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Abstract

We propose constraint databases as an intermediate level facilitating the interoper-

ability of spatiotemporal data models. Constraint query languages are used to express

translations between di�erent data models. We illustrate our approach in the context

of a number of temporal, spatial, and spatiotemporal data models.

1 Introduction

Very large temporal and spatial databases are a common occurrence nowadays. Although

they are usually created with a speci�c application in mind, they often contain data of

potentially broader interest, e.g., historical records or geographical data. By database in-

teroperability we mean the problem of making the data from one database usable to the

users of another. Data sharing between di�erent applications and di�erent sites is often

the preferable mode of interoperation. As [?] says `E�ciency, security and availability all

argue for shipping the data to the downstream database rather than providing integrated

access to both systems." But sharing of data (and application programs developed around

it), facilitated by the advances in network technology, is hampered by the incompatibility of

di�erent data models and formats used at di�erent sites. Semantically identical data may

be structured in di�erent ways. Also, the expressive power of some data models is limited.

A temporal database may have been built using one of the many temporal extensions

of the relational data model (the book [?] describes at least 12 such extensions which are

mutually incompatible), using a customized temporal data model, or simply using SQL (or

some of its extensions). There may be many application programs and complex queries

that have been developed for this database. The situation in the area of spatial databases
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is similar [?, ?], often with a considerable investment in software tools tuned to speci�c data

models.

Temporal and spatial databases share a common characteristic: they contain inter-

preted data, associated with uninterpreted data in a systematic way. For example, a tem-

poral database may contain the historical record of all the property deeds in a city. A

spatial database may contain the information about property boundaries. Moreover, as

this example shows, spatial and temporal data are often mixed in a single application.

In this research, we propose that constraint databases [?] be used as a common lan-

guage layer that makes the interoperability of di�erent temporal, spatial and spatiotemporal

databases possible. Constraint databases generalize the classical relational model of data by

introducing generalized tuples: quanti�er-free formulas in an appropriate constraint theory.

For example, the formula 1950 � t � 1970 describes the interval between 1950 and 1970,

and the formula 0 � x � 2 ^ 0 � y � 2 describes the square area with corners (0; 0), (0; 2),

(2; 2), and (2; 0). The constraint database technology makes it possible to �nitely represent

in�nite sets of points, which are common in temporal and spatial database applications.

We list below some further advantages of using the constraint database technology:

1. Wide spectrum of data models. By varying the constraint theory, one can accommo-

date a variety of di�erent data models. By syntactically restricting constraints and

generalized tuples, one can precisely capture the expressiveness of di�erent models.

2. Broad range of available query languages. Relational algebra and calculus, Datalog

and its extensions are all applicable to constraint databases. Those languages have

well-studied formal semantics and computational properties, and are thus natural

vehicles for expressing translations between di�erent data models. Also, constraint

query languages may be able to express queries inexpressible in the query languages

of the interoperated data models, enhancing in this way the expressive power of the

latter. This is more a practical than a theoretical contribution. We simply mean

that if, for instance, we have a TQuel database, then translation to a constraint

database with dense order constraints allows querying by Datalog, a query language

which is more expressive than TQuel. In the paper we show how to enhance, through

interoperability, the expressive power of the query language of the spatiotemporal

data model of Worboys [?].

3. Decomposability. The problem of translating between two arbitrary data models,

which is hard, is decomposed into a pair of simpler problems: translating one data

model to a class C of constraint databases, and then translating C to the other data

model. Also, by using a common constraint basis, we need to specify only 4n instead

of n(n� 1) translations for n di�erent data models.

4. Combination and interaction of spatial and temporal data within a single framework.

This is an issue of considerable recent interest [?, ?].
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In this paper we address the issue of application-independent interoperability of spa-

tiotemporal databases. We show that the translations between di�erent data models can

be de�ned independently of any speci�c application that uses those models. We distinguish

between data and query interoperability. For the former, it is the data that is translated to

a di�erent data model, while the latter concerns the translation of queries. The constraint

database paradigm is helpful in both tasks. For data interoperability, constraint databases

serve as a mediating layer and translations between di�erent data models are expressed

using constraint queries. For query interoperability, it is the constraint query languages

themselves that serve as the intermediate layer. In an actual implementation, the presence

of a mediating constraint layer may be completely hidden from the user. In this paper we

study only data interoperability. Query interoperability is a topic of future research.

We show below two scenarios in which our approach may be useful in practice.

Data Casting. The user of a data model �

2

wants to query a database D

1

developed

under a data model �

1

. He translates D

1

to a �

2

-database D

2

(using constraint databases

as an intermediate layer) that he can subsequently query using the query language of �

2

.

(As a practical matter, if a user is interested in a query Q

2

in �

2

, then only the part of the

database that is relevant to Q

2

needs to be translated.)

Query Enhancement. The user of a data model �

1

wants to augment the power of

the query language of �

1

. For example, this language may be unable to express recur-

sive queries. However, such queries can be formulated in an appropriate constraint query

language. Thus whenever the user wants to run such a query on a database D

1

, he �rst

translates D

1

to a constraint database, runs the query in the constraint query language on it

(using a constraint query engine), and translates the result back to �

1

. (N.b., interoperating

query results is an often neglected aspect of database interoperability.)

The plan of the paper is as follows. In Section ?? we de�ne a very general notion

of a data model and introduce a number of data models that will be studied in the rest

of the paper: the TQuel data model for temporal databases, the 2-spaghetti model for

spatial databases, and two spatiotemporal models (one of which is new). We believe that

those models are representative of a large part of spatiotemporal data models that occur

in practice. In Section ?? we characterize the expressiveness of the above data models

using appropriately de�ned classes of constraint databases. In Section ??, which is the

most technically involved part of the paper, we show that the bulk of the translations

between the data models can be expressed using �rst-order constraint query languages.

In particular, we show that the boundary, the vertices and the edges of a spatial object

speci�ed by linear arithmetic constraints can be de�ned using �rst-order queries with linear

arithmetic constraints only. As an application of our techniques, we show in Section ?? how

the expressive power of the query language of an existing spatiotemporal data model can

be enhanced by data interoperability. In Section ?? we discuss related work. In Section ??

we conclude the paper and point out directions for future work in this area.
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2 Data Models

2.1 Database Interoperability

By database interoperability we mean the problem of making the data from one database

usable to the users of another. There are many possible sources of mismatches between

di�erent databases [?]: they may use di�erent data models, the schemas may not match,

some data may be missing or inconsistent etc. In this paper we limit our attention to

the di�erences in the data models and are thus concerned with application-independent

interoperability.

2.2 Basic Notions

A data model � consists of a set of valid databases I(�) and a set of valid queries L(�). All

valid databases are �nite. We assume that for every valid database D in a data model �,

the abstract semantics of D is given as a �rst-order structure �

�

(D). (Often, the abstract

semantics is not given in the published description of the data model but has to be inferred

from it.) We will term D a concrete representation of the structure �

�

(D) (which may be

in�nite). Examples are given later in this section.

De�nition 2.1 Two databases D

1

2 I(�

1

) and D

2

2 I(�

2

) are equivalent if �

�

1

(D

1

) =

�

�

2

(D

2

).

