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ABSTRACT
Most spatial and spatiotemporal interpolation methods give
back a surface function as the result. Instead of that we
consider interpolation methods that yield a single value as
the final result. Voting prediction is a natural example that
requires this type of spatiotemporal interpolation, because
the final result is the total percentage vote for a party or
candidate. We propose a new spatiotemporal interpolation
method for voting prediction and similar problems. The ap-
proach can also be used in election data verification for effec-
tive government. We test the new method using USA pres-
idential election data from the states of California, Florida,
and Ohio between 1972 and 2004. The experimental results
show that our method can produce comparatively precise
predictions (e.g., the difference between prediction and ac-
tual result is 1.09% for Florida in 2004).

1. INTRODUCTION
Spatial and spatiotemporal interpolations are important in
many problems, such as, geographically distributed statis-
tics for agricultural productions, disease prevalence, pollu-
tion levels, soil types, precipitation, and temperatures. Spa-
tiotemporal interpolation is used to interpolate the original
point-based Standardized Precipitation Index (SPI) data in
a drought online analysis system [22]. These usually re-
quire the estimation of the unknown values at unsampled
location-time pairs and yield as the final result a surface
function. In contrast, we consider spatiotemporal interpo-
lation methods that require only a single value as the final
result. Aiming at effective government we choose predicting
presidential election as the main application in this study.

Most presidential election forecasting models use multi-variate
ordinary least squares regression, a common statistical method
in the social sciences [9]. Those models compare calcula-
tions from previous elections of such independent variables
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as presidential popularity and economic growth with their
current values to estimate the result in a future election.
Among the simplest forecasting models are several that pre-
dict national two-party vote shares using time series data
and sets of explanatory variables. Campbell and Wink use
just two predictor variables, a trial-heat poll and second
quarter GDP growth in the year of the election [2]. Lewis-
Beck and Rice use a similar specification, but add variables
capturing recent partisan trends [14].

As pointed out by Chappell [4], although the national mod-
els is widely accepted, predicting shares of the popular vote
should not be the principal objective when the election win-
ner is selected according to outcomes in the individual states.
Several models such as the models proposed by Rosenstone[18]
and Campbell [3] are designed for forecasts at the state-level.
These models examine election outcomes across both states
and time, using a mixture of national-level and state-level
variables as explanatory variables.

Although both the national-level and state-level models in-
troduced above are frequently cited for their use in fore-
casting and the accuracy is admirable, most of them share
limitations. For example, the choice of factors to include
in the model adds to the uncertainty. The decision to in-
clude one set of variables, such as presidential popularity
and growth in GNP, rather than another, such as the rate
of inflation and unemployment, changes the prediction out-
come [9]. Also most models are limited by the lack of his-
torical information on the relationship between political and
economic fundamentals and elections [9]. In our research we
turn the direction into the historical election data itself as
the basis of spatiotemporal interpolations without a set of
variables.

A key issue is the choice of an appropriate interpolation
method for a given input data [1, 16]. Inverse distance
weighting (IDW) [12, 17, 19, 20], kriging [6], shape func-
tions [15], splines [8], and trend surface analysis [23] are
some of the common spatial interpolation methods. We
propose a novel and comparatively simple spatiotemporal
interpolation method as a combination of spatial and tem-
poral interpolation methods to predict the election at the
state-level.

The rest of the paper is organized as follows. Section 2 re-
views inverse distance weighting, which is a popular spatial
interpolation method. We also use the IDW method in this



study. Section 3 describes our spatiotemporal interpolation
method. Section 4 describes the experimental methods and
results. Finally, Section 5 presents some ideas for future
work.

