have problems to retrieve the

information that is not recorded explicitly in the database.

Fortunately, these problems can be solved by using constraint databases [11] and related
techniques. More specifically, the first problem is not a problem in constraint databases
since all the temporal activities are recorded as functions and the queries on past states
(even future states) can be easily computed by substituting the right time value into the
functions; the second problem can be encountered by applying some linear inequality or
equality constraints on time in the query languages such as Datalog; the third problem can
be solved by applying piecewise linear approximation method in constraint databases, as

proposed in references [10, 4].



But piecewise linear approximation method itself can only interpolate time series data.
It cannot deal with the interpolation problem of spatial data that are dependent on time.
For example, it cannot solve the following interpolation problem. Suppose that we have the

following set of house price data in our input database:

House_known(x,y,t,p) records the price per square foot p of the house at location

(x,y) which was sold at time ¢, where the unit of time is month/year.
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Figure 1: The sample points in House_known.

Figures 1 illustrates the locations of the 76 houses being sold when the prices per square
foot p were recorded. Table 1 shows an instance of this House_known relation. Based on
the fact that the earliest selling transaction of the sampled houses is in 1990, we encode
the time in such a way that 1 represents January 1990, 2 represents February 1990, ...,
148 represents April 2002. Note that some houses are sold more than once in the past, so
they have more than one tuples in the relation. For example, the house at the location
(115,2030) has been sold three time in history at time 28, 112, and 137 (which represent

4/1992, 4/1999, and 5/2001). Assume we have another set of 50 houses which we have no



history price record. Figures 2 illustrates the locations of these 50 houses. Table 2 shows
an instance of this House_unknown relation. If we want to estimate their prices at a certain

time, some spatio-temporal interpolation method should be applied.

3000

¥ * *
2500 -
* *
* * *
%
2000 -
% = *
Y * % * *
L % : * : i
1500 %
% %
4 % #
#
* *
1000 i
¥
% w o ® * * X %
Y #
¥ % K * *
500 * -
> #r
* * * %
0 | | | | |
0 500 1000 1500 2000 2500 3000

Figure 2: The sample points in House_unknown.

In this paper, by borrowing the idea of shape functions from Finite Element Analysis, we
discuss and compare two alternative methods in constraint databases to interpolate spatial
data that are changing with time, which are similar to the above house price data.

The rest of this paper is organized as follows. Section 2 discusses the ST (space-time)
product interpolation method that treats time as a special dimension. Section 3 discusses
an alternative tetrahedral method that deals time as a regular third dimension. Section 4
describes the application of the two interpolation methods in constraint databases to the
example in this section. Finally, in Section 5, we present a brief discussion of the advantages

and limitations of our two approaches to spatio-temporal interpolation representation and

querying.



X Y T | P (the price per square foot)
115 | 2030 | 28 71.37
115 | 2030 | 112 100.31
115 | 2030 | 137 98.765
115 | 2170 | 65 84.88
115 | 2170 | 99 92.59
500 | 2340 | 36 68.58
500 | 2340 | 55 69.03
260 | 610 | 36 62.64
Table 1: House_known(z,y,t,p).
2 ST Product Method

This method treats time as a special dimension. This approach can be described by the

following four steps: triangular meshing, linear approximation in space, linear approximation

in time, and multiplication space and time.

2.1 Triangular Meshes

When dealing with complex geometric domains, it is convenient to divide the total domain
into a finite number of simple sub-domains which can have triangular or quadrilateral shapes
in the case of 2-D problems. For complicated domains, irregular unstructured meshes with
triangular or quadrilateral sub-domains are needed. Mesh generation using triangular or
quadrilateral domains is important in Finite Element discretization of engineering problems.
For the generation of triangular meshes, quite successful algorithms have been developed. A
popular method for the generation of triangular meshes is the “Delaunay Triangulation” [13].

Delaunay triangulation is related to the construction of the so called “Voronoi diagram”,

which is related to “Convex Hull” problems [9].

X Y T
115 | 1525 | 16
115 | 1525 | 58
115 | 1525 | 81
115 | 1610 | 63
115 | 1610 | 119
890 | 1830 | 36
890 | 1880 | 75
615 | 780 | 59

Table 2:

House_unknown(x,y,t).




2.2 Linear 2-D Approximation in Space

A linear 2-D approximation function for a triangular area can be written in terms of three
shape functions N;, Ny, N3, and the corner values wy, wo, wz. Shape functions are popular

in engineering applications, for example, in Finite Element algorithms [18, 3].

w3 (x3,y3)

(x.y)
A3

wl(x1,y1) w2 (x2,y2)
Figure 3: Computing shape functions by area divisions.