De�nition 2.2 [?, ?] The data expressiveness of the data model � is the set E

�

=

f�

�

(D) : D 2 I(�)g.

Currently used data models can substantially di�er in terms of data expressiveness. For

example, some can only represent �nite relations.

Given two data models �

1

and �

2

, there are two fundamentally di�erent ways to query

databases from I(�

1

) using queries from L(�

2

). These two approaches are:

1. Data interoperability: For a given database D

1

2 I(�

1

) an equivalent database

D

2

2 I(�

2

) is constructed. Then D

2

can be queried using queries in L(�

2

). Data in-

teroperability opens up the data of �

1

to the users of �

2

, making direct data sharing

possible.

2. Query interoperability: This means that for a given query Q

2

2 L(�

2

) an equivalent

query Q

1

2 L(�

1

) is constructed. Then Q

1

can be evaluated over the given database

D

1

2 I(�

1

) and the result translated back to I(�

2

). Query interoperability enables
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the users of �

2

to request the evaluation of queries within �

1

. In this case data

sharing is indirect.

Note that the above de�nitions characterize the semantics of data and query interop-

erability. In any implementation of data interoperability only a part of the database that is

relevant for the given query will be translated. Note also that query interoperability relies

on data interoperability to translate the query result. For some, e.g., Boolean, queries such

translation will be trivial.

In this paper we concentrate on data interoperability. Note that for the data interoper-

ability between �

1

and �

2

to be possible the data expressiveness E

�

1

has to be contained in

or equal to E

�

2

. Otherwise, a database D

2

2 I(�

2

) which is equivalent to a given database

D

1

2 I(�

1

) may not exist.

2.3 The TQuel Data Model

TQuel is a popular model for representing temporal data. (For the puprose of this paper,

we chose TQuel over TSQL2 [?], because TQuel is simpler and TSQL2 is still in 
ux.)

In the TQuel data model each relation contains two special attributes called From and

To to represent valid time. The value of these temporal attributes must be integers or

the special constants �1 or +1. The From and To values represent the endpoints of an

interval. Such intervals in di�erent tuples with identical nontemporal components have to be

disjoint. (Another time dimension, transaction time, can also be present and is represented

similarly to valid time. For simplicity we do not consider it here.)

The abstract semantics of a TQuel database is a relational database which has the same

scheme as the TQuel database except the temporal attributes To and From are replaced

with a single temporal attribute. The abstract semantics is point-based and hides the

implementation details, in this case the fact that intervals are used. For each TQuel tuple

of the form r(a

1

; : : : ; a

k

; b

1

; b

2

) the abstract model contains the tuples

r(a

1

; : : : ; a

k

; b

1

); : : : ; r(a

1

; : : : ; a

k

; b

2

):

Example 2.1 Table ?? is a TQuel representation of the relation in Table ??.

Name Company From To

Anderson AT&T 1980 1993

Brown IBM 1985 1996

Clark Lotus 1990 1991

Table 1: TQuel DB researcher relation
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Name Company Year of Employment

Anderson AT&T 1980

.

.

.

.

.

.

.

.

.

Anderson AT&T 1993

Brown IBM 1985

.

.

.

.

.

.

.

.

.

Brown IBM 1996

Clark Lotus 1990

Clark Lotus 1991

Table 2: DB researcher relation

The semantics of TQuel queries assumes the above abstract, point-based view. For

example, a temporal join is implemented using interval intersection. On the other hand,

the syntax of TQuel queries refers explicitly to intervals. Various built-in operators that

work on intervals, e.g., overlap, are provided. The issue of points vs. intervals in temporal

query languages is discussed in detail in [?, ?, ?].

2.4 The K-spaghetti Data Model

The K-spaghetti data model [?] is a very popular model for representing K-dimensional

geometric objects for CAD (Computer Aided Design) [?] and GIS (Geographic Information

Systems) [?]. In GIS applications typically K = 2 because the objects of interest are

planar, while in CAD applications K � 3. The basic idea is to provide a general relational

representation for geometric objects.

In this paper we concentrate on the 2-spaghetti (planar) data model. In this data

model we can represent only spatial objects that are composed of �nite unions of closed

convex polygons. We further restrict the 2-spaghetti data model. First, we assume that the

polygons have been triangulated. In this way polygons can be represented using �rst-normal

form relations with a �xed number of attributes. Each triangle is represented by its three

corners. Degenerate triangles (points or segments) can be represented in the same way.

There are many good algorithms from computational geometry for triangulating polygons

[?]. Second, to simplify the presentation we assume a single thematic attribute which can

be conveniently interpreted as object identi�er. The issue of K-spaghetti for K � 3 is

addressed in Section ??.

Example 2.2 Let us consider Figure ??. In the 2-spaghetti model the spatial objects

in Figure ?? are represented by the relation in Table ??. Note that the rectangle is

represented by two and the pentagon by three triangles.
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1 2 3 4 5 7 8 9 10 11 12 136 14 15

p1
t1

p2

l1

r1

Figure 1: Spatial objects

id x y x

0

y

0

x

00

y

00

p1 10 4 10 4 10 4

l1 5 10 9 6 9 6

l1 9 6 9 3 9 3

t1 2 3 2 7 6 3

r1 1 2 1 11 11.5 11

r1 11.5 11 11.5 2 1 2

p2 3 5 3 8 4 9

p2 4 9 7 6 3 8

p2 3 5 7 6 3 8

Table 3: Triangular representation of spatial �gure

The abstract semantics of a 2-spaghetti relation r contains all the tuples w

00

such that

for some tuple w

0

2 r:

� the values of the thematic attribute of w

00

and w

0

are the same,

� w

00

has two spatial attributes x and y with values equal to the (x; y)-coordinates of a

point within the triangle described by w

0

.

Thus, similarly to TQuel, it is point-based.

Typically, query languages for a 2-spaghetti data model hide the internal representation

of spatial objects, referring explicitly to the objects themselves. Various built-in operators

that work on polygons, e.g., overlap, are provided. The semantics of those languages is

also point-based.

8



1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 7 8 9 10 11 12 136 14 15

1994-1996

1995-1996

1975-1990

1991-1996

1980-1986

p1

p2

t1

l1

r1

Figure 2: Spatiotemporal objects

2.5 The Spatiotemporal Data Model of Worboys

The spatiotemporal data model of Worboys [?] is a recent example of a data model that

can represent both spatial and temporal information about objects in a database. Worboys

relations (our term) are 2-spaghetti relations where spatial objects are timestamped with

temporal extents which can be intervals or �nite unions of intervals. Without loss of gen-

erality, we consider a speci�c version of the Worboys model where 2-spaghetti relations are

triangular (as above) and temporal extents are single intervals (as in TQuel).

Example 2.3 Let us consider Figure ??. It is like Figure ??, except that we have added

a time interval to each spatial object. The interval tells us from which year to which year

the object existed (valid time). For each object there could be several such intervals. Figure

?? can be represented using a relation identical to the one in Table ??, except that two

temporal attributes, From and To, are added to encode the appropriate intervals (see Table

??).

The abstract semantics of the Worboys spatiotemporal data model is the cross product

of the abstract semantics given for the 2-spaghetti spatial data model and the abstract

semantics given for the TQuel temporal data model. Thus, Worboys relations represent ab-

stract relations with one temporal and two spatial dimensions. Moreover, the temporal and

the spatial dimensions are independent [?]. Thus, only discrete changes, not continuous ones

can be represented in this model. For example, the relationship that exists between time

and the area covered by an incoming tide cannot be represented using Worboys relations.