2. INVERSE DISTANCE WEIGHTING
Distance-based weighting methods have been used to in-
terpolate spatial data by many authors, for example, by
Legates and Willmont [12] and Stallings et al. [20]. The
main assumption of IDW is that if A, B and C are three
different locations, such that A is closer to B than to C,
then the value we are interested in (temperature, precipita-
tion, percentage of voters preferring a particular candidate,
etc.) is also closer between A and B than between A and
C. Hence, if the value at location A is unknown, while the
values at locations B and C are known, then the value at B
should be more important than the value at C in estimating
the value at A.

The relative importance of the known values is reflected by
the weights assigned by the IDW method to them. In the
IDW method the sum of the weights is equal to 1, and the
weights are assigned proportionally to the inverse of the dis-
tance between the known and unknown locations.

Let λi be the weight for the individual location, and yi the
variable observed in the sampled location.

IDW interpolations are of the form [10]:

y =

NX
i=1

λi · yi (1)

λi =
(

1

di
)
p
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(
1

dk
)
p

(2)

For simplicity in the following we assume that p = 1. There-
fore,

λi =

1

di

NX
k=1

1

dk

(3)

Example 1. Assume that A = (5, 0), B = (0, 0), and
C = (20, 0) and the value at A is unknown but the values at
B and C are 100 and 200, respectively. Then, the number
of known points is N = 2. We use the subscripts B and C
instead of numbers in this simple example. We can calculate
that:

λB =
1
5

1
5

+ 1
15

= 0.75 λC =
1
15

1
5

+ 1
15

= 0.25

Hence the value of A will be interpolated based on B and C
to be:

yA = λB yB + λC yC = 0.75× 100 + 0.25× 200 = 125

Note that since point C is three times more distant than B
is from point A, the weight λC is only a third of the weight
λB. Hence yA is much closer to yB than to yC .

3. NEW SPATIOTEMPORAL INTERPOLA-
TION METHODS

Now we describe a new spatiotemporal interpolation method
which is a combination of a spatial interpolation method
with a temporal interpolation method. For the spatial in-
terpolation part, we consider to use the IDW method as
described in Section 2. We choose IDW because its ease of
use and low computation charge [5]. For the temporal in-
terpolation part, we consider two methods as described in
Section 3.1.

For any location C, let Et,C be the estimated value using
any chosen temporal interpolation method, and Es,C the
estimated value using any spatial interpolation method, αC

the weight of Et,C , and βC the weight of Es,C . We calculate
the overall estimation value EC for location C as follows:

EC = αC × Et,C + βC × Es,C (4)

where αC + βC = 1 and 0 ≤ αC , βC ≤ 1.

In interpolating the percentage vote for a given party in
some county C for which we do not have information, we
would naturally like to rely on the percentage votes in its
neighboring counties if those values are known. Here we
should notice that since election voting is not like some GIS
applications like minimum or maximum temperatures in a
weather station, where some data are missing because of
broken instruments or data processing mistakes, hence in-
terpolation is needed to find the replacing values. For elec-
tion voting, it is very unlikely that previous voting result
can not be found. And what people are most interested in
is who will win in the coming election. Therefore, instead of
doing a interpolation, we use our method to do a prediction.

Now we discuss how to determine Et,C , Es,C , αC , and βC

in the following.

3.1 Temporal methods to determine Et,C

3.1.1 Inverse linear temporal method
This is a variant of the IDW methods that measures “dis-
tance” in terms of time difference instead of spatial differ-
ence. That is, it treats time as a third dimension. Following
the IDW method, the weights are assigned proportional to
the inverse of the time difference, and again we assume that
p = 1.

3.1.2 Inverse exponential temporal method
After some experimentation we realized that time is special
and the inverse linear temporal method does not yield good
results. Increasing p to a small constant 2 or 3 also does not
yield a good result. Hence, we introduce another method
that assigns weights that decrease exponentially with the
time difference, i.e., if we look back in time n years and



have one data in each of the past n years, then the weight of
the data i years back in time will be 1

2i for 1 ≤ i ≤ (n− 1)

and 1
2n−1 for n years back. Note that the last two weights

will be the same and with this rule the sum of the weights
is still 1.