Figure 3 shows a triangle with corner vertices (x1, 41), (2, ¥2), and (z3,y3). Let us assume
that w,ws and ws are the known values of these corner vertices, A;, A, and Aj are the
three sub-triangle areas, and A is the value of the big outside triangle area. Suppose also

that we need to interpolate the value of a point (x,y). Then we have:
w(if,y) = Nl(x,y)wl+N2(:E,y)w2+N3(x,y)W3 (1)

where Ny, Ny and Nj are the following shape functions:

A A A
Ni(w,y) = =, No(w,y) =, Na(wy) = - (2)

Clearly, the area of the Delaunay triangle in Figure 3 can be represented by a conjunction
C of three linear inequalities corresponding to the three sides of the triangle. Then, by
Equation (1) the value w of any point (x,y) inside the triangle can be represented by the

linear constraint tuple [12]:

Rz, y,w) :—w= [((y2 = ys)wr + (ys —y1)wz + (1 — y2)ws)/(2A)] = +

(73 — m2)wy + (21 — T3)wa + (22 — 1)ws)/(2A)] y  + (3)



[((ways — z3y2)wr + (2391 — 1y3)ws + (X132 — T2y1)ws) /(2A4)],
C.

By representing the interpolation in each triangle by a separate constraint tuple, we can

find in linear time a constraint relation to represent the whole 2-D spatial interpolation.

2.3 Linear Approximation in Time

Assume the value at the node ¢ at time ¢; is w;;, and at time ¢y the value is w;y. The value
at the node 7 at any time between t; and ¢y can be approximated using time shape functions

in the following way:

to — 1 t—1
'U}l(t) = 2_ Wy + %w
to — 11 to — 11

o - (4)
2.4 Multiplication of Space and Time

By multiplying formulas 1 and 4, the linear approximation function for any point constraint

to the sub-domain I at any time between t; and t5 can be expressed as follows:

to — t t—1t
w(z,y,t) = Ni(z,y) L;_ tlwn + 4 —tllww}
to —t t—1t
N
+ No(2,y) [tQ —t1w21 + Iy tl’LUzQ]
to — 1 t— 1
- - 5
+ N3(z,y) LQ —y, + I _t1w32} (5)
to — 1t
= tz : [N1(z, y)wir + No(z,y)war + Ni(z, y)ws]
92—t
t—1t

+ [N1(x, y)wiz + No(x, y)weg + N3(z, y)wsa] .

to —tg

Note that since the interpolation is obtained by multiplying two linear interpolation
functions in space and time, the resulting constraint relation is no longer linear.

This ST product method is based on the assumption that the sample data are measured
at the same time instance at all the locations. For the cases that the data are not measured at

different times, we can easily extend formulas 4 and 5 by piecewise linear approximation [10].



3 Tetrahedral Method

This method treats time as a regular third dimension. Therefore, the spatio-temporal in-
terpolation problem is transferred to a three-dimensional (two dimensions in space and one

dimension in time) interpolation problem.

3.1 Tetrahedral Meshes

Three-dimensional domains can be divided into finite number of simple sub-domains. For
example, we can use tetrahedral or hexahedral sub-domains. Tetrahedral meshing is of
particular interest. With a large number of tetrahedral elements, we can also approximate
complicated 3-D objects. Figure 4 shows a tetrahedral mesh of a 3-D object. This object

has a cutout (one quarter of a cylinder) behind the boundary defined by the points ABCD.
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Figure 4: A Tetrahedral Mesh.

It is a difficult topic to automatically generate tetrahedral meshes. Fortunately, there
exist several algorithms to generate automatic tetrahedral meshes, such as tetrahedral mesh
generation by Delaunay refinement [14] and tetrahedral mesh improvement using swapping

and smoothing [5]. In this paper, the software package Matlab is used to generate tetrahedra



meshes based on 3-D Delaunay tessellation.

3.2 Linear 3-D Approximation

Similarly to the linear approximation function for the 2-D problem solved in Section 2.2, a
linear approximation function for a 3-D tetrahedral element can be written in terms of four
shape functions Ny, Ny, N3, N, and the corner values wq, wa, ws, wy.

wi(x1,y1)

w3(x3,y8)
w2(x2,y2)

w4(x4,y4)
Figure 5: Computing shape functions by volume divisions.

Figure 5 shows a tetrahedron with corner vertices (x1, y1,t1), (22,2, t2), (23,y3,t3), and
(4,Ys,ts). Let us assume that wi, wsy, ws, and w, are the known values of these corner
vertices, V1, Vo, V3 and V, are the four volume values of sub-tetrahedra wwywsw,, wiwwswy,
wiwowwy, and wywswsw, respectively. V is the volume value of the big outside tetrahedron
wiwewzwy. Suppose also that we need to interpolate the value of a point (x,y,t). Then we

have:
UJ(.CIZ',y,t) = Nl(xa y7t)w1 + NQ(ma Y, t)w2 + N3($7 Y, t)wS + N4(91:,y, t)w4 (6)

where Ny, Ny, N3 and N, are the following shape functions:

)% V. V. V
Nl(xvyat):717 N2<x7y7t)zv27 N3(x7y7t):737 N4<x7y7t):v4 (7)

Clearly, the volume of the tetrahedron in Figure 5 can be represented by a conjunction

C' of four linear inequalities corresponding to the four facets of the tetrahedron. Then, by
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Equation (6) the value w of any point (z,y,t) inside the tetrahedron can be represented by

the linear constraint tuple:

R(z,y,t,w) :—w=[(bywy + baws + bsws + bywy)/(6V)] x +
[(c1w1 + cows + c3ws + cqwy) /(6V)] y  +
[(dywy + dows + d3ws + dswy)/(6V)] £ + (8)
[(a1wy 4 agws + azws + aswy)/(6V)] ,

C.

where aq, by, c1, dy, as, ba, co, do, ag, b3, c3, d3, a4, by, c4, and dy are all constants. More

specifically, we have

T Y2 Z2

ap =det | x5 ys 23

Ty Ys 24

bl = —det 1 Y3 Zz3 (9)

(&1 = —det T3 1 23

LE’4124

Ty Yo 1
dy = —det T3 Y3 1

T4 ys 1

The other constants can be obtained by cyclic interchange of the subscripts in the order 4,

1,2, 317
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By representing the interpolation in each tetrahedron by a separate constraint tuple, we
can find in linear time a constraint relation to represent the whole interpolation.
Note that since the interpolation is obtained by adding time as a third dimension, the

resulting constraint relation is still linear.
4  Application

Let us return now to the example in Section 1. There are 76 houses with history prices,
while 50 houses with unknown prices. We want to interpolate the prices of the 50 houses at

certain times. Figure 6 shows the 76 houses with circles and the 50 house with pentagons.
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Figure 6: 76 houses with known history prices and 50 houses with unknown prices.

Experiments have been conducted to analyze and compare the qualities of ST product
method and tetrahedral method according to Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE). Actually, the 50 unknown price houses have the true history prices
recorded so that we can compare them with the experimental results.

Table 3 summarizes the quality analysis of the two methods. It shows that tetrahedral

method is better for this house price testing case, since both MAE and RMSE error measures



MAE | RMSE

ST Product Method

10.109 | 11.338

Tetrahedral Method

7.917 | 8.983

Table 3: Comparison result.

of tetrahedral method are less than ST product method.

Let HOUSE(x,y,t,p) constraint relations that represent the interpolation of House_known

(z,y,t,u) input relation. HOUSE (z,y,t,p) can be deemed as an infinite relation of triples of

12

rational numbers. To write queries, we do not need to know how the constraints are used

in the representation of the infinite relations. Assume there is another input relation Built

(z,y,t), which record the time (in month) when the house at location (x,y) was first built.

Consider the following queries:

Query 4.1 For each house, find the starting sale price when the house was built.

The above query can be expressed in Datalog as follows:

Start_price(xz,y,p) : —

Built(x,y,t),

HOUSE(z,y,t,p) .

Query 4.2 Suppose that we know house prices in general decline for some time after the

first sale. For each house, find the first month when it become profitable, that is, the first

month when its price exceeded its initial sale price.

The above query can be expressed in Datalog as follows:

not_Profitable(x,y,t) : —

not_Profitable(x,y,ts) : — mnot_Profitable(x,y,t;),

Built(x,y,t) .

HOUSE(CEa Y, t27p2)7
Start_price(z,y,p),

to =1t +1, po <p.
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Profitable(x,y,t2) : — not_Profitable(z,y,t),
HOUSE(z,y,ts,p2),
Start_price(x,y, p),

t2:t1+1, p2 > P.
Query 4.3 How many months did it take for each house to become profitable?

The above query can be expressed in Datalog as follows:

Time_to_Profit(z,y,t3) :— Built(z,y,t),
Profitable(x,y,ts),

ty =ty — 1.
53 Concluding Remarks

This paper analyzes two spatio-temporal interpolation methods (i) ST product method and
(ii) tetrahedral method in constraint databases. For the house price estimation input data
example, the experimental results show that the tetrahedral method is better than ST prod-
uct method. It is because the house price data are selected in such a way that they are dense
in space (in a close neighborhood) but sparse in time (houses are sold not frequently).
Tetrahedral method is linear, which can be implemented in MLPQ system [11]. Spatio-
temporal queries in constraint databases can be easily and efficiently evaluated in MLPQ),
which are difficult or impossible to implement in conventional relational databases.
However, for the input data that do not satisfy the property that they are dense in space
and sparse in time, the tetrahedral method may not be better than ST product method.
For example, for the temperature data that are measured regularly in various locations in a
area, the ST product method may have better result since the temperature of location A at
time t may have influence to interpolate the temperature of neighboring location B only at

the same time t.
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