The Worboys model, like TQuel, allows one more dimension for time (transaction time)

if necessary. Transaction time can be handled like valid time and we do not discuss it here.
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id x y x

0

y

0

x

00

y

00

From To

p1 10 4 10 4 10 4 1980 1986

l1 5 10 9 6 9 6 1995 1996

l1 9 6 9 3 9 3 1995 1996

t1 2 3 2 7 6 3 1975 1990

r1 1 2 1 11 11.5 11 1994 1996

r1 11.5 11 11.5 2 1 2 1994 1996

p2 3 5 3 8 4 9 1991 1996

p2 4 9 7 6 3 8 1991 1996

p2 3 5 7 6 3 8 1991 1996

Table 4: Representation in the Worboys Model

The query language of the Worboys data model is a variant of relational algebra containing

the operators for spatial and temporal projection, temporal selection, and a general operator

called \�-product" that can be used to simulate spatial selection, union, intersection, and

di�erence. The semantics of the language is point-based.

2.6 The Parametric 2-spaghetti Data Model

This data model is a new model that we introduce in this paper. It generalizes the Worboys

data model in a natural way by allowing an interaction between spatial and temporal

attributes. Vertex coordinates can now be linear functions of time.

Example 2.4 Let us suppose that we have a rectangular area on a shore as shown in Figure

??. A tide is coming in and the water level continuously changes and is shown as a line

marked by the time the water rises to that line. The front edge of the tide water is a linear

function of time. In this case the area 
ooded by the water will be a point at 1:00 am, a

triangle at 8:00 am, a quadrangle at 10:00 am, and a pentagon at 1:00 pm. This data can

be represented as in Table ??. Notice that this table is no longer a standard relation but

rather a parametric one (with parameter t).

The abstract semantics of a parametric 2-spaghetti relation r is a possibly in�nite

relation S de�ned in two stages. First, the set I

r

of all the instantiated tuples of r is

de�ned. An instantiated tuple w

0

of r is obtained from some parametric tuple w of r by:

1. substituting for the parameter t a value t

0

which falls between the From and To values

in w,

2. removing the From and To attributes and adding a new temporal attribute t with the

value t

0

(like in the semantics of TQuel).
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1 2 3 4 5 7 8 9 10 11 12 136 14 15

8:00

10:00

1:00

17:00

r1

Figure 3: Continuous change

id x y x

0

y

0

x

00

y

00

From To

r1 3 10 3 10 3 10 1 +1

r1 3 10 3 11-t 2+t 10 1 8

r1 3 10 3 3 10 10 8 +1

r1 3 3 10 10 3 11-t 8 10

r1 10 10 3 11-t 10 18-t 8 10

r1 3 3 10 10 3 1 10 +1

r1 10 10 3 1 10 8 10 +1

r1 3 1 10 8 t-7 1 10 17

r1 t-7 1 10 18-t 10 8 10 17

r1 3 1 10 1 10 8 17 +1

r1 10 1 10 1 10 1 17 +1

Table 5: Parametric Triangular Representation

In every instantiated tuple the spatial attributes denote, as in the 2-spaghetti model, the

vertices of a triangle. Thus in the second stage, the abstract semantics of r is de�ned to

contain all the tuples w

00

such that for some instantiated tuple w

0

2 I

r

:

� the values of the thematic and temporal attributes of w

00

and w

0

are the same,

� w

00

has two spatial attributes x and y with values equal to the (x; y)-coordinates of a

point within the triangle described by w

0

.

Query languages for the parametric 2-spaghetti data model are under development.

Clearly, temporal selection and projection, spatial selection and projection, and union can

be easily de�ned. However, there is a serious di�culty with de�ning the join operator

because the tuples in this model are not closed with respect to intersection.
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Lemma 2.1 The intersection of two parametric 2-spaghetti relations cannot always be

represented as a parametric 2-spaghetti relation.

Proof: Let's take the simple case with two input relations R

1

and R

2

, each containing a sin-

gle parametric 2-spaghetti tuple. Let's suppose that R

1

contains the tuple (3; 3; 10; 10; 3; 11�

t; 9; 10) and R

2

contains the tuple (3; 3; 10; 10; 5; t � 8; 9; 10). Therefore, at any instant

t 2 [9; 10], R

1

describes a triangle ABC and R

2

describes a triangle ACD with corner

points A = (3; 3); B = (3; 11 � t); C = (10; 10), and D = (5; t � 8). At any time t 2 [9; 10]

let the intersection of the triangles ABC and ACD be the triangle ACE. Figure ?? shows

the triangles at t = 9.

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

A

B

C

D

E

Figure 4: Non-closure under intersection

In order to represent triangle ACE as a parametric tuple, we need to get the coordinate

values of the point E. Note that E is the intersection of two straight lines AD and BC.

From the points B = (3; 11� t) and C = (10; 10), we get the linear equation of the line BC,

which is: 7y = x(t� 1)+10(8� t). Similarly, from the points D = (5; t� 8) and A = (3; 3),

we get the linear equation of the line AD, which is: �2y = x(11� t)+ (3t� 39). By solving

the system consisting of both equations, we obtain

x =

113� t

75� 5t

:

Thus x cannot be represented as a linear function of t. In fact, the set of E-vertices is

described by the quadratic curve:

10x

2

� 5xy � 66x+ y + 150 = 0:
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Therefore, in this case to express the intersection of the two relations, we need an in�nite

number of triangles ACE such that E lies on this quadratic curve. Since the parametric 2-

spaghetti model allows only a �nite number of tuples, the intersection of R

1

and R

2

cannot

be represented within the parametric 2-spaghetti model. 2

3 Data Expressiveness

3.1 Constraint Databases

De�nition 3.1 [?] Let � be the set of atomic constraints of some constraint theory. A

generalized k-tuple over variables x

1

; : : : ; x

k

is of the form:

r(x

1

; : : : ; x

k

) :| �

1

^ : : : ^ �

n

where r is a relation symbol, and �

i

2 � for 1 � i � n and uses only the variables x

1

; : : : ; x

k

.

A generalized relation r with arity k is a �nite set of generalized k-tuples with symbol r on

left hand side. A generalized database is a �nite set of generalized relations. 2

De�nition 3.2 [?]. Let D be the domain over which variables are interpreted. Then the

model of a generalized k-tuple t with variables x

1

; : : : ; x

k

is a k-ary relation consisting of all

tuples (a

1

; : : : ; a

k

) 2 D

k

such that the substitution of a

i

for x

i

satis�es the body of t.

Such a model may be in�nite, e.g., the model of the generalized tuple x < y. The model of

a generalized relation is the union of the models of its generalized tuples.

The model of a generalized database is the set of the models of its generalized relations. 2

We consider the following classes of constraints:

� linear arithmetic constraints of the form a

1

x

1

+ : : : a

k

x

k

�b where a

i

and b are rational

constants and x

i

are variables on rational numbers (� is one of =; <;>;�;�);

� order constraints t

1

�t

2

over integers where t

1

and t

2

are variables or constants (� is

one of <;>;�;�);

� equality constraints t

1

= t

2

over various domains where t

1

and t

2

are variables or

constants.