Consider predicting the outcome of the USA presidential
election of 2004 based on six previous election results, namely
the presidential election votes in 2000, 1996, 1992, 1988,
1984, and 1980.

For inverse linear temporal interpolation, we use the time
distance of one as the distance between two continuous USA
presidential elections (even though it means four years).
Hence we get the weights:

λi =
1
i

1
1

+ 1
2

+ . . . + 1
6

=
1

2.45× i

Using inverse exponential temporal interpolation, we assign
the weights to the outcome of these elections (at any city
or voting district) as 1

2
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32

occurring twice is to keep the sum of the weights
still 1.

3.2 Spatial methods to determine Es,C
As stated before, IDW is a very popular interpolation method,
we use it as the spatial part for our method. However,
a problem arises. For example, suppose we are back in
November 2004 and want to predict the percentage vote
for John Kerry in the 2004 USA presidential election in
Alachua county, Florida. It is not reasonable to use the
actual votes in Bradford, Clay, Columbia, Gilchrist, Levy,
Marion, Putnam, and Union, which are the neighboring
counties of Alachua, because those votes are not known yet.
A possible solution is to use the estimated data in the neigh-
boring counties, which can be created by many methods such
as our inverse linear or inverse exponential temporal meth-
ods.

When we use the IDW method, we consider two versions.
One is the IDW method with uniform distances and the
other with real distances.

3.2.1 IDW with uniform distances
Suppose we want to predict the votes for county C, which
has the following neighboring counties, N1, N2, . . . , Nk. We
assume all the distances between counties C and Ni, 1 ≤ i ≤
k, are the same. Hence by Equation (3) each neighbor Ni

has exactly the same weight λi = 1
k
, 1 ≤ i ≤ k.

3.2.2 IDW with real distances
When considering the real distance between counties C and
Ni, 1 ≤ i ≤ k, we calculate the distances between the cen-
troid of counties C and Ni, 1 ≤ i ≤ k. Because of the
near-spherical shape of the Earth, calculating an accurate
distance between two points requires the use of spherical
geometry and trigonometric math functions. In this study,
we use the formulae introduced by Weisstein [21],

Table 1: Latitude and longitude of centroid of 67
counties of Florida, USA

County name Latitude Longitude

Alachua 29.676436 -82.379953
Baker 30.287517 -82.236268
Bay 30.219170 -85.638788
. . .

Wakulla 30.144620 -84.366174
Walton 30.637995 -86.155962
Washington 30.630591 -85.638396

distance =

q
(x1 − x0)

2 + (y1 − y0)
2 + (z1 − z0)

2 (5)

where for 0 ≤ i ≤ 1
xi = R× cos(longi)× sin(90◦ − lati)
yi = R× sin(longi)× sin(90◦ − lati)
zi = R× cos(90◦ − lati)
and R = 6368KM

The latitude and longitude of the centroid of a county are
shown in Table 1, which is obtained from the official website
http://www.census.gov.

Using the above distances we can get the weights of neigh-
boring counties by Equation (3). Combined with the data of
neighboring counties, we can use Equation (1) to estimate
the votes for county C.

An interesting aspect is that in states with long and nar-
row shapes, such as Florida, there are fewer neighbors on
average for each county than in counties with a more round
shape such as Ohio. Therefore, we were concerned that the
overall shape of a state can influence heavily the accuracy of
our spatiotemporal interpolation method. Hence we choose
three states, that is, Florida, Ohio, and California, with very
different shapes as our test cases.

In each of our three test states, there are counties that have
additional neighbors in other states. For example, some
counties in Florida are neighbors of some counties in Geor-
gia. However, we did not count neighbors in other states, be-
cause we did not have available data for them. Presumably
the accuracy of our interpolation methods can be further
improved by counting those neighbors too.

3.3 Determine αC and βC

3.3.1 Step function
When we consider this new method, the most natural way
to determine αC and βC is a step function as shown in Fig-
ure 1. In a step function, we find some parameter σC and
fix some threshold value θ (Details about σC and θ are in
the following paragraphs). If σC < θ, then we set αC = 1



Table 2: di and σ of 67 counties of Florida, USA

di in each county 00/96 96/92 92/88 88/84 84/80 σ

Alachua 1.353543 4.287756 0.781069 2.403800 5.863571 2.937948
Baker 4.927593 5.031435 0.896374 0.045522 24.17032 7.014248
Bay 0.951147 4.895554 1.633311 2.241453 11.67629 4.279550
. . .

Wakulla 2.071604 8.078953 1.023610 1.278107 16.490388 5.7885324
Walton 3.626663 5.728941 1.235268 3.937664 20.734451 7.0525974
Washington 3.204958 5.745716 0.326218 3.265001 18.464455 6.2012696

and βC = 0, which enforces that we use the temporal in-
terpolation method; and if σC ≥ θ, then we set αC = 0
and βC = 1, which enforces that we use the IDW spatial
interpolation method. In summary,

�
αC = 1, βC = 0 if σC < θ
αC = 0, βC = 1 if σC ≥ θ

(6)

σC and θ are considered according to a specific application.
For example, when we apply the method to USA presiden-
tial election data, we choose σC as the changes in the vote
percentages of all pairs of subsequent presidential elections
for a county C. We choose θ as a constant, say 1%, 2% and
so on. Intuitively, a smaller σC means that the values in a
county C are more consistent over time, hence we can rely
more on the temporal interpolation method, which means
that we should increase αC and decrease βC .

Let Mt,C be the absolute difference between the temporal
estimation value and the actual data at location C. Simi-
larly, let Mi,C be the absolute difference between the IDW
estimation value and the actual data. If most counties with
σC < θ have Mt,C < Mi,C while most counties with σC ≥ θ
have Mt,C ≥ Mi,C , then the step function makes an ideal
choice. Intuition would suggest that Mt,C and Mi,C are
independent, hence if a temporal method is more reliable
because σC is small, then it is also usually the case that
Mt,C < Mi,c.

3.3.2 Linear function
In addition to the step functions, we also experimented with
linear functions of the form α = c σ+d with different values
for the constants c and d. However, the linear functions did
not work as well as the step functions. One likely expla-
nation is that the temporal and IDW methods give similar
variations for most counties, that is, when the temporal es-
timation value is higher (or lower) than the original data,
then the IDW estimation value is also higher (or lower).
That makes it difficult to find a good linear function.

3.3.3 σC in the election data
Suppose we would like to predict the outcome of the USA
presidential election of 2004 in Alachua, Florida. Let us look
at how to calculate σAlachua.

Figure 1: Step function

Let Pyear be the percentage vote for the democratic can-
didate in the given year in Alachua and use P00 instead
of P2000 and so on. We have P00 = 55.249682%, P96 =
53.896139%, P92 = 49.608382%, P88 = 48.827313%, P84 =
46.423513%, and P80 = 52.287084%.

Let d be the absolute difference between two continuous
USA presidential elections, then d1 = |P00 − P96|, . . . , d5 =
|P84 − P80|. That is, d1 = |55.249682% − 53.896139%| =
1.353543%, d2 = 4.287756%, d3 = 0.781069%, d4 = 2.4038%,
and d5 = 5.863571%.

Hence we get:

σAlachua =
d1 + d2 + d3 + d4 + d5

5
= 2.937948%

Table 2 gives di and σ of six counties of the state of Florida.
We calculated similarly the σ for the remaining 61 counties
in Florida, but we do not show them for space limitations.