We also consider restricted forms of constraints:

� unary order constraints of the form x�c where x is a variable, c a constant, and � one

of <;>;�;�);
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� unary equality constraints of the form x = c where x is a variable and c is a constant.

The models of generalized relations are relations. Therefore, in principle relational query

languages like relational calculus, relational algebra, Datalog with or without negation can

all be applied to constraint databases. The challenge is how to provide appropriate query

evaluation methods that handle �nite representations in the form of generalized tuples. For

example, projection needs to be implemented as quanti�er elimination. This problem is

addressed in [?] and many subsequent papers.

3.2 Constraint Basis

We use the constraint database framework to characterize data expressiveness of data mod-

els.

De�nition 3.3 A constraint basis of a data model � is a class C of generalized databases

such that every database in E

�

= f�

�

(D) : D 2 I(�)g is a model of some generalized

database in C and vice versa.

In the following let �

1

(x

1

); : : : ; �

n

(x

n

) be unary equality constraints over thematic (non-

spatial and nontemporal) variables x

1

; : : : ; x

n

, �(t) a conjunction of unary order constraints

over a temporal variable t, and 
(x; y) a conjunction of linear arithmetic constraints over

spatial variables x and y. We assume that the planar object described by 
(x; y) is closed

and bounded.

Proposition 3.1 The class of generalized databases with relations whose tuples are of the

form

�

1

(x

1

) ^ � � � ^ �

n

(x

n

) ^ �(t)

is a constraint basis of the TQuel data model.

Example 3.1 We can represent the relation in Table ?? as the following generalized rela-

tion:

researcher(name; comp; t) :| name = "Anderson"; comp = "AT&T";

1980 � t; t � 1993:

researcher(name; comp; t) :| name = "Brown"; comp = "IBM";

1985 � t; t � 1992:

researcher(name; comp; t) :| name = "Brown"; comp = "IBM";

1990 � t; t � 1996:

researcher(name; comp; t) :| name = "Clark"; comp = "Lotus";

1990 � t; t � 1991:
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Note that here two generalized tuples represent Brown's employment at IBM, while

in the corresponding TQuel relation there was just one tuple with related information. In

general the sets described by di�erent generalized tuples need not be disjoint. For instance,

di�erent generalized tuples can represent information coming from di�erent sources (this is

common if multiple databases are interoperated).

Proposition 3.2 [?] The class of generalized databases with relations whose tuples are of

the form

�

1

(id) ^ 
(x; y)

is a constraint basis of the 2-spaghetti data model (note our restriction to one thematic

attribute).

Because 
(x; y) is a conjunction of linear arithmetic constraints, the planar object

described by 
(x; y) is a �nite union of convex polygons. Additionally, it is supposed to

be closed and bounded. Both conditions are �rst-order de�nable with linear constraints, so

the above constraint basis is e�ectively recognizable.

Proposition 3.3 Boundedness and closedness are �rst-order de�nable with linear con-

straints.

Proof (sketch): Boundedness means that the object is entirely contained within some

nonempty rectangle whose sides parallel the axes. Interior, exterior and boundary are easily

de�ned using rectangle-sized neighborhoods. For instance, a point is an interior point of an

object if there is a nonempty rectangle-sized neighborhood of this point which is entirely

contained within the object. Similarly the exterior. The boundary consists of the points

that are neither interior nor exterior. Closedness means that every boundary point of an

object belongs to the object itself. 2

Example 3.2 For the 2-spaghetti model example, we can represent the abstract semantics

by the following constraint database:

object(id; x; y) :| id = p1; x = 10; y = 4:

object(id; x; y) :| id = l1; 5 � x; x � 9; y = �x+ 15:

object(id; x; y) :| id = l1; x = 9; 3 � y; y � 6:

object(id; x; y) :| id = t1; 2 � x; x � 6; 3 � y; y � 7; y � �x+ 9:

object(id; x; y) :| id = r1; 1 � x; x � 11:5; 2 � y � 11:

object(id; x; y) :| id = p2; x � 3; y � 5; y � x� 1; y � x+ 5; y � �x+ 13:

Corollary 3.1 The class of generalized databases with relations whose tuples are of the

form

�

1

(id) ^ �(t) ^ 
(x; y)

15



is a constraint basis of the Worboys spatiotemporal data model. (This means that in

such relations the temporal attribute t and the spatial attributes x and y are syntactically

independent in the sense of [?].)

Example 3.3 We can represent the previous example of Worboys' model as the following

generalized database.

object(id; x; y; t) :| id = p1; x = 10; y = 4; 1980 � t; t � 1986:

object(id; x; y; t) :| id = l1; 5 � x; x � 9; y = �x+ 15; 1995 � t; t � 1996:

object(id; x; y; t) :| id = l1; x = 9; 3 � y; y � 6; 1995 � t; t � 1996:

object(id; x; y; t) :| id = t1; 2 � x; x � 6; y � �x+ 9; 3 � y; y � 7; 1975 � t; t � 1990:

object(id; x; y; t) :| id = r1; 1 � x; x � 11:5; 2 � y; y � 11; 1994 � t; t � 1996:

object(id; x; y; t) :| id = p2; x � 3; y � 5; y � x� 1; y � x+ 5; y � �x+ 13; 1991 � t;

t � 1996:

For the parametric 2-spaghetti model we have only one-way containment.

Theorem 3.1 Every generalized database consisting of relations whose tuples are of the

form

�

1

(id) ^  (x; y; t)

where  (x; y; t) is a conjunction of linear arithmetic constraints can be represented as a

�nite parametric relation in the parametric 2-spaghetti model provided for each rational

constant t

0

, the formula  (x; y; t

0

) describes a closed bounded polygon. This condition can

again be de�ned as a �rst-order query with linear arithmetic constraints.

Proof: We sketch the construction of a parametric relation equivalent to the given general-

ized relation in the above form. We show how to de�ne a parametric tuple corresponding to

a �nite set of generalized tuples of the form  (x; y; t). Such a set represents a polyhedral set

P in three dimensions: x, y and t. This set may be unbounded but only in the dimension t.

First, determine the extreme points and the faces of P . Let t

1

; : : : ; t

k

be the time

coordinates of the extreme points of P , sorted in ascending order. For simplicity, we assume

they are all di�erent. (Equality is a degenerate case and can be handled similarly. Also,

�1 and +1 have to be handled in a special way { one cannot speak about edges anymore.)

Repeat the following for every interval I = [t

i

; t

i+1

]. Denote by P

I

the slice of P that

contains all the points of P whose time coordinates are in [t

i

; t

i+1

]. P

I

is a polyhedral set.

Also, all its vertices have t-coordinates equal to t

i

or t

i+1

(by construction). Call the �rst

kind low and the second kind high.

Determine the edges of P

I

, and among those select the edges that connect a low vertex

with a high one and lie entirely within P

I

(other edges are uninteresting). Each such edge is

a segment of an edge of P and thus also a segment of a line which is an intersection of two
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faces of P . Consequently, it can be described as a system of two linear equations in x, y, and

t (the faces are described by single linear equations). From this system obtain the equation

relating x and t and the one relating y and t. This gives a parametric formulation for the

x- and y-coordinates of the vertices of the �nite union of convex polygons G

I

described by

 (x; y; t) for every t 2 I.