4. EXPERIMENTAL METHODS AND RE-
SULTS

4.1 USA presidential election data sets



Figure 2: 2004 presidential votes by county in
Florida (from http://www.cnn.com)

Table 3: Votes for 2000 USA presidential election in
67 counties of Florida, USA

County
name

Total
votes

Votes for
Republican
candidate

Votes for
Democratic
candidate

Alachua 85,757 34,135 47,380
Baker 8,155 5,611 2,392
Bay 58,876 38,682 18,873
. . .

Wakulla 8,587 4,512 3,838
Walton 18,323 12,186 5,643
Washington 8,026 4,995 2,798

As stated before, in order to test our idea, we used the
USA presidential election data for the states of California,
Florida, and Ohio. For Florida, the data is obtained from
the official website [24], which is maintained by the Florida
Division of Elections and contains a comprehensive USA
presidential voting data for 67 different counties in Florida
between 1980 and 2004. Table 3 shows a part of the post-
caculated data. The map in Figure 2 shows the 2004 presi-
dential votes for each county in Florida. For California and
Ohio, the data is obtained from [13], for the time period
between 1972 and 2004. We estimated the votes for the
2004 democratic candidate for USA president (John Kerry)
in those three states using our new method and compared
them with the actual votes.

4.2 Prediction procedures
We tried out both the inverse linear and the inverse expo-
nential temporal methods as described in Section 3.1. We
used the two versions of the IDW methods described in Sec-
tion 3.2 as our spatial interpolation method.

Once we get the temporal and spatial interpolation values,
we apply Equation (4) to calculate the final estimation value.
We test step functions to find the best estimation parameters
α, β, and θ. For the threshold parameter θ we tried the ten
values 1%, 2%, 3%, ..., 10%.

4.3 Evaluation method
Several measures are suitable for experimentally comparing
the accuracy of interpolation methods. We use mean ab-
solute error (MAE) and root mean square error (RMSE).

MAE =

NX
i=1

|Fi −Ai|

N
(7)

RMSE =

vuuuut NX
i=1

(Fi −Ai)
2

N
(8)

where
Fi: Prediction value.
Ai: Actual measurement.
N : Number of data.

Let V Pstatee be the estimated statewide vote percentage
for a given party. Similarly, let V Pstatea be the actual
statewide vote percentage for a given party.

V Pstatee =

P
Ei × ViP

Vi
(9)

where
Ei: Estimated vote percentage for a given party in county
i.
Vi: The number of all voters in county i.

Then we can calculate the error of statewide total vote per-
centage (TE), which is a more interesting measure in the
voting prediction area.

TE = |V Pstatee − V Pstatea| (10)

Example 2. Assume that a state S has three counties A,
B, and C. For some election the numbers of all voters in
counties A, B, and C are 1000, 2000, and 3000, respectively.
The estimated vote percentages for a given party in counties
A, B, and C are 40%, 50%, 60%, respectively. And the
actual vote percentage for a given party in state S is 58%.
We can calculate that:

TE =
��� 40%×1000+50%×2000+60%×3000

1000+2000+3000
− 58%

��� = 4.7%

4.4 Evaluation
Figures 3-5 give the intuition for step functions, based on 67
counties in Florida. The x-axis is σ in each figure, while the
y-axis is Mt in Figure 3, Mi in Figure 4, and their weighted
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linear combination in Figure 5. It can be seen that for this
data set, 7% seems a reasonable threshold since most coun-
ties with σ < 7% have Mt < Mi, and most counties with
σ ≥ 7% have Mt ≥ Mi. The experiments proved true our
intuition.

Table 4 records our experimental results. We can see that
the performance of spatiotemporal step functions and in-
verse exponential temporal methods is the best, getting com-
paratively precise predictions, especially in predicting the
2004 USA presidential election in Florida. Spatiotemporal
step functions (with θ = 7%) predict for the 2004 USA presi-
dential election, the democratic candidate (John Kerry) will
win 46.00% votes in Florida, and the actual result is 47.09%,
hence the discrepancy (TE) is only 1.09%. This contrasts
favorably with a CNN poll which predicted only 42% for
John Kerry shortly before the election [25], i.e., it had a TE
of more than 5%.

The experimental results for California and Ohio are also im-
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Figure 5: Mt and Mi of step function

pressive. Inverse exponential temporal method shows slightly
better performance, TE is 3.46 and 3.18 in California and
Ohio, respectively. For all three states, MAE and RMSE
are reasonably low, between 2.39 and 6.83.

The experiment shows that the difference between the two
versions of IDW methods with uniform distances and real
distances are extremely small in our case. Therefore, the
much more complicated standard IDW method using exact
distances can be simplified by IDW method with uniform
distances using topological neighbors without any significant
change in the accuracy of the result.

Figure 6 shows the estimated vote percentages using step
functions and the actual vote percentages over 67 counties in
Florida. We can see that for most counties the discrepancy
is low and it almost disappears for several counties.

5. CONCLUSION AND FUTURE WORK
The experimental results show that our new spatiotemporal
interpolation method can be a basis for an effective voting
prediction system. Of course, any real voting prediction sys-
tem would need to be fine-tuned by considering many addi-
tional variables, such as a candidate’s expenditures, gender,
incumbency, and the interaction affects of those parame-
ters. However, it is extremely interesting and encouraging
that by combining a temporal and a spatial interpolation
method, which in themselves are not too sophisticated, al-
ready yields prediction values that are more accurate than
the results —published in various newspapers in the run-
up to the elections— of much more sophisticated prediction
systems. Hence our vote prediction system has a signifi-
cant potential that we plan to exploit by factoring in more
variables.

As this approach produced both county-level and state-level
results, it can be used by election agencies in election data
verification for effective government. We can compare the
collected election results with the estimates at the county-
level and identify possible suspected data when there is sig-
nificant difference between them.
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Table 4: Comparison of step function, temporal and IDW methods

California 2004 Florida 2004 Ohio 2004

TE MAE RMSE TE MAE RMSE TE MAE RMSE

IDW using uniform distances

Spatial IDW 8.65 11.60 9.67 4.88 7.98 9.05 8.75 11.31 7.60
Spatiotemporal Step Function 3.49 4.51 6.26 1.09 2.40 5.18 3.57 4.37 3.57
(θ = 7%)
Spatiotemporal Step Function 3.55 4.77 6.38 1.10 2.40 4.72 3.89 4.66 3.88
(θ = 8%)
Spatiotemporal Step Function 3.49 4.51 6.26 1.10 2.39 4.61 3.27 4.05 3.14
(θ = 9%)

IDW using real distances

Spatial IDW 8.02 11.33 9.33 3.51 6.62 8.64 8.83 11.27 7.45
Spatiotemporal Step Function 3.58 4.63 6.83 1.10 2.39 4.84 3.45 5.06 4.88
(θ = 7%)
Spatiotemporal Step Function 3.54 4.54 6.32 1.11 2.39 4.69 3.78 4.56 3.71
(θ = 8%)
Spatiotemporal Step Function 3.50 4.51 6.03 1.11 2.39 4.59 3.25 4.03 3.10
(θ = 9%)

Temporal Inverse Linear 5.46 6.66 7.25 2.68 3.81 5.12 4.10 5.09 3.74
Temporal Inverse Exponential 3.46 4.48 6.01 1.10 2.39 4.59 3.18 3.99 3.10



In the future, we also plan to look at other problems that
require a single value as the outcome of the interpolation
problem. For example, an aggregate health statistics, such
as the number of persons infected with various specific dis-
eases in a state or country would be another natural problem
to look at. Another would be to predict human population
changes in a country or worldwide. Both of these are known
to be hard problems. For example, there are widely different
values for the total number of AIDS cases predicted using
different models or the predicted total human population in
the world. By improving the estimation accuracy of these
and similar types of problems, we can help governments and
international health and environmental agencies to be better
prepared in the future.
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