Triangulate G

I

and produce a parametric tuple for every obtained triangle. This tuple

contains the parametric x- and y-coordinates of the triangle vertices (described above) and

the interval I.2

The containment in the other direction does not hold, as shown by the following exam-

ple.

Example 3.4 Consider the following parametric object with a single tuple (with the same

spatial attribute values as in the 4th tuple in Table 5).

id x y x

0

y

0

x

00

y

00

From To

r1 3 3 10 10 3 11-t �1 +1

This is a parametric triangle whose edge between the points (3; 11� t) and (10; 10) has

a slope that depends on t. This edge is contained in a line described by the equation:

7y = x(t� 1) + 10(8 � t):

The triangle cannot be speci�ed using linear arithmetic constraints over x, y and t.

In many cases, however, a parametric object can be represented using linear arithmetic

constraints.

Example 3.5 To represent Table 5, which is an instance of the parametric 2-spaghetti

data model, note that 
ooded area is always described by the constraint y � x+ 8� t:

flooded(id; x; y; t) :| id = r1; 1 � y; y � 10; 3 � x; x � 10; y � x+ 8� t:

We conjecture that as long as a relation in the parametric representation contains only

objects whose boundaries involve only a �nite number of slopes, there is a corresponding

representation using linear arithmetic constraints. We think that the conjecture holds

not only for triangular representations but also for representations involving rectangles, or

higher degree convex polygons. In general, it is an open problem to �nd and precisely

characterize relational representations of spatiotemporal constraint databases.
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4 Data Translation Using Constraint Queries

4.1 Constraint Wrapper

The notion of constraint basis de�ned in the previous section characterizes the semantics

of a data model. Here we provide a constraint counterpart to the speci�c syntax of relation

instances in this model.

De�nition 4.1 A constraint wrapper for a data model � is a syntactically de�ned class C

of generalized databases such that there is a simple correspondence between databases in

I(�) and generalized relations in C.

By \simple correspondence" we mean that it is easy to construct the generalized relation

in a wrapper of � from the instances in I(�) and vice versa. We are intentionally vague

here, because we want to allow a broad class of wrappers. There may be more than one

constraint wrapper for a data model. Relations corresponding to a constraint wrapper of �

may have a di�erent arity than those corresponding to a constraint basis of �. For example,

a constraint wrapper for TQuel consists of generalized relations whose elements are tuples

over n data and two temporal variables t

1

and t

2

. The temporal constraints in every such

tuple are equality constraints of the form t

i

= c only.

Now the data translation between two data models �

1

and �

2

such that the data ex-

pressiveness of �

1

is contained in or equal to the data expressiveness of �

2

is a composition

of translations shown in Figure ??.

Data

model

�

1

Wrapper

for �

1

Common

constraint

basis

Data

model

�

2

Wrapper

for �

2

WRAP ENCODE

DECODE

UNWRAP

Figure 5: Composition of translations

The WRAP/UNWRAP translations are outside the scope of the constraint database

technology, because they are data-model-dependent. The ENCODE/DECODE translations

are queries and may be expressible using constraint query languages. We expect many data

models to share a common constraint basis. The interoperability of such data models is

greatly simpli�ed: instead of constructing n(n� 1) direct data translations between every

pair of data models, it is enough to construct the WRAP/UNWRAP translations for every

model, and ENCODE/DECODE for every constraint wrapper (at most 4n translations).

18



4.2 TQuel

A constraint wrapper for TQuel consists of constraint databases whose relations contain

generalized tuples of the form

x

1

= c

1

^ � � � ^ x

n

= c

n

^ t

1

= a ^ t

2

= b

where a and b are integers, +1 or �1. A constraint basis for TQuel consists of constraint

databases whose relations contain generalized tuples of the form

x

1

= c

1

^ � � � ^ x

n

= c

n

^ �(t)

where �(t) is a conjunction of order constraints over the integers.

Theorem 4.1 The ENCODE/DECODE translations for TQuel can be expressed as �rst-

order constraint queries with order and equality constraints.

Proof: The ENCODE translation has to handle the di�erence of arities (n + 2 versus.

n + 1) and eliminate +1 and �1. Let P be a generalized relation of the constraint

wrapper. We de�ne the corresponding generalized relation of the constraint basis using a

relational calculus query 


P

(�x; t) de�ned as

9t

1

; t

2

:(P (�x; t

1

; t

2

) ^ �(t

1

; t

2

; t))

where �(t

1

; t

2

; t) is

(t

1

6= �1 ^ t

2

6= +1 ^ t

1

� t � t

2

_ t

1

6= �1 ^ t

2

= +1 ^ t

1

� t _

t

1

= �1 ^ t

2

6= +1 ^ t � t

2

_ t

1

= �1 ^ t

2

= +1):

The DECODE translation is more complicated, as it involves coalescing tuples with

the same nontemporal components (and nondisjoint intervals) and generating +1 and �1

where appropriate. Let R be a generalized relation of the constraint basis. We de�ne the

corresponding generalized relation of the constraint wrapper using a (domain) relational

calculus query �

R

(�x; t

1

; t

2

) de�ned as

�

1

(�x; t

1

; t

2

) _ �

2

(�x; t

2

) ^ t

1

= �1_ �

3

(�x; t

1

) ^ t

2

= +1_

�

4

(�x) ^ t

1

= �1 ^ t

2

= +1

where the query �

1

(�x; t

1

; t

2

) speci�es tuples with bounded intervals:

8t:(t

1

� t � t

2

) R(�x; t) ^ 9t

3

:(t

3

< t

1

^ 8t

0

:(t

3

� t

0

< t

1

) :R(�x; t

0

))) ^

9t

4

:(t

2

< t

4

^ 8t

0

:(t

2

< t

0

� t

4

) :R(�x; t

0

)))):
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The query �

2

(�x; t

2

) speci�es tuples with intervals unbounded to the left, �

3

(�x; t

1

) tuples

with intervals unbounded to the right, and �

4

(�x) tuples unbounded on both sides. These

queries can be de�ned similarly to �

1

(�x; t

1

; t

2

). 2

4.3 2-spaghetti

Lemma 4.1 Assume that a �nite union of closed convex polygons is represented as a

generalized relation object(i; x; y) with linear arithmetic constraints over x and y (i is the

object identi�er). The following relations can be de�ned as �rst-order queries with linear

arithmetic constraints:

� boundary(i; x; y) � the point (x; y) is on the boundary of i,

� vertex (i; x; y) � the point (x; y) is a vertex of i,

� edge(i; x; y; x

0

; y

0

) � the points (x; y) and (x

0

; y

0

) form an edge of the boundary of i.

Proof: In the proof we use rectangles whose sides are parallel to the x- or y-axis. We

represent them as quadruples (x; y; x

0

; y

0

) where (x; y) is the bottom left corner and (x

0

; y

0

)

is the top right corner.

(Boundary.) For the object i each point on the boundary is a point of this object that

is not an inside point of i. A point is an inside point of i i� it is inside a rectangle wholly

contained within i (see Figure ??):

inside(i; x; y) � object(i; x; y) ^ 9x

0

; y

0

; x

00

; y

00

:(x

0

< x < x

00

) ^ (y

0

< y < y

00

)^

8x

000

; y

000

:((x

0

< x

000

< x

00

) ^ (y

0

< y

000

< y

00

)) object(i; x

000

; y

000

))

boundary(i; x; y) � object(i; x; y) ^ :inside(i; x; y):
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Figure 6: Point inside polygon

(Vertex and edge.) We de�ne two auxiliary relations:

� iso(i; x; y; x

0

; y

0

; z; w; z

0

; w

0

) � translating the fragment of the object i contained in the

rectangle (x; y; x

0

; y

0

) by the vector (z � x;w � y) gives the fragment of the object i

contained in the rectangle (z; w; z

0

; w

0

) (see Figure ??).

iso(i; x; y; x

0

; y

0

; z; w; z

0

; w

0

) � z

0

= x

0

+ z � x ^ w

0

= y

0

+ w � y^

8s:8t:x � s � x

0

^ y � t � y

0

)

(object(i; s; t), object(i; s+ z � x; t+ w � y)):

� nc(i; x; y) � (x; y) is a boundary point of i but not a vertex of i. The consecutive

occurences of the relation iso in the formula correspond to positive slopes, negative

slopes, slopes equal to 0, and slopes equal to 1. Figure ?? shows the case of a

positive slope.

nc(i; x; y) � boundary(i; x; y) ^ 9c > 0:9d > 0:

boundary(i; x + c; y + d) ^ boundary(i; x� c; y � d)^

(iso(i; x� c; y � d; x; y; x; y; x + c; y + d)_

iso(i; x; y � d; x+ c; y; x� c; y; x; y + d)_

iso(i; x� c; y � d; x; y + d; x; y � d; x+ c; y + d)_

iso(i; x� c; y � d; x+ c; y; x� c; y; x+ c; y + d)):
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Figure 7: The iso relation

Now

vertex (i; x; y) � boundary(i; x; y) ^ :nc(i; x; y):

Considering again all possible slopes

edge(i; x; y; x

0

; y

0

) � vertex (i; x; y) ^ vertex (i; x

0

; y

0

)^

((x 6= x

0

^ y 6= y

0

^ pos slope(i; x; y; x

0

; y

0

))_

(x 6= x

0

^ y 6= y

0

^ neg slope(i; x; y; x

0

; y

0

))_

y = y

0

^ horizontal (i; x; y; x

0

; y

0

)_

x = x

0

^ vertical (i; x; y; x

0

; y

0

)):

We de�ne only pos slope; the de�nitions of the remaining predicates are similar. Figure

?? demonstrates how edge is determined for positive slopes. The essential idea behind this

de�nition consists of checking the existence of in�nitely many rectangles containing identical

(up to a translation) fragments of the object and spanning the object boundary.

pos slope(i; x; y; x

0

; y

0

) � 8c

1

> 0:8d

1

> 0:9c

2

> 0:9d

2

> 0:9s:9t:9s

0

:9t

0

:

boundary(i; s; t) ^ boundary(i; s+ c

2

; t+ d

2

)^

x < s ^ s+ c

2

< x+ c

1

^ y < t ^ t+ d

2

< y + d

1

^

s

0

+ c

2

< x

0

^ s < s

0

^ x

0

� c

1

< s

0

^

t

0

+ d

2

< y

0

^ t < t

0

^ y

0

� d

1

< t

0

^

8g:8h: 0 < g � s

0

� s ^ 0 < h � t

0

� t)

iso(i; s; t; s+ c

2

; t+ d

2

; s+ g; t+ h; s+ c

2

+ g; t+ d

2

+ h):
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Figure 8: The nc relation

This concludes the proof of Lemma ??.2

A constraint wrapper for 2-spaghetti consists of databases with relations whose tuples

are of the form

id = i

0

^ x = a ^ y = b ^ x

0

= a

0

^ y

0

= b

0

^ x

00

= a

00

^ y

00

= b

00

:

Theorem 4.2 The DECODE translation for 2-Spaghetti can be expressed as a �rst-order

constraint query with linear arithmetic constraints.

Proof. The constraint basis of the 2-spaghetti model (Proposition ??) guarantees that the

spatial objects are �nite unions of convex polygons. The construction in Lemma ?? gives

in this case the vertices and the edges of the object. The triangulation (necessary for our

2-spaghetti representation) requires more work. For convex polygons, a triangulation can be

easily described in a �rst-order way by picking an arbitrary vertex v

0

(e.g., the least vertex

in the lexicographic ordering of all vertices) and constructing all nondegenerate triangles

(v

0

; v

1

; v

2

) such that (v

1

; v

2

) is an edge. However, for �nite unions of such polygons the

situation is more complicated. We can view such unions as consisting of �nitely many com-

ponents that are polygons, possibly nonconvex and containing holes. Di�erent components

intersect only in �nitely many points. We settle for a triangulation in which the triangles

are not necessarily disjoint (but they still cover the entire object). First, we determine the

candidate edges of the triangulation. They have either to be external edges as de�ned by

the edge predicate in Lemma ?? or internal ones (contained wholly within the interior of

the object). Internal edges can be de�ned similarly to external ones, except that instead of

requiring that the in�nitely many rectangles span the boundary we require that they are
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Figure 9: The edge relation

wholly contained within the object. Edges that are not external or internal have at least

one point that does not belong to the object and are thus useless for triangulation. Second,

we construct a superset of the triangulation by taking all triangles with vertices that are

vertices of the object and edges that are candidate edges. Such triangles can still contain

holes inside. Thus in the third step we check for each triangle obtained whether it has a

point which does not belong to the object. If such a point p exists in a triangle, the hori-

zontal line drawn through it intersects two di�erent edges of the triangle. The point p lies

then between the intersection points. All the above conditions can be de�ned as �rst-order

formulas with linear arithmetic constraints. 2

Remark: The DECODE translation does not necessarily have to be implemented as the

constraint query described above. It would be easier to implement the translation by con-

sidering each generalized tuple separately. The vertices of the convex polygon corresponding

to the tuple can then be constructed using a variety of methods, e.g., linear programming.

Theorem 4.3 The ENCODE translation for 2-spaghetti can be expressed as a �rst-order

constraint query with polynomial inequality constraints.

Proof: The translation of points and line segments is straightforward. Let us look now

at the translation of triangles. Let us assume that the vertices of a nondegenerate triangle

are (x

1

; y

1

); (x

2

; y

2

) and (x

3

; y

3

). We want to formulate the condition that a point (x; y)

is on the same side of the line segment de�ned by the points (x

1

; y

1

) and (x

2

; y

2

) as the

third vertex (x

3

; y

3

) of the triangle (and similarly for the remaining sides). To do this we

determine the equation y = ax+ b of the line going through the points (x

1

; y

1

) and (x

2

; y

2

)
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and then formulate the condition as

y > ax+ b � y

3

> x

3

+ b:

This can also be expressed as

(y

3

� y

1

)(x

2

� x

1

) > (y

2

� y

1

)(x

3

� x

1

) � (y � y

1

)(x

2

� x

1

) > (y

2

� y

1

)(x� x

1

):

Hence let us de�ne

side(x; y; x

1

; y

1

; x

2

; y

2

; x

3

; y

3

) � (((y

3

� y

1

)(x

2

� x

1

) � (y

2

� y

1

)(x

3

� x

1

)^

(y � y

1

)(x

2

� x

1

) � (y

2

� y

1

)(x� x

1

)_

((y

3

� y

1

)(x

2

� x

1

) � (y

2

� y

1

)(x

3

� x

1

)^

(y � y

1

)(x

2

� x

1

) � (y

2

� y

1

)(x� x

1

)))

Now each triangle can be translated as

9x

1

; y

1

; x

2

; y

2

; x

3

; y

3

: triangle(i; x

1

; y

1

; x

2

:y

2

; x

3

; y

3

)^

(x

1

6= x

2

_ y

1

6= y

2

)^

(x

1

6= x

3

_ y

1

6= y

3

) ^ (x

3

6= x

2

_ y

3

6= y

2

)^

side(x; y; x

1

; y

1

; x

2

; y

2

; x

3

; y

3

)^

side(x; y; x

2

; y

2

; x

3

; y

3

; x

1

; y

1

)^

side(x; y; x

3

; y

3

; x

1

; y

1

; x

2

; y

2

)

The translation query contains quadratic constraints. However, the generalized relation

resulting from translating any 2-spaghetti relation will contain only linear constraints. This

is because the variables x

1

; x

2

; x

3

; y

1

; y

2

; y

3

will be all replaced by constants coming from

the 2-spaghetti relation being translated. 2

Theorem 4.4 The DECODE translation for Worboys' spatiotemporal model can be ex-

pressed as a �rst-order constraint query with linear arithmetic constraints. The ENCODE

translation for Worboys' spatiotemporal model can be expressed as a �rst-order constraint

query with polynomial arithmetic constraints.

Proof: Consider DECODE �rst. We need to de�ne maximal intervals [t

1

; t

2

] such that

object(i; x; y; t

1

) ^ object(i; x; y; t

2

) ^ 8t 2 [t

1

; t

2

]:object(i; x; y; t):

Maximality is clearly �rst-order de�nable using order constraints (see the DECODE map-

ping for TQuel, Theorem ??). For all the elements of each such interval, the corresponding

spatial object is the same. So for example it is described by object(i; x; y; t

1

). On the basis

of this object, one can then de�ne vertices, edges and a triangulation as in Theorem ?? (all

the predicates will have one extra argument for time). The fact that only �nitely many
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maximal intervals are obtained is guaranteed by the form of the constraint basis of the

Worboys model.

The ENCODE construction is a combination of Theorems ?? and ??. The speci�c form

of the constraint basis for the Worboys model guarantees the independence of spatial and

temporal attributes. This allows us to translate the temporal and the spatial attributes

separately. 2

Theorem 4.5 The DECODE translation for the parametric 2-spaghetti can be expressed

as a �rst-order constraint query with linear arithmetic constraints.

Proof: The method used in the proof of Theorem ?? can be expressed as a �rst-order

query with linear arithmetic constraints. First, extreme points and faces of polyhedral sets

in three dimensions can be de�ned analogously to vertices and edges in �nite unions in

polygons (Lemma ??). Second, consecutive intervals of t-coordinates of extreme points can

also be de�ned in a �rst-order way. Finally, using those de�nitions one can de�ne slices and

their triangulation, as in Theorem ??. 2

Theorem 4.6 The ENCODE translation within the proof of Theorem 4.3 for the para-

metric 2-spaghetti can be expressed as a �rst-order query with polynomial constraints.

Moreover, the ENCODE translation can be expressed as a �rst-order query with linear

arithmetic constraints if and only if in each parametric 2-spaghetti tuple of the form:

id x

1

y

1

x

2

y

2

x

3

y

3

From To

i

1

a

1

t+ b

1

a

2

t+ b

2

a

3

t+ b

3

a

4

t+ b

4

a

5

t+ b

5

a

6

t+ b

6

t

1

t

2

one of the following conditions holds:

� a

1

= a

2

= a

3

= a

4

= a

5

= a

6

= 0, or

� ((b

1

= b

3

and b

2

= b

4

)) or (a

4

� a

2

)(b

3

� b

1

) = (b

4

� b

2

)(a

3

� a

1

) and

((b

3

= b

5

and b

4

= b

6

)) or (a

6

� a

4

)(b

5

� b

3

) = (b

6

� b

4

)(a

5

� a

3

) and

((b

1

= b

5

and b

2

= b

6

)) or (a

6

� a

2

)(b

5

� b

1

) = (b

6

� b

2

)(a

5

� a

1

).

Before giving the proof we sketch the intuition behind the above conditions. The conditions

require that the triangles corresponding to di�erent values of t be self-similar (see Figure

??). That is, if any side of a triangle grows from t

1

to t

2

by some constant multiplicative

factor c, then so do the remaining sides of this triangle. Notice that we ignore the From

and To attributes, as they are irrelevant for the second part of the theorem.

Proof: It is easy to see that the translation results in a �rst-order query with polynomial

constraints. We have to show both directions of the claim for linear constraints.

(If direction:) Suppose that the condition holds. Then the translation within the proof

of Theorem 4.3 will result in the following (where �

1

; �

2

; �

3

are either � or �):
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(y � y

1

)(x

2

� x

1

)�

1

(y

2

� y

1

)(x� x

1

)

_(y � y

2

)(x

3

� x

2

)�

2

(y

3

� y

2

)(x� x

2

)

_(y � y

3

)(x

1

� x

3

)�

3

(y

1

� y

3

)(x� x

3

)

Substituting into the �rst disjunction the components of the parametric 2-spaghetti

tuple and assuming b

2

= b

4

and b

1

= b

3

, the above simpli�es to

(y � a

2

t� b

2

)(a

3

� a

1

)�

1

(x� a

1

t� b

1

)(a

4

� a

2

)

which is a linear constraint in x; y and t.

Alternatively, substituting when (a

4

� a

2

)(b

3

� b

1

) = (b

4

� b

2

)(a

3

� a

1

) and simplifying

we get:

(y�a

2

t� b

2

)((b

3

� b

1

)[(a

4

�a

2

)t+(b

4

� b

2

)])�

1

(x�a

1

t� b

1

)((b

4

� b

2

)[(a

4

�a

2

)t+(b

4

� b

2

)]))

When (a

4

� a

2

)t + (b

4

� b

2

) is equal to zero, then we do get the constraint 0�

1

0, which is

linear. When it is non-zero, then dividing by it we get:

(y � a

2

t� b

2

)(b

3

� b

1

)�

1

(x� a

1

t� b

1

)(b

4

� b

2

)

or the same with �

1

reversed depending whether the value divided by is positive or negative.

In both cases we obtain a linear constraint.

Hence if (b

1

= b

3

and b

2

= b

4

) or (a

4

� a

2

)(b

3

� b

1

) = (b

4

� b

2

)(a

3

� a

1

), then the �rst

disjunction contains only linear constraints. A similar analysis applies to the remaining

cases.

(Only if direction:) Let's consider again Example ??. There we have noted that the equation

obtained cannot be represented by linear constraints using x; y and t. We also �nd that

a

6

= �1 and b

4

= 10 6= b

6

= 11 and (a

6

� a

4

)(b

5

� b

3

) = 7 6= (b

6

� b

4

)(a

5

� a

3

) = 0.

Therefore, the condition of the theorem fails. 2

Example 4.1 As an example let's consider the following parametric 2-spaghetti tuple

which satis�es the condition of the second part of Theorem Thus, its encoding can be de-

termined by a query with linear constraints only. Figure ?? shows the self-similar triangles

obtained from this tuple for t = 0 and t = 1.

id x

1

y

1

x

2

y

2

x

3

y

3

From To

i

1

1 t+2 2t+3 1 1 1 0 1

5 Query Enhancement

We show here how constraint databases and constraint query languages can be used to

enhance the expressive power of an existing query language. The starting point is the Wor-

boys' spatiotemporal data model. The query language of this model is somewhat limited.
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Figure 10: Self-similar triangles

It cannot express non-equijoins. Moreover, the operators cannot produce relations whose

abstract semantics involve more than one temporal or more than two spatial dimensions.

For instance, the following spatiotemporal queries are not expressible in this language:

� did John own any piece of land before Paul?

� were there two di�erent time instants when John owned the same land?

On the other hand, the above queries can be easily expressed in relational calculus or algebra

(see below). However, relational query languages cannot be directly evaluated on Worboys

relations. Such relations need �rst to be translated to generalized relations with linear

arithmetic constraints, as shown in Section ??.

But then a di�culty appears: how to guarantee that the result of a relational calculus

or algebra query, which is a generalized relation, can be mapped back to a Worboys relation,

so that the user deals only with a single data model? The answer consists of several parts.

First, one needs the characterize what it means for a generalized relation R to correspond

to a Worboys relation. This is the case if the set of spatial attributes of R is independent, in

the sense of [?], of the set of nonspatial attributes of R (see Figure ??). Second, one needs to

de�ne a safe subset of relational algebra (or calculus) consisting of operators that preserve

that kind of independence. It turns out that the safe subset contains all the operators of

relational algebra and the only restriction is that a selection condition cannot mix spatial

and nonspatial attributes. However, to prove the safety of this set one has to extend the

original set of inference rules for variable independence given in [?]. The modi�ed set of

rules is presented in [?].
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Figure 11: Enhancing Worboys' Query Language

The query

did John own any piece of land before Paul?

can be expressed in relational calculus as:

9t

1

:9t

2

:9x:9y:own(John; x; y; t

1

) ^ own(Paul; x; y; t

2

) ^ t

1

< t

2

:

This query can be translated to relational algebra in a standard way. The resulting algebraic

expression has to contain a nonequijoin or a subexpression producing a relation with two

temporal dimensions.

The query

were there two di�erent time instants when John owned the same land?

can also be expressed in relational calculus, as:

9t

1

:9t

2

:8x:8y:t

1

6= t

2

^ own(John; x; y; t

1

), own(John; x; y; t

2

):

The relational algebra formulation of this query requires a subexpression producing a rela-

tion with two temporal dimensions.

6 Related Work

Interoperability between a GIS database and application programs was studied in [?]. In-

teroperability in the sense of combining spatial and thematic data managers for the imple-

mentation of GIS systems was studied in [?]. In this paper, we are addressing a di�erent

issue, namely data interoperability among various temporal and spatial data models.
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Data interoperability of di�erent temporal data models was studied in [?]. The solution

proposed there, the provision of a single unifying temporal data model to which other

models could be mapped, is not su�cient. This still falls short of de�ning a representation-

independent abstract semantics for temporal databases. In fact, the model of [?] uses

another notion of concrete temporal database, admittedly simpler and more general than

others. This model is still limited in its data expressiveness as it is capable of representing

only �nite databases. We also think that the model is unnecessarily complicated because

it introduces a new notion of \bitemporal element". Moreover, translations between this

model and other temporal data models are expressed using an ad-hoc procedural language.

Recent work on the interoperability of temporal databases, e.g., Wang, Jajodia and

Subrahmanian [?, ?], addresses similar concerns as the present paper. However, the pa-

per [?] does not address spatial or spatiotemporal database issues and makes very strong

assumptions about the concrete temporal databases that are to be interoperated. In par-

ticular, such databases have to provide a uni�ed interface. This is not necessary in our

approach. Moreover, the data expressiveness of the cited model is limited to sets of �nite

databases. A follow-up work [?] demonstrates a systematic approach of deriving implicit

temporal information from the explicit information stored in a temporal database. Such

derivations could very well be incorporated into our framework. For surveys of temporal

query languages, see [?, ?].

Spatiotemporal data models and query languages are a topic of growing interest. The

paper [?], discussed in section [?] the authors talk about moving points and regions but

formally de�ne only the former. In their approach some kinds of continuous change can

be modeled using linear interpolation functions. Query language issues are not addressed.

In [?] the authors propose a formal spatiotemporal data model based on constraints in

which, like in [?], only discrete change can be modeled. An SQL-based query language

is also presented. Finally, [?] proposes a general framework for modeling spatiotemporal

objects supporting continuous change. None of the approaches considers, however, the issue

of database interoperability.

Among the many recent papers on constraint databases we focus on those that are

directly relevant to the topic of this paper. [?] brings the �rst systematic study of linear

constraints in spatial database applications and [?] an important classi�cation of spatial

query languages in constraint databases. [?] contains, as a corollary, a �rst-order de�nition

of the polygon wireframe (vertices and edges). This result was obtained independently

of the �rst version of this paper [?]. Moreover, as opposed to [?], our construction is

elementary and has a clear geometric intuition. [?] and [?] describe spatial DBMS based

on constraints. Other language proposals in this area include [?, ?]. [?, ?] introduces the

notion of variable independence constraints and studies their theoretical properties. In the

context of spatiotemporal databases, this notion captures discrete change. Further work in

this direction includes [?].
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7 Conclusions and Future Work

We have presented a novel way to apply the constraint database technology to temporal,

spatial and spatiotemporal database applications. Constraint databases are used as a layer

mediating between di�erent data models. Constraint query languages are used to formulate

the translations between the models.

Implementation. The research reported in this paper is just a �rst step in the direc-

tion of making spatiotemporal databases interoperable. We have developed e�cient algo-

rithms for the translations developed here and implemented them. This will be described

in a forthcoming paper.

Applications. In addition to the presented scenarios for database interoperability,

there remain others to be explored. For example, we have discovered that the parametric

2-spaghetti data model is well suited for the animation of spatiotemporal databases because

the construction of the explicit geometric representation of each snapshot is very easy.

Generalizations. Based on the framework proposed here, we plan to investigate a

broader range of data models, as well as the issue of query interoperability. The spaghetti

model can be extended to higher spatial dimensions [?]. In higher dimensions each K-

dimensional object is represented as a set of K�1-dimensional facets. For representing this

containment we need to have a separate table describing the object containment hierarchy.

We believe that our techniques generalize to arbitrary �xed spatial (or temporal) dimensions.

Extensibility. Application-dependent interoperability issues of resolving semantic and

representational mismatches and con
ict detection and resolution have found an elegant

formulation using the language of �rst-order logic [?]. Thus, solutions to these problems

can be seamlessly integrated with the techniques we propose for the translation between

di�erent data models. The problem of incomplete information can also be addressed in the

same framework.
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